Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2024

Supporting Information

A toolbox approach to revealing series of naphthocarbazoles to showcase photocatalytic reductive syntheses

Sharmila Das, Samrat Kundu, Abhisek Metya and Modhu Sudan Maji*

Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.

E-mail: msm@chem.iitkgp.ac.in

Table of contents	Page Number
General Remarks	S1
General Setup for the Reaction	S2
Experimental Section for Photo-Physical Studies	S2-S13
Luminescence Quenching Experiments	S14-S16
General Procedures	S16-S22
General Procedure for Borylation (GP-III)	S22-S23
General Procedure for the Phosphorylation (GP-IV)	S24-S25
General Procedure for the Reductive C-C Coupling of <i>ortho</i> -bromo substituted N-phenyl benzamide (GP-V)	S25-S26
General Procedure for the Pinacol and Imino-Pinacol Coupling (GP-VI and GP-VII)	S27-S29
General Procedure for the Reductive Desulfonylation of Heteroaromatic Compounds and Peptides (GP-VIII and GP-IX)	S29-S31
Gram Scale synthesis	S31-S34
Compound Characterization Data of Synthesized Compounds	S34-S61
Computational Details	S61-S78
References	S79-S81
¹ H, ¹³ C, ¹¹ B, ³¹ P and ¹⁹ F NMR Spectra	S82-S197

Experimental Sections

General Remarks: All reactions involving air or moisture-sensitive reagents were carried out in flame dried glassware under argon atmosphere. Ethyl acetate was obtained from SRL India. Acetonitrile (CH₃CN) and dichloromethane (CH₂Cl₂) were distilled over calcium hydride. Dimethyl sulfoxide (DMSO) and N, N-dimethylformamide (DMF) were distilled over potassium carbonate. All the dry solvents were stored over 4 Å molecular sieves under argon atmosphere. Tetrahydrofuran was distilled over sodium-metal in the presence of benzophenone. Aldehydes, ketones and all other reagents were used without further purification as received from commercial sources. All photoredox reactions were performed with Kessil® PR160L-390 nm Purple LED and when performing the photochemical reactions, test tube (made of borosilicate) was placed 4 cm away from light source. No filters were used between light sources and the reaction vessel for the execution of reactions. Reactions were monitored by thin-layer chromatography (TLC) using Merck silica gel 60 F254 pre-coated plates (0.25 mm), and visualized under UV light or by dipping into appropriate staining solutions (KMnO₄, DNP, anisaldehyde or ninhydrin solutions). Purification of compounds were carried out by flash column chromatography on Silica gel (particle size 100-200 mesh, purchased from SRL India) or activated neutral aluminium oxide using mixture of hexanes and ethyl acetate as eluents. The ¹H NMR spectroscopic data were recorded with a Bruker 400 or 500 MHz instruments. Proton decoupled ¹³C NMR spectra (${}^{13}C{}^{1}H{}$) was recorded at 101 or 126 MHz NMR instruments by using a broadband decoupled mode. ¹¹B, ¹⁹F, and ³¹P NMR spectra were recorded at 160 MHz, 471 MHz and 202 MHz, respectively. Proton and carbon NMR chemical shifts (δ) are reported in parts per million (ppm) relative to the residual proton or carbon signals in CDCl₃ (δ = 7.26, 77.16) or DMSO-*d*₆ (δ = 2.50, 39.52). Coupling constants (J) are reported in Hertz (Hz) and refer to apparent multiplicities. The following abbreviations are used for the multiplicities: s: singlet, d: doublet, t: triplet, q: quartet, dd: doublet of doublets, dt: doublet of triplet, m: multiplet, br: broad. Infrared (IR) spectra were recorded by Perkin Elmer FTIR spectrometer, and reported in terms of wave number (cm⁻¹). High resolution mass spectra (HRMS) were recorded in ESI (+ Ve) method using a time-of-flight (TOF) mass analyser.

General set-up for photochemical reaction:

Figure S1: (a) Diagram of the photoreactor box. (b) Photoreactor box with several mirrors. (c) Box closer. (d) Sample holder rack. (e) 12 mL borosil reaction test tube and rubber septum.

Figure S2: (a) Photoreactor set-up with Kessil light. (b) Complete reaction set-up with one cooling fan. (c) Set up of the gram scale reaction under irradiation Kessil purple LED (390 nm).

