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S1. MLFF AND ∆-ML

Similar to previous ML approaches [1, 2], in our MLFF method [3], the potential energy U of

a structure with Na atoms is approximated as a summation of local energies Ui, as written below:

U =
Na

∑
i=1

Ui. (S1)

Following the Gaussian approximation potential pioneered by Bártok and collaborators, the local

energy Ui is approximated as a weighted sum of functions K (xi,xiB) centered at reference points

{xiB |iB = 1, ...,NB}:

Ui =
NB

∑
iB=1

wiBK (xi,xiB) . (S2)

Here, the descriptors of fingerprints xi = xi [ρi (r)] are rotationally and translationally invariant

functionals of the density distribution around atom i [3–5],

ρi (r) =
Na

∑
j=1

fcut
(∣∣r j − ri

∣∣)g
(
r−

(
r j − ri

))
, (S3)

where the function g is a smoothed δ -function, and fcut is a cutoff function that smoothly elim-

inates the contribution from atoms outside a given cutoff radius Rcut. The function K (xi,xiB)

measures the similarity in the local structure surrounding atom i and atom iB in the reference

structures. The reference structures are selected from the training set. For the kernel basis func-

tions, the smooth overlap of atomic positions (SOAP) kernel [4] is employed.

K (xi,xiB) = (x̂i · x̂iB)
ζ . (S4)

The hat symbol x̂i denotes a normalized vector of xi. The normalization and exponentiation in

Eq. (S4) introduce non-linear terms that mix two- and three-body contributions. The coefficients

{wiB |iB = 1, ...,NB} are optimized to best reproduce the FP energies, forces, and stress tensor

components as obtained by the FPMD simulations.

The same formulation is used for the ∆-ML method. In the ∆-ML method, differences of

potential energies and forces between two FP methods, semi-local and non-local functionals in
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this study, are used as the training data.

Parameter sets of the descriptors and kernel basis functions used in previous publications [3,

5, 6] were employed in this study. The parameters are tabulated in Table S1. See details of the

tabulated symbols in the previous publications.

The unit cells used for training MLFFs are shown in Fig. S 1. The MLFF was trained on sys-

tems consisting of 64 H2O molecules and H++64H2O molecules inside cubes with a side length of

12.4 Å. The selection of the 64 water molecule system was based on a previous study that demon-

strated sufficient convergence with this system size. The MLFFs for V3+/V2+ and Ru3+/Ru2+

were trained on systems consisting of X+64H2O molecules, where X denotes the redox species.

The MLFF for O2/O−
2 redox couples was trained on O2/O−

2 +62H2O molecular systems. The

MLFFs for Fe3+/Fe2+, Cu2+/Cu+, and Ag2+/Ag+ are the same as those in our previous publi-

cation [7]. The MLFF for H++64H2O was generated on the fly during a 200 ps NVT-ensemble

MD simulation ramping up the temperature from 300 K to 500 K for each of the 64 H2O and

H++64H2O systems. Prior to the production runs, in addition to the heating simulation, the MLFF

was trained on the fly during the TI simulation from the repulsive surrogate model to the fully

interacting system as explained in Section S2. This additional training is similar to the method

proposed by Wang and co-workers [8, 9]. In our on-the-fly active learning scheme, as in the pro-

duction run for TI explained in Section S2, MD simulations are performed on potential energy

surfaces that are linear combinations of the MLFFs for the reactant and product states. At every

MD step, uncertainties in the predictions are evaluated using the spilling factor. [3] FP calculations

are carried out only for structures with high uncertainties, and the new FP data obtained in this way

are then used to update the MLFFs. Similar to the conventional on-the-fly training method [3], by

restricting FP calculations to only those structures with high uncertainties, we can significantly

reduce the number of required FP calculations. This additional training allows for the collection

of configurations that appear in the TI along the thermodynamic path of proton insertion, signifi-

cantly stabilizing the TI simulations in the production runs. The MLFFs for V3+/V2+, Ru3+/Ru2+,

and O2/O−
2 +62H2O were generated by the same method. In all MD simulations, the temperature

was controlled using the Langevin thermostat [10]. For an efficient sampling of training configu-

rations, the mass of hydrogen atoms was increased to 4.0 a.u., and the time-step was set to 2.0 fs

in all training MD simulations.

