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1. EXPERIMENTAL SECTION 

1.1. Reagents and Instruments. 

All reagents and solvents were commercially purchased and used without further 

purification unless other noted. Elemental analysis (EA) was characterized with 

Perkin-Elmer 240 elemental analyzer. Thermogravimetric analyses were carried out 

on a NETZSCH TG209 F3 system under N2 atmosphere with a heating rate of 10 oC 

min–1. Powder X-ray diffraction (PXRD) data were collected using a Rigaku Mimi X-ray 

powder diffractometer (Cu-Kα) at room temperature with a scan speed of 10 o min-1. 

The antibiotics concentrations were determined by high-performance liquid 

chromatography (HPLC) (Waters) equipped with a BEH C18 column (2.1 × 100 mm; 

1.7 μm particle size). Electron paramagnetic resonance (EPR) experiments were 

performed on a Bruker instrument under ambient atmospheric condition (Bruker 

216 EMX nano, Germany). The chemical state changes of C, O, and Cu before and 

after the catalyst reaction were analyzed by X-ray photoelectron spectroscopy.

1.2. Synthesis of [Cu3(3-O)(pypz)3]NO3∙guest (MAF-wyu2, 1).

A mixture of Cu(NO3)2‧4H2O (2 mmol), 4-(1H-pyrazol-4-yl)pyridine (1 mmol), 1H-

1,2,4-triazole (0.5 mmol) and N,N-dimethylacetamide (DMA, 50 mL) was stirred for 

30 min, and then sealed in a 250-mL Teflon reactor and heated at 100 °C for 24 

hours. After cooling to room temperature at a rate of 5 °C h−1, dark blue cubic 

crystals were collected, washed with DMF, and dried in air. EA Calcd. (%) for [Cu3(3-

O)(C8H6N3)3]NO3∙9(H2O)∙2.8(C4H9NO), C35.2H61.2Cu3N12.8O13.8: C, 39.32; H, 5.74; N, 

16.68. Found: C, 39.34; H, 5.63; N, 16.89.

1.3. Synthesis of MIL-53(Fe), MIL-101(Fe), [Cu3(-OH)(pzca)3(H3O)], HKUST-1, MOF-

74, FDM-6, Cu-MFU-4l, [Cu3(PyCA)3]. 

These MOFs were synthesized based on the literature.1-6 

1.4. The degradation of antibiotics experimental procedures.

All experiments were conducted at room temperature in 100 mL open beaker with a 

magnetic stirrer. 1.25 mg of the prepared sample was dispersed in 50 mL antibiotics 

solution (5 mol L-1) and distributed uniformly by sonication. The adsorption-
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desorption equilibrium was reached by stirring the suspension solution for 30 min. 

Thereafter, PMS was added and stirred to ensure that the solution was mixed 

homogeneously. Meanwhile, the samples (1.0 mL suspension) were extracted and 

mixed with 10% hydroxylamine hydrochloride to stop the reaction at certain 

intervals. The sample was filtered through a 0.22 m membrane and analyzed for 

SMX concentration by HPLC. The solutions with different pH are adjusted to the 

desired value by using HClO4 or 0.10 mol L-1 NaOH. For the quenching experiments, 

methanol, ascorbic acid and furfuryl alcohol were added to the SMX-containing 

solution before the reaction. All experiments were replicated in triplicates.

1.5. Determination of PMS concentration.

The PMS concentration was estimated by a modified iodometric titration method. 

Firstly, a highly concentrated potassium iodide solution (KI, 0.50 mol L-1) as well as a 

50 mmol L-1 PMS solution was prepared. To dilute the PMS solution of 20 L to 5 mL, 

and mixed 500 L from the diluted PMS solution with 500 L of 0.50 mol L-1 KI 

solution. After 10 min of reaction, the ultra-pure water was added and diluted to 5 

mL, and the color-generating sample was detected at  = 351 nm (UV-Vis 

spectrophotometer).

1.6. HPLC analysis.

Each sample was drawn 20 L, injected and separated by the column with a flow 

rate of 0.30 mL min-1. The mobile phase ratio of the various targets as follow:

Substrate Mobile phase ratio (v:v)
sulfamethoxazole (SMX)

oxytetracycline (OTC)
sulfamethazine (SMZ)

ciprofloxacin (CIP)
tetracycline (TC)

Methanol : 1‰ acetic acid = 60:40
Acetonitrile : 1‰ acetic acid = 20:80
Methanol : 1‰ acetic acid = 60:40
Methanol : 1‰ acetic acid = 30:70
Methanol : 1‰ acetic acid = 80:20

1.7. EPR measurement.

5,5-Dimethyl-1-pyrroline N-oxide (DMPO) and 2,2,6,6-tetramethyl-4-piperidinol 

(TEMP) can be used as spin traps for the detection of free radicals in solution, 

respectively. Initially, DMPO-H2O mixture, DMPO-MeOH mixture, and TEMP-H2O 
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mixture were prepared. After that, 1 mL of suspension was extracted from the 

reaction solution with the catalyst, trapping agent and PMS at certain intervals (5 

min, 15 min, 25 min) and the solution was aspirated with a quartz capillary to detect 

the spin-trapping adducts on an EPR spectrometer. 