Experimental Section for Photo-Physical Studies:

Steady State Absorption and Fluorescence Measurements: UV-Vis and fluorescence measurements have been done in Shimadzu UV–Vis spectrophotometer (model UV 2450) and Hitachi F-7000 fluorimeter, respectively. All samples were taken in micro molar concentrations using dichloromethane as solvent. Molar extinction coefficients (ϵ) were calculated from Beer-Lambert law (A= ϵ cl) where optical path length (l) was kept as 1 cm and micro molar concentration (c) of the samples were maintained.

Fluorescence Quantum Yield: For calculating quantum yield, all the measurements were performed by maintaining the concentration of the samples and reference at a low value of 3 μ M to minimize error due or self-aggregation or self-quenching. The absorbance (A) values of all the solutions were kept below 0.1. Reference dye quinine sulphate ($\lambda_{abs} = 350$ nm) in 0.5 M H₂SO₄ ($\Phi_R = 0.546$ at 298 K)¹ was used for measuring fluorescence quantum yields (Φ_S).

The quantum yield was calculated by using the following equation:²

$$\frac{\Phi_{\rm s}}{\Phi_{\rm R}} = \frac{\rm Abs_{\rm R}}{\rm Abs_{\rm s}} \frac{\rm A_{\rm s}}{\rm A_{\rm R}} \frac{\eta_{\rm s}^2}{\eta_{\rm s}^2}$$

Here Φ denotes the quantum yield, (Abs) denotes the absorbance, As and AR denotes the area under the fluorescence emission curve and η is the refractive index of the medium. The subscript S and R represent the corresponding parameters for the samples and reference, respectively.

Time Resolved Decay Measurements: The excited state lifetime decay trace was monitored using Deltaflex TCSPC module in the reverse mode having repetition rate 20 MHz & time scale 50 ns. The signal was detected at a magic angle (54.7°) using Photon Counting Detector (PPD 800). The excitation source was a picosecond diode laser unit with excitation wavelength 376 nm. The instrument response function (IRF) for 376 nm excitation laser in this TCSPC set up was ~230 ps. The decay was collected in reverse mode and fitted using EzTime decay analysis software and using single exponential decay function.

$$(t) = b + a \exp(-\frac{t}{\tau})$$

Here, "b" is a baseline correction ("dc" offset), and "a" and " τ " are pre-exponential factor and excited-state fluorescence lifetime, respectively.

In all experiments, dichloromethane (DCM, spectroscopic grade, purchased from Spectrochem) was used as solvent. For photophysical studies, 2 mM solution of the photocatalyst (**NC**) was prepared in a sample vial by dissolving 0.0025 mmol of NC in 1.16 mL of DCM. The freshly prepared solution was used for the spectroscopic measurements. The required amount in micromolar concentration was taken using micro pipette from the mother solution as an aliquot and it was diluted further by dissolving in 2 mL of DCM in the cuvette such that the final micromolar concentration of catalyst will be optimum to obtain expected spectra for absorption and fluorescence measurements. For obtaining all the emission spectrum, 350 nm excitation light was used.

Cyclic Voltammetry:³

Electrochemical potentials were obtained with a standard set of conditions to maintain internal consistency. Cyclic voltammetry (CV) and square wave voltammetry (SWV) measurements were performed (maintaining IUPAC convention) by using CH Instruments Electrochemical Analyzer/Workstation Model 660E Series. The polishing material was used for the cyclic voltammetry experiments is named as Micropolish Powder 0.05 micron. To polish, small amount of alumina powder was put on the polishing pad and wet with distilled water. The electrode was hold vertically and firmly (did not apply too much pressure on this) while polishing. When the polishing pad get dry, distilled water was added and polished again. A standard three-electrode cell was employed with glassy carbon (3 mm diameter) as working electrode, platinum wire as auxiliary electrode and Ag/AgCl (KCl, 3M) as reference electrode; along with that tetra-n-butylammonium hexafluorophosphate ("Bu4NPF6) was employed as supporting electrolyte. Scan rate was set to 100 mV/s. Samples were prepared with 0.0025 mmol of substrate in 6 mL of 0.1 M "Bu₄NPF₆ in anhydrous acetonitrile and N, Ndimethylformamide solvent mixture (MeCN/DMF = 5:1 v/v, for enhancing solubility of the catalyst). Solutions were degassed with argon prior to measurements and experiments were performed under a protective atmosphere of argon. All potentials were measured relative to Ag/AgCl at 25 °C. The applied solvents are specified in the descriptions of the corresponding experiments. CV studies were also performed looking at variable scan rates (25 to 700 mV/s) to ultimately determine the reversibility of the catalysts.