For each of the reactant and product states, a ∆-ML model was generated. For each state,

a 100 ps NVT-ensemble MD simulation was conducted using the MLFF trained on RPBE+D3,
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and 40 configurations were randomly selected from the MD trajectory. FP calculations were then

performed on these configurations using the PBE0, PBE0+D3, HSE06, and B3LYP functionals.

The differences in energies and forces between the semi-local functional (RPBE+D3) and each of

the other functionals were used to train the ∆-ML model.

In all FP calculations, the plane-wave cutoff energy was set to 520 eV. The Γ-point was used

for Brillouin zone integration. The PAW atomic reference configurations were 1s1 for H, 2s22p4

for O, 3s23p63d44s1 for V, 3d74s1 for Fe, 3d104s1 for Cu, 4s24p64d75s1 for Ru, and 4d105s1 for

Ag.

The number of structures, Nst, for each system is provided in Table S2. The training datasets

can be accessed from the repository [11]. The root mean square errors (RMSEs) of energies and

forces predicted by the MLFF and ∆-ML models are tabulated in Tables S3 and S4, respectively.

The probability densities for finding specific differences in potential energy and force between the

ML and FP results are summarized in Figures S2 to S8.

Table S 1. Parameter sets of descriptors and kernel basis functions.

Parameters for H++64H2O

ζ 4 β (2) 0.5 R(2)
cut 6.0 σ

(2)
atom 0.5 N(2)

R 8

β (3) 0.5 R(3)
cut 4.0 σ

(3)
atom 0.5 N(3)

R 6 L(3)
max 3

Parameters for other systems

ζ 4 β (3) 1.0 R(3)
cut 5.0 σ

(3)
atom 0.5 N(3)

R 8 L(3)
max 4

Table S 2. The numbers of structures Nst calculated by the FP method to generate training data for the
MLFFs.
System Nst System Nst System Nst System Nst

64H2O 189 H++64H2O 399 V3++64H2O 89 V2++64H2O 77
Fe3++64H2O 162 Fe2++64H2O 97 Cu2++64H2O 173 Cu++64H2O 266
Ru3++64H2O 149 Ru2++64H2O 144 Ag2++64H2O 73 Ag++64H2O 181
O2+62H2O 407 O−

2 +62H2O 319
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Table S 3. Root mean square errors (RMSE) for MLFF in energy σE (meV atom−1), forces σF (eV Å−1),
and stress tensor components σS (kbar). The RMSE was evaluated for each system using 100 test structures
taken from a 10 ps TI simulation from MLFF to RPBE+D3.

System σE σF σS
64H2O 1.1 0.04 0.85
H++64H2O 0.6 0.05 0.59
V3++64H2O 1.4 0.07 0.51
V2++64H2O 1.4 0.06 0.47
Fe3++64H2O 1.3 0.07 0.62
Fe2++64H2O 1.2 0.07 0.59
Cu2++64H2O 1.1 0.07 1.07
Cu++64H2O 0.9 0.06 0.78
Ru3++64H2O 1.8 0.08 0.84
Ru2++64H2O 2.2 0.07 0.71
Ag2++64H2O 1.6 0.07 1.08
Ag++64H2O 1.2 0.05 0.84
O2+62H2O 2.0 0.05 0.44
O−

2 +62H2O 0.9 0.05 0.44

Table S 4. Root mean square errors (RMSEs) of ∆-MLs for differences of energies σE (meV atom−1)
and forces σF (eV Å−1) between the semi-local (RPBE+D3) and hybrid functional (PBE0 or PBE0+D3)
compared to FP test data. Here, RMSE is evaluated for each system using 50 test structures taken from a
100 ps MD trajectory of RPBE+D3.