1.8 The degradation efficiency .

The degradation efficiency is the evolution of the substrate concentration over a 

given time interval and can be calculated by eqn. S1:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%) =  
𝑐0 ‒ 𝑐𝑡

𝑐0
 × 100 eqn. S1

where C0 and Ct are the concentrations of SMX at 0 min and at different time 

intervals, respectively.

1.9. Pseudo-first-order kinetics for SMX degradation.

The kinetic rates constant for SMX degradation is consistent with pseudo-first-order 

kinetics model, while the degradation rate of SMX can be calculated by eqn. S2:

ln(
𝑐𝑡

𝑐0
) =‒ 𝑘𝑜𝑏𝑠𝑡 eqn. S2

where C0 and Ct are the concentrations of SMX at 0 min and at different time 

intervals, respectively. kobs denotes the pseudo-first-order kinetics constant rate 

(min-1), while t is the reaction time.

1.10. The turnover number (TON) and turnover frequency (TOF).

The transformation efficiency for SMX at the active sites of MOF can expressed with 

TON, while this value can be calculated by eqn. S3:

𝑇𝑂𝑁 =
(𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (%))(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 eqn. S3

TOF is the number of reaction cycles taking place in the established time intervals 

and can be calculated by eqn S4:

𝑇𝑂𝐹 =
𝑇𝑂𝑁
𝑇𝑖𝑚𝑒

eqn. S4
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Fig. S1. The asymmetric unit of 1 (symmetry codes: A = 1/2-x, 1-y, 1/2+z; B = x, y, z).

Fig. S2. The classic planar trinuclear [Cu3(3-O)]4+ cluster with exposed OMSs in 1.
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Fig. S3. The 6-connected topology network constructed by planar trinuclear [Cu3(3-
O)]4+ clusters and pypz- ligands.

Fig. S4. The 3D coordination framework and pore surface structure of 1 along the a, 

b, c-axis, respectively.
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Fig. S5. PXRD patterns of 1 under various solvents.
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Fig. S6. The SEM images of 1 (a), (b) before and (c), (d) after the degradation.
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Fig. S7. Thermogravimetry curves of as-synthesized 1 and MeOH-exchanged 1.
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Fig. S8. PXRD patterns of activated 1 in various methods, and solvent soaking 

experiments.
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Fig. S9. (a) Degradation rates of SMX under different reaction systems. (Experimental 

conditions: pH = 7.0, SMX = 5 M, Catalysts = 100 mg L-1, pH = 11.0, Cu2+ = 100 mg L-1, 

PMS = 100 M, T = 25 oC). The influence of different reaction conditions of (b) 

catalyst concentration, (c) pH value, (d) oxidant concentration on SMX degradation 

rate. (Experimental conditions: pH = 11.0, SMX = 5 M, Catalyst = 25 mg L-1, PMS = 

100 M, T = 25 oC) 
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Fig. S10. MeOH quencher concentrations on (a) the SMX degradation efficiency, (b) 

the degradation rate. (Experimental conditions: pH = 11.0, SMX = 5 M, Catalysts = 

25 mg L-1, PMS = 100 M, T = 25 oC, MeOH = 1 mM, 5 mM, 10 mM) 

Fig. S11. AA quencher concentrations on (a) the SMX degradation efficiency, (b) the 

degradation rate. (Experimental conditions: pH = 11.0, SMX = 5 M, Catalysts = 25 

mg L-1, PMS = 100 M, T = 25 oC, L-ascorbic acid = 1 mM, 5 mM, 10 mM)
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Fig. S12. FFA quencher concentrations on (a) the SMX degradation efficiency, (b) the 

degradation rate. (Experimental conditions: pH = 11.0, SMX = 5 M, Catalysts = 25 

mg L-1, PMS = 100 M, T = 25 oC, FFA = 1 mM, 5 mM, 10 mM)

Fig. S13. (a) The degradation efficiency and (b) degradation rate of SMX at different 

HCO3
- concentrations. (Experimental conditions: pH = 11.0, SMX = 5 M, Catalysts = 

25 mg L-1, PMS = 100 M, T = 25 oC, HCO3
- = 1 mM, 5 mM, 10 mM)
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Fig. S14. (a) The degradation efficiency and (b) degradation rate of SMX at different 