The zero-zero vibrational state excitation energy $E_{0,0}$ was estimated by the corresponding energy of the wavelength at which emission and absorption overlap. This wavelength was determined setting the intensity of emission λ_{max} to the absorbance at excitation wavelength (350 nm). E_{ox} and E_{red} are the ground state oxidation and reduction potentials which were determined from cyclic voltammetry experiments. Excited state oxidation potential (E_{ox}^*) and excited state reduction potential (E_{red}^*) were calculated by the following approximating formulas:

(Excited state oxidation potential) E_{ox}^* (NC⁺ / NC^{*}) = E_{ox} (NC⁺ / NC) - $E_{0,0}$

(Excited state reduction potential) E_{red}^* (NC* / NC^{•-}) = E_{red} (NC / NC[•]) + $E_{0,0}$

Conversion of the potential from Ag/Ag+ to SCE:

The conversion of the redox potential from Ag/AgCl to SCE was done according to the literature procedure⁴ by measuring the redox potential for ferrocene as reference in similar solvent mixture (MeCN/DMF 5:1 v/v). From cyclic voltammetry, (Fig S3) we observed the redox potential of ferrocene (Fc): 0.07 V vs Ag/AgCl. With the reference CV, the redox potential vs SCE in MeCN/DMF 5:1 v/v was calculated using the following equations.

 $E_{1/2} (NC^{+}/NC) (vs Fc/Fc^{+}) = (Ground state oxidation potential of NC vs Ag/AgCl) - 0.07$ $E_{1/2} (NC^{+}/NC) (vs SCE) = (Ground state oxidation potential of NC vs Fc/Fc^{+}) + 0.38$ $E_{1/2} (NC1^{+}/NC1) = 0.753 V vs Ag/AgCl = 1.063 V vs SCE$ $E_{1/2} (NC2^{+}/NC2) = 0.724 V vs Ag/AgCl = 1.034 V vs SCE$ $E_{1/2} (NC3^{+}/NC3) = 0.696 V vs Ag/AgCl = 1.006 V vs SCE$ $E_{1/2} (NC4^{+}/NC4) = 0.776 V vs Ag/AgCl = 1.086 V vs SCE$ $E_{1/2} (NC5^{+}/NC5) = 0.904 V vs Ag/AgCl = 1.214 V vs SCE$ $E_{1/2} (NC6^{+}/NC6) = 0.844 V vs Ag/AgCl = 1.154 V vs SCE$

Catalyst (NC)	$\lambda_{abs,max}$ (nm)	ε	$\lambda_{em,max}$ (nm)	λ_{inter} (nm)	<i>E</i> _{0,0} (eV)	τ (ns)	E _{ox} (V)	<i>E</i> [*] _{ox} (V)	Ф (%)
NC1	302, 370, 390	7.13, 0.71, 0.81	425	399	3.10	5.90	1.063	-2.037	0.374
NC2	302, 370, 390	6.38, 0.78, 0.84	425	401	3.09	5.78	1.034	-2.056	0.371
NC3	302, 370, 390	8.00, 0.86, 1.01	429	402	3.08	5.97	1.006	-2.074	0.438
NC4	302, 370, 390	5.10, 0.75, 0.83	426	400	3.10	5.59	1.086	-2.014	0.385
NC5	304, 369, 390	6.61, 0.53, 0.61	427	398	3.11	7.12	1.214	-1.896	0.313
NC6	303, 367, 386	3.70, 0.47, 0.52	423	394	3.15	6.11	1.154	-1.996	0.618

Table S1: Photoredox Properties of the Synthesized Photocatalysts

 ${}^{a}\varepsilon$ in units of 10⁴ M⁻¹cm⁻¹. b All the ground state potentials were calculated in SCE. 'abs' denotes absorbance and 'em' denotes emission.

Photoredox Characteristics of Each Photocatalyst:

13-Methyl-7,8-diphenyl-13H-naphtho[2,1-a]carbazole (NC1):

Figure S4A: (a) UV/Vis absorption (light cyan line), excitation (black line) and emission (red line) spectra of photocatalyst **NC1** (12 μ M, in DCM). (b) Normalized absorption and emission spectra of **NC1**. Excitation wavelength λ_{max} in DCM = 350 nm, intersection wavelength $\lambda_{intersection} = 399$ nm; $E_{0,0} = 1240/\lambda_{intersection} = 3.10$ eV; Stokes shift = 35 nm.

Figure S4B: (a, b) Cyclic voltammogram (CV) of **NC1** (blue line), blank (dash black line) and square wave voltammetry (SWV) of **NC1** (light blue line) in MeCN/DMF 5:1 v/v; concentration of analyte [**NC1**] = 7.6 x 10^{-4} M and electrolyte [^{*n*}Bu₄NPF₆] = 0.1 M; working electrode: glassy carbon, reference electrode: Ag/AgCl (3.0 M in KCl), counter electrode: platinum wire; for SWV frequency = 15 Hz, amplitude = 0.025 V; temperature = 25 °C.