PBE0 - RPBE+D3 PBE0+D3 - RPBE+D3
System σE σF σE σF
64H2O 0.05 0.004 0.05 0.004
H++64H2O 0.05 0.005 0.05 0.005
V3++64H2O 0.10 0.008 0.11 0.008
V2++64H2O 0.06 0.005 0.06 0.006
Fe3++64H2O 0.05 0.006 0.05 0.006
Fe2++64H2O 0.06 0.006 0.06 0.006
Cu2++64H2O 0.06 0.007 0.07 0.007
Cu++64H2O 0.04 0.005 0.04 0.005
Ru3++64H2O 0.24 0.010 0.24 0.009
Ru2++64H2O 0.05 0.005 0.05 0.006
Ag2++64H2O 0.07 0.007 0.07 0.007
Ag++64H2O 0.04 0.005 0.01 0.004
O2+62H2O 0.16 0.009 0.17 0.009
O−

2 +62H2O 0.07 0.007 0.07 0.007
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Figure S 1. Models used for training and production runs. Dashed squares represent the unit cells.
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Figure S 2. Probability densities P to find specific differences between the ML and FP results for the
64H2O (gray) and H++64H2O (black) bulk solutions. Uκ and Fκ denote the potential energy and force,
respectively, at the state κ (κ=0 for 64H2O and κ = 1 for H++64H2O). ∆Uκ and ∆Fκ denote the differences
of the potential energy and force, respectively, between the hybrid functional [(PBE0 and PBE0+D3] and
the semi-local functional (RPBE+D3). The superscript ‘∆ML’ and ‘FP’ indicate the values calculated by
the ∆-ML models and the FP method.
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Figure S 3. Probability densities P to find specific differences between the ML and FP results for the
V3++64H2O (black) and V2++64H2O (gray) bulk solutions. Here, κ=0 denotes the oxidized state, and κ=1
denotes the reduced state. Other notations are the same as the ones in Fig. S2.
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Figure S 4. Probability densities P to find specific differences between the ML and FP results for the
Fe3++64H2O (black) and Fe2++64H2O (gray) bulk solutions. Notations are the same as the ones in Fig. S3.
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Figure S 5. Probability densities P to find specific differences between the ML and FP results for the
Cu2++64H2O (black) and Cu++64H2O (gray) bulk solutions. Notations are the same as the ones in Fig. S3.
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Figure S 6. Probability densities P to find specific differences between the ML and FP results for the
Ru3++64H2O (black) and Ru2++64H2O (gray) bulk solutions. Notations are the same as the ones in Fig. S3.
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Figure S 7. Probability densities P to find specific differences between the ML and FP results for the
Ag2++64H2O (black) and Ag++64H2O (gray) bulk solutions. Notations are the same as the ones in Fig. S3.
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Figure S 8. Probability densities P to find specific differences between the ML and FP results for the
O2+64H2O (black) and O−

2 +64H2O (gray) bulk solutions. Notations are the same as the ones in Fig. S3.
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S2. TI AND TPT

The TI and TPT simulations used for the electron transfer reactions of the three redox couples,

V3+/V2+, Ru3+/Ru2+, and O2/O−
2 , are the same as those employed in our previous publication [7].

In these methods, MLFF surrogate models, which enable the necessary electron insertions into

the aqueous systems, are utilized to efficiently perform statistical sampling. The results for the

electron transfer reactions of six redox couples, V3+/V2+, Fe3+/Fe2+, Cu2+/Cu+, Ru3+/Ru2+,

and Ag2+/Ag+ and O2/O−
2 , are summarized in Fig. S 9.

In this study, the method was modified to extend it to proton insertion to compute the real poten-

tial of the proton. Here, we consider the forward process of proton solvation [H+(g)→ H+(aq)].

The symbols (g) and (aq) denote the species in the gas phase and aqueous phase, respectively. The

equations are summarized below.

• ML(R)→ ML(P)

∆AML =
∫ 1

0

〈
∂HML

∂λ

〉
λ

dλ , (S5)

HML =
Na

∑
i=1

|pi|2

2mi
+λ

(
UML

1 + e∆φ
)
+(1−λ )UML

0 . (S6)

• ML(R)→ FPsl(R) and ML(P)→ FPsl(P)

∆AFPsl−ML
κ =

∫ 1

0

〈
∂HFPsl−ML

κ

∂η

〉
η

dη , (S7)

HFPsl−ML
κ =

Na

∑
i=1

|pi|2

2mi
+ηUFPsl

κ +(1−η)UML
κ . (S8)

