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1.Materials and Methods

1.1 Synthetic route
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Scheme S1. Synthetic route of molecule 1-3.

1.2 Materials

Diethylene glycol monomethyl ether, 3-Chloro-2-chloromethyl-1-propene, lithium aluminum
hydride, 2-Methoxyethanol, Borane-tetrahydrofuran complex, Calcium chloride, Sodium
hydroxide, Hydrogen peroxide, (S)-(+)-1-Bromo-2-methylbutane, 3,4-Dihydro-2H-pyran,
sodium hydride, 2,5-Dibromobenzene-1,4-diol, Sodium carbonate anhydrous, L-Lactic acid
ethyl ester, 1-Bromobutane, 4-Formylphenylboronic acid, toluene-p-sulfonyl chloride (TsCl,
99%), pyridine, Sodium bicarbonate, Hydrochloric acid, 4-Hydroxybenzeneboronic acid,
potassium carbonate, p-Toluenesulfonic acid monohydrate, tetrakis(triphenylphosphine)
palladium(0), Magnesium sulfate anhydrous and conventional reagents were used as
received. All manipulations involving air-sensitive reagents were performed under an

atmosphere of dry nitrogen.



1.3 Synthetic process

The preparation methods of all intermediate compounds and SBA-15 are similar to those in

other literature [S1, S2, S3].

1.4 Techniques

Column chromatography filled silica gel (100-200 mesh) was proceeded for further
purification. 'H-NMR (300 MHz) spectra were recorded in CDCl; on the Bruker AM-300
instrument. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF-MS) was performed on the PerSeptive Biosystems Voyager-DE STR time-of-
flight mass spectrometer using 2-cyano-3-(4-hydroxyphenyl) acrylic acid (CHCA) as the
matrix. N, adsorption-desorption experiment was carried out by Micromeritics ASAP 2460
instrument. The TGA experiment was proceeded with the Perkin ElImer STA 6000 instrument.
FT-IR spectra were obtained using Bruker VERTEX 70 spectrometer. UV-vis experiments were
performed through the Shimadzu UV-1650PC spectrometer. CD spectra was obtained by a
Biologic PMS450. The morphology was observed by scanning electron microscopy (SEM, SU-
8010, Hitachi, Japan) and transmission electron microscopy (TEM, JEOL 2100 plus, Japan).
HPLC-MS (TSQ Fortis, ThermoFisher SCIENTIFIC) was performed to confirm the obtained
standard sample. The ee (%) was estimated on a Shimadzu LC-16 high performance liquid
chromatography (HPLC) equipped with a Daicel CHIRALPAK® AYHOCE-VB023 column. The
mobile phase is n-Hexane/EtOH/Diethylamine = 90/10/0.1 (v/v/v), and flow rate is 1.0

mL/min.

1.5 Supramolecular Co-Assemblies with DCCS

1) Prepare a DCCS solution at a given concentration: dissolve 1.0 mg of DCCS in 1 mL THF as
stuck solution.

2) Prepare three initial assembly systems of SA-M1, SA-M2, and SA-M3: weigh 1 mg solid
samples, and dispense them in 10 mL H,O/THF (v/v = 9/1) separately.

3) 100 puL of stuck solution from 1) was added to the three initial solutions and the vials were
seal-capped. The mixture was sonicated for 30 minutes and stand for two hours to form

supramolecular co-assembly.



2.Supporting data

2.1 *H-NMR spectra of molecules 1-3 in CDCl;.
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Figure S2. 'H-NMR spectrum of molecule 2 in CDCls.



—

= 61
- £0

~ C0

[

cici s @ eic

cieied

2.0

3.0

10.0

11.0

Figure S3. 'H-NMR spectrum of molecule 3 in CDCls.