Figure S4C: (a) CV experiments at variable scan rates of NC1; (b) Fluorescence decay curve of NC1 in DCM (12 μ M). Lifetime τ in DCM: 5.90 \pm 0.01 ns in DCM; $\chi^2 = 1.359$.

8-(3-Methoxyphenyl)-13-methyl-7-phenyl-13H-naphtho[2,1-a]carbazole (NC2):

Figure S5A: (a) UV/Vis absorption (light cyan line), excitation (black line) and emission (red line) spectra of photocatalyst NC2 (12 μ M, in DCM), (b) Normalized absorption and emission spectra of NC2. Excitation wavelength λ_{max} in DCM = 350 nm, intersection wavelength $\lambda_{intersection} = 401$ nm; E_{0,0} = 1240/ $\lambda_{intersection} = 3.09$ eV; Stokes shift = 35 nm.

Figure S5B: (a, b) Cyclic voltammogram (CV) of NC2 (blue line), blank (dash black line) and square wave voltammetry (SWV) of NC2 (light blue line) in MeCN/DMF 5:1 v/v; concentration of analyte [NC2] = 7.2×10^{-4} M and electrolyte [^{*n*}Bu₄NPF₆] = 0.1 M; working electrode: glassy carbon, reference electrode: Ag/AgCl (3.0 M in KCl), counter electrode: platinum wire; for SWV frequency = 15 Hz, amplitude = 0.025 V; temperature = 25 °C.

Figure S5C: (a) CV experiments at variable scan rates of NC2; (b) Fluorescence decay curve of NC2 in DCM (12 μ M). Lifetime τ in DCM: 5.78±0.01 ns in DCM; $\chi^2 = 1.408$.

8-(4-Methoxyphenyl)-13-methyl-7-phenyl-13H-naphtho[2,1-a]carbazole (NC3):

Figure S6A: (a) UV/Vis absorption (light cyan line), excitation (black line) and emission (red line) spectra of photocatalyst NC3 (12 μ M, in DCM), (b) Normalized absorption and emission spectra of NC3. Excitation wavelength λ_{max} in DCM = 350 nm, intersection wavelength $\lambda_{intersection} = 402$ nm; E_{0,0} = 1240/ $\lambda_{intersection} = 3.08$ eV. Stokes shift = 39 nm.

Figure S6B: (a, b) Cyclic voltammogram (CV) of **NC3** (blue line), blank (dash black line) and square wave voltammetry (SWV) of **NC3** (light blue line) in MeCN/DMF 5:1 v/v; concentration of analyte [**NC3**] = 7.2 x 10^{-4} M and electrolyte [^{*n*}Bu₄NPF₆] = 0.1 M; working electrode: glassy carbon, reference electrode: Ag/AgCl (3.0 M in KCl), counter electrode: platinum wire; for SWV frequency = 15 Hz, amplitude = 0.025 V; temperature = 25 °C.

Figure 6C: (a) CV experiments at variable scan rates of **NC3**; (b) Fluorescence decay curve of **NC3** in DCM (12 μ M). Lifetime τ in DCM: 5.97 \pm 0.01 ns in DCM; $\chi^2 = 1.245$.

Figure S7A: (a) UV/Vis absorption (light cyan line), excitation (black line) and emission (red line) spectra of photocatalyst NC4 (15 μ M, in DCM). (b) Normalized absorption and emission spectra of NC4. Excitation wavelength λ_{max} in DCM = 350 nm, intersection wavelength $\lambda_{intersection} = 400$ nm; $E_{0,0} = 1240/\lambda_{intersection} = 3.10$ eV; Stokes shift = 35 nm.

Figure S7B: (a, b) Cyclic voltammogram (CV) of **NC4** (blue line), blank (dash black line) and square wave voltammetry (SWV) of **NC4** (light blue line) in MeCN/DMF 5:1 v/v; concentration of analyte [**NC4**] = 7.1 x 10⁻⁴ M and electrolyte [ⁿBu₄NPF₆] = 0.1 M; working electrode: glassy carbon, reference electrode: Ag/AgCl (3.0 M in KCl), counter electrode: platinum wire; for SWV frequency = 15 Hz, amplitude = 0.025 V; temperature = 25 °C.

Figure S7C: (a) CV experiments at variable scan rates of NC4; (b) Fluorescence decay curve of NC4 in DCM (15 μ M). Lifetime τ in DCM: 5.59 \pm 0.01 ns in DCM; $\chi^2 = 1.173$.