• FPsl(R)→ FPnl(R) and FPsl(P)→ FPnl(P)

∆AFPnl−FPsl
κ ≃

〈
∆U∆ML

κ

〉
FPsl

− β

2

〈(
∆U∆ML

κ −
〈

∆U∆ML
κ

〉
FPsl

)2
〉

FPsl

. (S9)

The symbols R and P denote the reactant state and the product state, respectively. FPnl(R/P),

FPsl(R/P), and ML(R/P) denote calculations using a non-local hybrid functional, a semi-local func-

tional and machine-learned force field for the reactant and product states, respectively. The symbol

11



Na represents the number of atoms, and mi and pi represent the mass and momentum vector of the

i-th atom, respectively. The symbols UFPnl
κ , UFPsl

κ , and UML
κ denote the potential energies for the

reactant state (κ = 0) and the product state (κ = 1) calculated by the non-local functional, semi-

local functional, and MLFF trained on the semi-local functional, respectively. The symbol ∆U∆ML
κ

denotes the potential energy difference calculated by the ∆-ML model trained on the potential

energy difference UFPnl
κ −UFPsl

κ between the non-local and semi-local functionals. Equation (S9)

uses the second-order cumulant expansion. The expansion is exact if the probability distribution

of ∆U∆ML
κ is Gaussian. This condition is reasonably satisfied, as shown in Fig. 2 (e) in the main

text. These equations are the same as those for the electron insertion method developed in our

previous study [7]. The difference lies only in the representation of the reactant state (R) and the

product state (P). In the previous electron insertion method, R and P were the respective states

before and after the electron insertion. In the proton insertion method, they represent the states

before and after the proton is inserted into the aqueous medium. Although the difference is only

in the species being inserted, in the case of the proton, the structure of water changes significantly

before and after the insertion, making it very difficult to generate a stable and reversible path of

proton insertion in the TI Eq. (S5). To address this issue, we developed the soft-landing scheme.

Details of the TI scheme and the TPT simulation are explained below. The results of the TI and

TPT simulations for H+ solvation are shown in Fig. 2 in the main text.

TI simulation using MLFF: In the TI equation (S5), a single proton is gradually inserted into

the interacting system by gradually turning on the MLFF interaction of the proton as the coupling

parameter λ increases. At the initial stage, the not-yet-interacting proton can come close to another

atom. If the interaction is calculated by the FP method, the atoms should experience a large

repulsive potential. However, an MLFF not trained for such unrealistic structures may erroneously

provide lower energies. If this occurs in the TI process, the system is irreversibly trapped in this

false virtual well, leading to incorrect free energy in the simulation. To avoid this problem, we

introduce a model potential that supports a soft landing on the realistic structure of the interacting

system, as done in our previous publication [12]. The soft-landing scheme consists of the following

12



two stages of TI simulations:

∆AML = ∆AML
I +∆AML

II , (S10)

∆AML
I =

∫ 1

0

〈
∂HML

I
∂λI

〉
λI

dλI, (S11)

HML
I =

Na

∑
i=1

|pi|2

2mi
+λIUmodel + ∑

i/∈M
Ui (0) , (S12)

∆AML
II =

∫ 1

0

〈
∂HML

II
∂λII

〉
λII

+ e
∫ 1

0
⟨∆φ⟩

λII
dλII, (S13)

HML
II =

Na

∑
i=1

|pi|2

2mi
+λII

Na

∑
i=1

Ui(1)+(1−λII)

[
Umodel + ∑

i/∈M
Ui (0)

]
. (S14)

Here, the symbol M denotes the inserting species, which is a single proton in this study. As

explained in the previous subsection regarding the kernel-based approach, the atomic potential en-

ergies [Ui (0) and Ui (1)] are expressed as a linear combination of functions K (xi (λ ) ,xiB), similar

to what was described before:

Ui (λ ) =
NB

∑
iB=1

wiBK (xi (λ ) ,xiB) . (S15)

Here, the descriptors xi (λ ) = xi [ρi (r,λ )] are the functional of the density distribution function

around atom i,

ρi (r,λ ) = ∑
j/∈M

fcut
(∣∣r j − ri

∣∣)g
(
r−

(
r j − ri

))
+λ ∑

j∈M
fcut

(∣∣r j − ri
∣∣)g

(
r−

(
r j − ri

))
. (S16)

Hence, Ui (0) and Ui (1) give the local energies without and with the group M. Using these nota-

tions, UML
R and UML

P can be written as ∑
i/∈M

Ui (0) and
Na
∑

i=1
Ui (1). It should be noted that the potential

energy of the product state in Eq. (S15) is shifted by e∆φ as explained in Section 2 in the main text.