Cl- concentrations. (Experimental conditions: pH = 11.0, SMX = 5 M, Catalysts = 25 

mg L-1, PMS = 100 M, T = 25 oC, Cl- = 1 mM, 5 mM, 10 mM)

Fig. S15. (a) The degradation efficiency and (b) degradation rate of SMX at different 

HA concentrations. (Experimental conditions: pH = 11.0, SMX = 5 M, Catalysts = 25 

mg L-1, PMS = 100 M, T = 25 oC, HA = 1 mM, 5 mM, 10 mM) 
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Fig. S16. (a) The cyclic voltammetry curve (CV) and (b) electrochemical impedance 

spectroscopy (EIS) of 1.

Fig. S17. The products/byproducts produced during the process of degradation.
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Fig. S18. PXRD patterns of 1 and other classical materials before and after the 

degradation.
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Table S1. Crystallographic data and structural refinement details of 1.

Complex 1

Formula C24H18Cu3N10O2

Formula weight 669.10

Temperature (K) 298(2)

Crystal system cubic

Space group I-43d

a/Å 28.8469(4)

b/Å 28.8469(4)

c/Å 28.8469(4)

/o 90

β/o 90

/o 90

V/Å3 24004.8(10)

Z 16

Dc /g cm-3 0.741

reflns coll. 13693

unique reflns 3830

Rint 0.0408

R1 [I > 2σ(I)]a 0.0289

wR2 [I > 2σ(I)]b 0.0601

R1 (all data) 0.0396

wR2 (all data) 0.0634

GOF 0.884
aR1 = ||Fo|−|Fc||/|Fo|.

bwR2 = {w[(Fo)2−(Fc)2]2/w[(Fo)2]2}1/2
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Table S2. Comparison of degradation performances of 1 and other materials.
Catalyst 

concentration
pH 

value

Oxidant 
concentration

(PMS/PDS)
SMX Reaction 

time (min)
Degradation 
efficiency (%)

Rate 
constant
(min-1)

Ref.

11.0 30 100.00 0.282

9.0 30 97.98 0.1541 25 mg L-1

7.0

0.10 mM 5 M

30 97.89 0.147

This 

work

MIL-

88B(NH2)(F

e)

1.0 g L-1 5.0 1 g L-1
10 mg 

L-1
120 95 0.0216 7

Fe@C-800 0.4 g L-1
ambien

t pH
PDS (0.2 mM)

10 mg 

L-1
180 100.00 0.074 8

SA-Cu/rGO 0.1 g L-1 6.0 0.4 g L-1
10 mg 

L-1
60 99.60 0.088 9

LaMnO3-

Cu-3
0.2 g L-1 7.0 1.3 mM

19.76 

m
20 100.00 0.200 10

CuCo-HT 1.0 g L-1 7.0 0.15 mM
0.1 

mM
40 97.60 0.098 11

CuO@FeOx

@Fe0

1.0 g L-1 5.7 0.2 mM
10 mg 

L-1
10 86.80 0.212 12

CoFeO2.5 0.2 g L-1 7.0 0.4 mM
40 

m
60 100.00 0.151 13

Co-NP 50 mg L-1 6.4 0.15 mM
2.5 

mg L-1
60 88.00 0.034 14

NRGO 0.5 g L-1 3.4 0.8 mM
0.04 

mM
240 91.70 0.010 15

DMDB-800 1.0 g L-1 5.56 2.5 mM
15 mg 

L-1
60 90.20 0.025 16

N, S-BC 0.2 g L-1 5.4 0.8 mM
20 

m
60 91.32 17

Co3O4@NP

C/rGO
20 mg L-1 7.0 0.2 mM

25 mg 

L-1
10 100 0.3315 18
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Table S3. Comparison of degradation performances of 1, classical planar trinuclear 

[Cu3(μ3-O)]4+ clusters and MOFs under the same conditions. (Experimental conditions: 

pH = 11.0, SMX = 5 M, Catalysts = 25 mg L-1, PMS = 100 M, T = 25 oC)

Degradation 
efficiency (%)

Rate constant 
(min-1) TON TOF

(min-1)

1 100.00 0.282 0.038 0.008

[Cu3(-OH)(pzca)3(H3O)] 71.11 0.043 0.005 0.001

HKUST-1 70.60 0.047 0.012 0.002

MIL-53(Fe) 25.13 0.011 0.005 0.001

MIL-101(Fe) 23.78 0.010 0.009 0.002

MOF-74 23.34 0.012 0.005 0.001

FDM-6 59.30 0.039 0.028 0.006

Cu-MFU-4l 71.68 0.053 0.036 0.007

[Cu3(PyCA)3] 83.45 0.059 0.008 0.002
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