13-Methyl-7,8-diphenyl-13H-naphtho[2,1-a]carbazole-10-carbonitrile (NC5):

Figure S8A: (a) UV/Vis absorption (light cyan line), excitation (black line) and emission (red line) spectra of photocatalyst NC5 (15 μ M, in DCM). (b) Normalized absorption and emission spectra of NC5. Excitation wavelength λ_{max} in DCM = 350 nm, intersection wavelength $\lambda_{intersection} = 398$ nm; $E_{0,0} = 1240/\lambda_{intersection} = 3.11$ eV; Stokes shift = 36 nm.

Figure S8B: (a, b) Cyclic voltammogram (CV) of NC5 (blue line), blank (dash black line) and square wave voltammetry (SWV) of NC5 (light blue line) in MeCN/DMF 5:1 v/v; concentration of analyte [NC5] = 7.3 x 10^{-4} M and electrolyte [$^{n}Bu_{4}NPF_{6}$] = 0.1 M; working electrode: glassy carbon, reference electrode: Ag/AgCl (3.0 M in KCl), counter electrode: platinum wire; for SWV frequency = 15 Hz, amplitude = 0.025 V; temperature = 25 °C.

Figure S8C: (a) CV experiments at variable scan rates of NC5; (b) Fluorescence decay curve of NC5 in DCM (15 μ M). Lifetime τ in DCM: 7.12 \pm 0.01 ns in DCM; $\chi^2 = 1.467$.

7,8,13-Triphenyl-13H-naphtho[2,1-a]carbazole (NC6):

Figure S9A: (a) UV/Vis absorption (light cyan line), excitation (black line) and emission (red line) spectra of photocatalyst NC6(40 μ M, in DCM). (b) Normalized absorption and emission spectra of NC6. Excitation wavelength λ_{max} in DCM = 350 nm, intersection wavelength $\lambda_{intersection} = 394$ nm; E_{0,0} = 1240/ $\lambda_{intersection} = 3.15$ eV; Stokes shift = 37 nm.

Figure S9B: (a, b) Cyclic voltammogram (CV) of **NC6** (blue line), blank (dash black line) and square wave voltammetry (SWV) of NC6 (light blue line) in MeCN/DMF 5:1 v/v; concentration of analyte [**NC6**] = 6.7 x 10⁻⁴ M and electrolyte [^{*n*}Bu₄NPF₆] = 0.1 M; working electrode: glassy carbon, reference electrode: Ag/AgCl (3.0 M in KCl), counter electrode: platinum wire; for SWV frequency = 15 Hz, amplitude = 0.025 V; temperature = 25 °C

Figure S9C: (a) CV experiments at variable scan rates of NC6; (b) Fluorescence decay curve of NC6 in DCM (40 μ M). Lifetime τ in DCM: 6.11 \pm 0.01 ns in DCM; $\chi^2 = 1.745$.

Luminescence Quenching Experiments:⁵

Preparation of the stock solution: A 2 mM solution of the photocatalyst was prepared in a sample vial by dissolving 0.0025 mmol of the respective NC catalyst in 1.16 mL of dry dichloromethane (DCM) (spectroscopic grade, purchased from Spectrochem). The freshly prepared solution was used for the spectroscopic measurement. The required amount (12 μ L) was taken using micro pipette from the mother solution as an aliquot and it was diluted further by dissolving in 2 mL of DCM in the cuvette such that the final concentration of photocatalyst was 3 µM. Similarly, 0.24 mL 1 M solution of 1-bromo-4-methylbenzene (1a), N-(2bromophenyl)-N-methylbenzamide (**4a**), acetophenone (**6g**), 1-((4-(*tert*butyl)phenyl)sulfonyl)-1*H*-indole (**10f**) and 0.35 mL 1 M solution of N.Ndiisopropylethylamine (DIPEA) were prepared by dissolving the requisite amount of each quencher in dry, degassed DCM. Freshly prepared those solutions were used for the quenching experiments.