This system-dependent shift is corrected by the second term on the right-hand side of Eq. (S13).

Details of how to compute ∆φ are described in Section S4.

The additional model potential Umodel is designed to avoid erroneous predictions on unrealistic

structures by the MLFF Ui (1). In the first TI simulation equation (S11), unrealistic structures ap-

pear near the non-interacting limit (λI=0 and λII=0). However, because the MLFF Ui (0) ignores

the inserting proton, it can accurately predict the potential energy of water molecules. Conse-
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quently, the TI stably generates a cavity in water. In the second TI simulation equation (S13),

because the MLFF Ui (1) has already learned all possible configurations of the fully interacting

solution involving proton, with and without the cavity, it can accurately predict the potential en-

ergy of the solution. The soft repulsive potential Umodel is modeled by a simple Gaussian potential

as follows:

Umodel = ∑
i∈M

∑
j/∈M

a0e−
( ri j

r0

)2

. (S17)

The summation over i is taken over all atoms in the group M, and the summation over j is taken

over all atoms except those in the group M. The maximum height of the repulsive potential a0 was

set to 10 eV, and the radius r0 was set as follows:

r0 =
lvdw√

−ln(kBT/a0)
. (S18)

The repulsive length lvdw was set to the sum of the van der Waals radii of H and O atoms. However,

it should be noted that the final real potential of the proton is insensitive to these parameters if

sufficient statistical sampling is conducted.

The integration over the coupling parameter λI in Eq. (S11) and the one over the λII in the first

term on the right-hand side of Eq. (S13) were performed using numerical integration. As shown

in Fig. 2(b) in the main text, the integrands undergo rapid changes near λI = 0. Near λI = 0, the

interaction between the inserted atom and other atoms becomes infinitesimally small, allowing the

yet uninteracting atom to come very close to the other atom and experience the repulsive Gaussian

potential. To achieve accurate numerical integration, the following variable transformations were

employed for both λI and λII [13]:

λ =

(
x+1

2

) 1
1−k

. (S19)

where k is set to 0.5. As in previous studies, after checking for convergence, numerical integration

was performed using the 12- and 14-point Gauss-Lobatto quadrature method for the transformed

variables xI and xII, respectively [12–14]. To examine reversibility, TI simulations were conducted

in two directions. In the first TI, the calculation starts from the origin of the coupling parameter

[λI=0 for Eq. (S11) and λII=0 for Eq. (S13)]. A 200 ps MD simulation is performed on the

14



first integration grid, and the final structure from this simulation is used as the initial structure for

another 200 ps MD simulation on the next grid. This procedure is repeated until the integration

reaches the endpoint [λI=1 for Eq. (S11) and λII=1 for Eq. (S13)]. The second thermodynamic

integration starts from the endpoint and performs integration towards the origin, following the

reverse process of the aforementioned steps. The forward and reverse simulations were repeated

14 times, and by averaging the results of simulations totaling 2.8 ns for each grid, the real potential

α0
H+ was calculated. The second term on the right-hand side of Eq. (S13) was calculated as the

average of ∆φ at two endpoints (trapezoidal rule) similarly to our previous study [7].