2.2 MALDI-TOF-Mass spectra of molecules 1-3.

Data: zhy10001.117 26 Sep 2023 15:15 Cal tof 29 Aug 2022 11:52
Kratos PC Axima CFRplus V2.4.0: Mode linear, Power: 146, P.Ext. @ 453 (bin 49)
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Figure S4. MALDI-TOF-Mass spectrum of molecule 1.
Data: zhy20001.118 26 Sep 2023 15:16 Cal: tof 29 Aug 2022 11:52
Kratos PC Axima CFRplus V2.4.0: Mode linear, Power: 146, P.Ext. @ 453 (bin 49)
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Figure S5. MALDI-TOF-Mass spectrum of molecule 2.
Data: zhy30001.119 26 Sep 2023 15:16 Cal: tof 29 Aug 2022 11:52
Kratos PC Axima CFRplus V2.4.0: Mode linear, Power. 146, P.Ext. @ 453 (bin 49)
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Figure S6. MALDI-TOF-Mass spectrum of molecule 3.



2.3 Porosity Analysis

Table S1. Porosity analysis of materials.

Seer' (m*/g) Vrota” (cm*/g) Veu® (cm?/g) Drore* (NM)
SBA-15 490.45 1.08 0.98 10.55
SBA-APT 377.71 0.78 0.57 8.99
SA-M1 96.98 0.15 0.11 4.62
SA-M2 44.74 0.07 0.06 4.62
SA-M3 107.62 0.16 0.12 4.40

1Specific surface area calculated from the Brunauer-Emmett-Teller equation.
Total pore volume at the adsorption value of P/P0 = 0.99.

3Cumulative volume in the mesopore range of 2-50 nm.

4Pore diameter derived from the Barrett, Joyner, and Halenda (BJH) plot.

2.4 TEM and SEM images

Figure S7. Negative-stained TEM image of SBA-15 with lattice fringe.



Figure S8. SEM images of SBA-15 (a-c), SA-M1 (d-f), SA-M2 (g-i), and SA-M3 (j-1).



2.5 UV-Vis absorption spectra
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Figure S9. Absorption spectrum of molecule 1 (a), molecule 2 (b), and molecule 3 (c)

in H,O/THF (v/v = 9/1) mixed solvent under the concentration of 25 uM.
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Figure S10. Absorption spectrum of DCCS in H,O/THF (v/v = 9/1) mixed solvent under
the concentration of 25 UM,
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2.6 CD spectra in THF

Figure S11. CD spectra of SA-M1 (a), SA-M2 (b), SA-M3 (c) in THF before and after

adding DCCS.

2.7 HPLC-MS graph

10 10
—5A-M1 (b) —5A-M2 (C) ——5A-M3
——SA-M1: DOCS - 10:1 ——SA-M2: DECS - 10:1 ——5A-M3 : DOCS - 10:1
5 54
= @
! {7 omniiiinnit. "N 1 e, S S
_E_ o E LE
o
8 o
54 54
T T - -10 : -10 T v T
300 400 500 600 200 200 500 600 300 00 500 600
Wavelength (nm]) Wavelength (nm) Wavelength (nm)

Uninawn2 Uning g RT. 7.07 NL: 1.26E+05
F. + ¢ ESI 5RAM ma2] 244.218|[106.935-905.941, 180.054-180.066, 202 082208084, 212 154-212.156, 226 285-226 287)

- 226286
' -
80 3 3_
: D
680 miz: 244.08 (100.0%), 245.08 (13.0%), 246.07 (4.5%), 246.08
t (1.6%) 208.083
i ]
a 180065
20.]
“ i | 212.155
1059%0 180064 10066 208082 12156 212155 226295
m'z mz mz m'z mz

Figure S12. HPLC-MS graph of PM-Ts standard sample.




2.8 HPLC chromatograms
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Figure S13. Chiral HPLC chromatograms of the nucleophilic substitution reaction
between PM and TsCl in the present of SA-M1 (a), SA-M2 (b), SA-M3 (c) and SBA-15
(d), compared with racemer.



2.9 Catalytic activity for asymmetric synthesis

Table S2. Catalytic activity for asymmetric nucleophilic substitution reaction.

ee value loss of efficiency after references
cyclic utilization
Aggregate 1 25.43 % - 5S4
Aggregate 2 24.89 % - S5
SA-M1 37.82% <2% This work
SA-M2 62.24 % <2% This work
SA-M3 71.75% <2% This work
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