Experimental procedures: Fluorescence emission spectra of the photocatalyst in absence and presence of different reactions components were recorded and analysed in detail to estimate the light emission properties of the pure catalyst system and their distractions by external interference from the substrates. Emission intensities of photocatalyst were recorded with a "Hitachi F-7000 FL Spectrophotometer" using 10.0 mm quartz cuvette. The sample solution of NC with a proper concentration of in DCM (degassed under inert atmosphere of argon for 5 minutes before recording the spectra) was excited at the wavelength of 350 nm and to observe quenching, the fluorescence intensity was monitored at $\lambda_{em,max}$ (425 nm for NC1 and 429 nm for NC3). The individual substrate and DIPEA did not show any emission in that region. To study the quenching behaviour of photocatalyst, small aliquots of substrate was progressively added to the catalyst solution and the emission spectra were measured following the aforementioned procedure. Few sets of solutions with different concentration of quencher were used; the experiments were repeated and finally the Stern-Volmer plot was obtained according to the following equation.

$$\frac{F_0}{F} = 1 + K_{SV} [Q]$$

Where, F_0 and F are fluorescence intensities at $\lambda_{em,max}$ of respective catalyst in absence and presence of quencher, [Q] is corresponding molar concentration of quencher and K_{SV} is the Stern-Volmer constant. DIPEA was found to be comparatively less effective to facilitate

quenching of the emission of the catalyst. The corresponding Stern-Volmer plot was illustrated for all the cases (Fig S10 - Fig S13).

Figure S10: (a, b) Fluorescence quenching study of NC1 catalyst with 1-bromo-4-methylbenzene **1a** and DIPEA for borylation reaction. (c) Stern-Volmer Plot of NC1 catalyst in presence of 1-bromo-4-methylbenzene **1a** and amine DIPEA separately.

Figure S11: (a, b) Fluorescence quenching study of NC3 catalyst with N-(2-bromophenyl)-N-methylbenzamide (**4a**) and DIPEA, respectively. (c) Stern-Volmer Plot of NC3 catalyst in presence of N-(2-bromophenyl)-N-methylbenzamide (**4a**) and amine DIPEA separately.

Figure S12: (a, b) Fluorescence quenching study of NC1 catalyst with acetophenone (**6g**) and DIPEA, respectively. (c) Stern-Volmer Plot of NC1 catalyst in presence of acetophenone (**6g**) and amine DIPEA separately.

Figure S13: (a, b) Fluorescence quenching study of NC1 catalyst with -((4-(*tert*-butyl)phenyl) sulfonyl)-1*H*-indole (**10f**) and DIPEA, respectively. (c) Stern-Volmer Plot of NC1 catalyst in presence of -((4-(*tert*-butyl)phenyl)sulfonyl)-1*H*-indole (**10f**) and amine DIPEA separately.

General Procedure for the Synthesis of Photocatalysts (NC1-NC4) (GP-I):

2-Naphthylindole **S1** and di-aryl α -hydroxyl aldehydes **S2** were synthesized according to the literature procedures.^{6a,6b}

The photocatalysts **NC1-NC4** were synthesized according to the modified reported literature procedure.^{6b}

Step I: In a 100 mL round bottom flask, 2-(naphthalen-2-yl)-1*H*-indole **S1** (2.43 g, 10.0 mmol, 1.0 equiv) and *p*-toluenesulfonic acid monohydrate (380 mg, PTSA·H₂O, 2.0 mmol, 20 mol%) were dissolved in 30 mL of toluene by stirring at room temperature for 5 min. Then, di-aryl α -hydroxyl aldehydes **S2** (11.0 mmol, 1.1 equiv) were added to it and the reaction mixture was heated to reflux at 120 °C for 48 h with constant stirring. Upon completion of the reaction (as monitored by TLC, the products are KMnO₄ and DNP active), the crude reaction mixture was diluted with ethyl acetate and the solvent was evaporated under reduced pressure. The substituted benzo[*a*]carbazoles **S3** were isolated (70-83% yields) as yellow solid after silica gel column chromatography using ethyl acetate in hexane as eluent and were used for the next step.

Step II: In a 50 mL round bottom flask, substituted benzo[a]carbazole S3 (5.0 mmol, 1.0 equiv) was dissolved in 15 mL dimethyl sulfoxide (DMSO) by stirring at room temperature for 5 min. Then potassium hydroxide (KOH, 336.63 mg, 6.0 mmol, 1.2 equiv) was added to the reaction mixture and stirring was continued for another 30 min at room temperature. After that, methyl

iodide (0.47 mL, 7.5 mmol, 1.5 equiv) was added to it at the same temperature and the reaction mixture was heated to reflux at 90 °C for overnight with constant stirring. Upon completion of the reaction (as indicated by TLC), sufficient amount of cold water was added to the reaction mixture and extracted with ethyl acetate (3 x 20 mL). The organic layers were dried over anhydrous Na_2SO_4 and evaporated under reduced pressure. The crude residue was purified by silica gel column chromatography using ethyl acetate in hexane as eluent to afford desired photocatalysts **NCs** in 85-92% yields.