TI simulation from MLFF to semi-local functional (FPsl): For the TI Eq. (S7), the trapezoidal

rule with equidistant three points was used following our previous study. With this setup, the

integration error is less than 5 meV. At each point, a 20-ps NVT-ensemble MD simulation at 298

K was performed. The integrands shown in Fig. 2 (d) are smaller than those shown in Fig. 2

(b). They are also nearly proportional to the coupling parameter η . Using the free energy changes

∆FFPsl−ML
κ , the free energy change based on the RPBE+D3 functional is obtained as follows:

∆AFPsl = ∆AML +∆AFPsl−ML
1 −∆AFPsl−ML

0 . (S20)

TPT simulation from semi-local functional (FPsl) to non-local hybrid functional (FPnl): In the

TPT calculations using the ∆-ML models, the ensemble average for Eq. (S9) was computed over

2000 randomly selected configurations from a trajectory of 100 ps NVT ensemble FPMD simula-

tion using the RPBE+D3 functional. While these FPMD simulations are computationally expen-

sive, the overall computational time is still significantly shorter than that of full FP simulations

using the non-local hybrid functional. To ensure the applicability of the second-order cumulant

expansion, we show the probability distributions of the energy difference ∆U∆ML
κ in Fig. 2 (e).

These distributions are well-fitted by Gaussian functions, indicating that Eq. (S9) is a reasonable

approximation. The free energy difference based on the non-local hybrid functionals is obtained

as follows:

∆AFPnl = ∆AFPsl +∆AFPnl−FPsl
1 −∆AFPnl−FPsl

0 . (S21)

15



0

1

2

3

-2 -1 0 1 2

p
(
U


M
L
)

U
ML (eV)

-7.0

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

0.0 0.2 0.4 0.6 0.8 1.0

In
te

g
ra

n
d

 (
eV

)



-7.5

-7.0

-6.5

-6.0

-5.5

-5.0

0.0 0.2 0.4 0.6 0.8 1.0

In
te

g
ra

n
d

 (
eV

)



-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

<
d
H
F

P
s

l-
M

L
/d


>
  

(e
V

)



-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

<
d
H
F

P
s

l-
M

L
/d


>
  

(e
V

)



0

1

2

3

-2 -1 0 1 2

p
(
U


M
L
)

U
ML (eV)

0

1

2

3

-2 -1 0 1 2

p
(
U


M
L
)

U
ML (eV)

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

0.0 0.2 0.4 0.6 0.8 1.0

In
te

g
ra

n
d

 (
eV

)



-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

<
d
H
F

P
s

l-
M

L
/d


>
  

(e
V

)


0

1

2

3

-2 -1 0 1 2

p
(
U


M
L
)

U
ML (eV)

= 0

= 1

= 0= 1

Fe

V

-5.5

-4.5

-3.5

-2.5

0.0 0.2 0.4 0.6 0.8 1.0

In
te

g
ra

n
d

 (
eV

)



-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

<
d
H
F

P
s

l-
M

L
/d


>
  

(e
V

)



= 1

= 0

0

1

2

3

-2 -1 0 1 2

p
(
U


M
L
)

U
ML (eV)

= 0= 1

Cu

= 1

= 0

= 0 = 1

Ag

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

0.0 0.2 0.4 0.6 0.8 1.0

In
te

g
ra

n
d

 (
eV

)



Ru

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

<
d
H
F

P
s

l-
M

L
/d


>
  

(e
V

)



= 1

= 0

0

1

2

3

-2 -1 0 1 2

p
(
U


M
L
)

U
ML (eV)

= 0= 1

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

0.0 0.2 0.4 0.6 0.8 1.0

In
te

g
ra

n
d

 (
eV

)



O2

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

<
d
H
F

P
s

l-
M

L
/d


>
  

(e
V

)



= 0= 1

= 1

= 0

= 1

= 0

= 0= 1

Figure S 9. Summary of the TI and TPT simulations for six redox species, V3+/V2+, Fe3+/Fe2+, Cu2+/Cu+,
Ru3+/Ru2+, Ag2+/Ag+, and O2/O−

2 . The first column shows the integrand of the ML-aided TI equation (S5)
from the oxidized state to the reduced state. The second column shows the integrand of Eq. (S7) from the
MLFF to RPBE+D3. The third column shows the distribution of the potential energy difference between
PBE0+D3 and RPBE+D3 for the structures used for the ensemble averages in Eq. (S9).
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S3. CORRECTIONS TO NUCLEAR QUANTUM EFFECTS AND GASEOUS VOLUME

The influence of nuclear quantum effects on the free energy change was estimated using the

difference between the quantum oscillator model and the classical oscillator model.