Procedure for the Synthesis of Photocatalyst 13-Methyl-7,8-diphenyl-13*H*-naphtho[2,1*a*]carbazole-10-carbonitrile (NC5):

The photocatalyst NC4 was synthesized according to the modified reported literature procedures.^{7a-7b}

Step I: In a 50 mL round bottom flask, 13-methyl-7,8-diphenyl-13*H*-naphtho[2,1-*a*]carbazole **NC1** (433 mg, 1.0 mmol, 1.0 equiv) was dissolved in 15 mL acetonitrile (CH₃CN) at room temperature by stirring for 10 min. After that, reaction mixture was cool down to 0 °C and *N*-bromosuccinimide (NBS, 204 mg, 1.15 mmol, 1.15 equiv, dissolved in 15 mL acetonitrile) was added dropwise to it at the same temperature, and stirring was continued for another 30 min. Then the reaction mixture was allowed to reach room temperature and stirred for overnight. Upon completion (as monitored by TLC), reaction mixture was quenched with water and extracted with ethyl acetate (3 x 12 mL). The organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude product was purified by silica gel column chromatography using 2% ethyl acetate in hexane as eluent to afford the desired product 10-bromo-13-methyl-7,8-diphenyl-13*H*-naphtho[2,1-*a*]carbazole **S4** in 70% yield and used for the next step.

Step II: The *N*-methylated bromocarbazole **S4** (512 mg, 1.0 mmol, 1.0 equiv) was taken in a 30 mL screw capped sealed tube and 10 mL anhydrous *N*,*N*-dimethylformamide (DMF) solvent was added. The resulting suspension was then stirred for 10 min until complete dissolution of starting material **S4**. After that, copper(I) cyanide (CuCN, 448 mg, 5.0 mmol, 5.0 equiv, dissolved in 5 mL anhydrous DMF) was added to the reaction mixture, the sealed tube was

closed with a screw cap and stirring was continued for 5 min at room temperature. Finally, the temperature of the oil bath was gradually increased to 150 °C (over 15 min) before stirring the reaction mixture at the same temperature for 48 h. After completion (as monitored by TLC), the reaction was cool down to room temperature and poured into a cold solution of ferric chloride (7.5 g of FeCl₃ dissolved in 23 mL of concentrated hydrochloric acid) and the crude reaction mixture was stirred for another 2 h at room temperature. A brown solid precipitate was generated, collected by filtration and washed with water. Then the residue was dissolved in 30 mL dichloromethane (DCM) and the accumulated filtrate was concentrated under vacuum. Then the crude product was directly purified by silica gel column chromatography using 30% ethyl acetate in hexane as eluent to obtain the desired product 13-methyl-7,8-diphenyl-13Hnaphtho[2,1-a]carbazole-10-carbonitrile NC5 as light yellow solid (344 mg, 75% yield). ¹H **NMR** (500 MHz, CDCl₃): δ (ppm) 8.65 (d, J = 9.2 Hz, 1H), 7.88 (dd, J = 8.3, 4.6 Hz, 2H), 7.70 (d, J = 8.8 Hz, 1H), 7.62 (dd, J = 8.5, 1.0 Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.43 (t, J = 7.3 Hz, 1H), 7.35 - 7.30 (m, 3H), 7.21 - 7.18 (m, 3H), 7.12 - 7.09 (m, 4H), 7.06 (t, J = 7.8 Hz, 1H), 6.80 (s, 1H), 4.41 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃): δ (ppm) 144.1, 142.8, 139.8, 137.4, 136.7, 133.0, 132.8, 131.6, 130.08, 129.7, 129.2, 128.4, 128.34, 128.29, 128.2, 127.44, 127.35, 127.0, 126.5, 126.1, 125.0, 123.3, 120.6, 120.3, 119.1, 109.8, 102.4, 35.5. FTIR: $(neat)/cm^{-1} = 3055, 2952, 2854, 2220, 1954, 1883, 1744, 1610, 1524, 1478, 1441, 1384, 1208,$ 1128. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₃₄H₂₃N₂, 459.1856; found 459.1864.