∆Aq−c = Aq,vib −Ac,vib, (S22)

Aq,vib = ∑
i

hνi

2
+∑

i
kBT ln

(
1− e−

hνi
kBT

)
, (S23)

Ac,vib = ∑
i

kBT ln
(

hνi

kBT

)
, (S24)

where h is the Planck constant, and νi is the vibrational frequency of the i-th normal mode. Fol-

lowing previous studies [15, 16], we computed the ∆Aq−c for three vibrational modes observed at

1250, 1760, and 3020 cm−1 in experiments [17], assuming that these modes are generated by the

solvation of a proton. To examine the sensitivity of the correction to the model and vibrational

frequencies used, we also calculated the differences in ∆Aq−c for H2O and H3O+ isolated in vac-

uum. Here, the corrections to the free energy change of the proton solvation (α0
H+) is calculated as

∆Aq−c [H3O+]−∆Aq−c [H2O], where ∆Aq−c [∗] denotes the ∆Aq−c of the species indicated in the

square brackets. Vibrational frequencies were computed by diagonalizing the Hessian matrix for

each species placed in a cubic cell with a side length of 20 Å. FP calculations were performed us-

ing the parameters explained in Section S1. The obtained vibrational frequencies and free energies

are presented in Table S5. In the same table, the zero-point energy contribution, ZPE[H3O+] −

ZPE[H2O], is also listed for comparison with the corrections of 0.32 to 0.36 eV used in previous

studies [15, 16, 18, 19], which only considered the zero-point energy. The examination indicated

that the correction is insensitive to the choice of the model and frequcneis. Therefore, we used the

experimental vibrational frequencies for the correction.

The difference in free energy due to the volume difference between the unit cell used in the

simulations and the same gas at standard state was determined using the following ideal gas free

energy difference:

∆Acorr = kBT ln
[

V N
0

Λ3NN!

]
− kBT ln

[
V N

cell
Λ3NN!

]
, (S25)

Here, N is the number of gaseous hydrogen atoms or hydrogen molecules, V0 is the volume (24.45
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Table S 5. Nuclear quantum effects on the free energies of H2O and H3O+ isolated in vacuum estimated
as the difference between the quantum oscillator model and the harmonic oscillator model. The estimation
using the experimental vibrational frequencies of solvated proton is also listed. Units of the free energy and
vibrational frequencies are eV and cm−1, respectively.

Species Property RPBE+D3 PBE0 PBE0+D3 Exp.
H2O νi 3831 4020 4020

3702 3886 3885
1592 1611 1611

Aq,vib 0.566 0.590 0.590
Ac,vib 0.087 0.089 0.089
Aq−c 0.479 0.502 0.502
ZPE 0.566 0.590 0.590

H3O+ νi 3599 3761 3761 3020
3598 3760 3760
3482 3650 3649
1647 1669 1669 1760
1638 1652 1651 1250
802 688 688

Aq,vib 0.916 0.941 0.941 0.374
Ac,vib 0.157 0.157 0.157 0.074
Aq−c 0.760 0.784 0.785 0.300
ZPE 0.916 0.942 0.942 0.374
Correction to α0

H+ 0.281 0.283 0.283 0.300
ZPE[H3O+] − ZPE[H2O] 0.350 0.351 0.351 0.374

L/mol) at the standard condition, Λ is the thermal de Broglie wavelength, and Vcell is the volume

of the unit cell used in the computations.
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S4. LOCAL POTENTIAL GAP ∆φ BETWEEN SOLUTION AND VACUUM

Similar to our previous publication, the local potential gap ∆φ between the solution and vacuum

was computed using the difference of 1s levels of oxygen atoms of water molecules far from the

solute in the bulk solution (ε1s,bulk) and those at the middle of the water slab (ε1s,slab) via Eq. (7) in

the main text. To investigate the size effect, ε1s,slab was calculated using the RPBE+D3 functional

on water slabs containing 96, 128, and 192 water molecules per unit cell, with respective dimen-

sions of 11.4×11.4×44.2 Å3, 12.5×12.5×50 Å3 and 14.3×14.3×56.2 Å3, as shown in Fig. S10

(a)–(c). In these initial calculations, 2000 statistically independent snapshots were randomly se-

lected from 10 trajectories generated by 100 ps NVT-ensemble MD simulations at 298 K using the

MLFF. Additionally, we analyzed the orientation distribution of interfacial water dipole vectors in

slabs with 128 and 1024 water molecules, using the MLFF, as reported in our previous study [7].

After confirming minimal size effects on ∆φ (see Fig. S11) and on the orientation distribution [7],

we selected the 128-water slab, which is computationally feasible for use with hybrid function-

als. For the 128-water slab, we added 1000 statistically independent snapshots obtained from an

additional five 100 ps NVT-ensemble MD simulation trajectories at 298 K using the MLFF. FP

calculations employing the RPBE+D3 functional were then performed on these 3000 total snap-

shots. The value of ε1s,slab was determined as the average of 1s levels of the oxygen atoms in the

shaded region in Fig. S10. Further details of the computational parameters are described in our

previous publication. As noted in the main text, the TI simulation was performed using the average

of ∆φ for the solutions with and without a proton and an electron. The solutions were modeled by

the unit cells shown in Fig. S1. For each system, 500 snapshots were selected from a trajectory of

100 ps NVT-ensemble MD simulation at 298 K employing the MLFF, and FP calculations using

the RPBE+D3 functional were performed on the selected snapshots. The value of ε1s,bulk for the

bulk pristine water was determined as the average of 1s levels of all oxygen atoms, while the one

for the bulk solution with the solute was calculated as the average of all oxygen atoms L/2 away

from the solute shown as the shaded region in Fig. S10 (d). Here, L means the length of the side

of the unit cell. Because the RPBE+D3 already gives the accurate local potential, the change in

the oxygen 1s level with changing the functional to the non-local hybrid functional is small. The

small deviation can be efficiently computed by averaging the differences over 30 configurations

for each bulk and slab system. The results of ∆φ are tabulated in Table S6.
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Table S 6. The local potential difference ∆φ (V) between the bulk aqueous solutions and vacuum. The error
shows the standard deviation determined by the block averaging analysis. The values for the PBE0+D3
functional are the same as those for the PBE0 functional.

System RPBE+D3 PBE0 HSE06 B3LYP
64H2O 3.64±0.02 3.52±0.02 3.53±0.02 3.60±0.02
H++64H2O 3.71±0.02 3.59±0.02 3.60±0.02 3.68±0.02
V2++64H2O 3.72±0.02 3.61±0.02 3.61±0.02 3.68±0.02
V3++64H2O 3.79±0.02 3.68±0.02 3.68±0.02 3.75±0.02
Fe2++64H2O 3.73±0.02 3.60±0.02 3.61±0.02 3.68±0.02
Fe3++64H2O 3.79±0.02 3.68±0.02 3.68±0.02 3.76±0.02
Cu++64H2O 3.73±0.02 3.60±0.02 3.60±0.02 3.68±0.02
Cu2++64H2O 3.73±0.02 3.61±0.02 3.61±0.02 3.69±0.02
Ru2++64H2O 3.79±0.02 3.68±0.02 3.68±0.02 3.75±0.02
Ru3++64H2O 3.85±0.02 3.74±0.02 3.75±0.02 3.82±0.02
Ag++64H2O 3.76±0.02 3.64±0.02 3.63±0.02 3.72±0.02
Ag2++64H2O 3.79±0.02 3.69±0.02 3.67±0.02 3.75±0.02
O−

2 +62H2O 3.65±0.02 3.53±0.02 3.54±0.02 3.61±0.02
O2+62H2O 3.65±0.02 3.54±0.02 3.54±0.02 3.61±0.02
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Figure S 10. Models used to compute ∆φ . Water slabs consisting of 96, 128 and 192 water molecules per
unit cell [(a), (b) and (c), respectively] and bulk solution consisting of one proton and 64 water molecules
per unit cell [(d)]. Averages of 1s levels of oxygen atoms in the shaded regions are used as ε1s,slab and
ε1s,bulk. The black line in the graph (a) to (c) shows the local potential profile.
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Figure S 11. ∆φ as a function of the number of water molecules NH2O per unit cell of the slab.
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