Procedure for the Synthesis of Photocatalyst 7,8,13-triphenyl-13*H*-naphtho[2,1*a*]carbazole (NC6):

The photocatalyst **NC6** was synthesized according to the modified reported literature procedures.^{8,6b}

Step I: In a 50 mL two necked round bottom flask, 2-naphthylindole **S1** (1.2 g, 5.0 mmol, 1.0 equiv), K_2CO_3 (898 mg, 6.5 mmol, 1.3 equiv), copper iodide (CuI, 219 mg, 1.15 mmol, 0.23 equiv), and 1,10-Phenanthroline (20 mg, 0.1 mmol, 2 mol%) were taken. Then the system was evacuated and back-filled with argon (repeated twice). To the reaction flask, 13 mL anhydrous DMF was added under positive argon atmosphere and the solution was stirred for 20 min under

constant purging with argon gas applied through an Ar-filled balloon (to degas the resulting solution). After that iodobenzene (PhI, 0.6 mL, 5 mmol, 1.0 equiv) was added to the reaction mixture at room temperature and the stirring was continued for another 10 min. Then, the reaction mixture was heated to reflux at 160 °C maintaining inert atmosphere while constant stirring for 18 h. Upon completion of the reaction (as monitored by TLC), cold water was added to quench the reaction mixture and extracted with ethyl acetate (3 x 20 mL). The organic layer was then washed with saturated ammonium chloride (aq. NH4Cl) followed by brine. The organic layer was dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. Then the crude residue was directly purified by silica gel column chromatography using 1% ethyl acetate in hexane as eluent to afford the desired product **S5** and used for the next step (0.96 g, 60% yield).

Step II: In a 15 mL culture tube, S5 (319 mg, 1.0 mmol, 1.0 equiv) and p-toluenesulfonic acid monohydrate (38 mg, PTSA·H₂O, 0.2 mmol, 20 mol%) were dissolved in 30 mL of toluene by stirring at room temperature for 5 min. Then, di-phenyl α -hydroxyl aldehyde S2a (299 mg, 1.1 mmol, 1.1 equiv) was added and the resulting reaction mixture was heated to reflux at 120 °C for 48 h with constant stirring. Upon completion of the reaction (as monitored by TLC, the products are KMnO4 and DNP active), the crude reaction mixture was diluted with ethyl acetate, transferred to a 25 mL round-bottomed flask and the solvent was evaporated under reduced pressure. The crude residue was purified by using silica gel column chromatography using hexane as eluent to afford 7,8,13-triphenyl-13H-naphtho[2,1-a]carbazole NC6 as yellow solid (322 mg, 65% yield). ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.75 (d, J = 7.8 Hz, 1H), 7.70 - 7.68 (m, 3H), 7.66 - 7.64 (m, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.50 (d, J = 9.1 Hz, 1H), 7.37 – 7.34 (m, 4H), 7.32 – 7.30 (m, 3H), 7.21 – 7.20 (m, 6H), 7.03 – 7.00 (m, 1H), 6.98 (t, J = 7.5 Hz, 1H), 6.64 (d, J = 7.9 Hz, 1H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 143.6, 143.4, 141.0, 140.9, 136.9, 136.3, 133.0, 132.1, 131.9, 131.7, 130.6, 130.4, 129.0, 128.74, 128.66, 128.3, 128.2, 128.1, 126.8, 126.23, 126.21, 125.6, 125.5, 124.7, 123.5, 122.2, 121.4, 120.4, 120.3, 120.1, 110.3. **FTIR**: (neat)/ cm⁻¹ = 3746, 3645, 3049, 2325, 2163, 2080, 1966, 1907, 1826, 1744, 1591, 1496, 1452,1389, 1316, 1204, 1140. HRMS (ESI) m/z: [M+H]⁺ calcd for C₃₈H₂₆N, 496.2060; found 496.2060.

Synthesis of Bromoarene Precursors: Bromoarenes were used as received from commercial sources without further purification. Bromoarene **1n**, **1s** and **1t** were synthesised according to the literature procedures.^{9a-9c}

General Procedure for the Synthesis of *ortho*-Bromo Substituted *N*-Aryl Benzamide Derivatives 4a-4m (GP-II):^{10a,10b}

Step I: According to literature procedures, in a 50 mL round bottom flask, aniline derivatives **A1** (5.0 mmol, 1.0 equiv) were dissolved in 10 mL *N*, *N*-dimethylformamide (DMF) by stirring at room temperature for 10 min. After that, the resulting solution was cool down to 0 °C and *N*-bromosuccinimide (NBS, 0.94 g, dissolved in 5 mL DMF) was added portion wise and stirring was continued for another 30 min at the same temperature. The reaction mixture was allowed to reach room temperature gradually and stirring was continued for 18 h at the same temperature. Upon completion of the reaction (as monitored by TLC), the reaction mixture was quenched with cold water and extracted with ethyl acetate (3 x 10 mL). The organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude residue was purified by silica gel chromatography by using ethyl acetate in hexane as eluent to afford the *ortho*-bromoaniline derivatives **A2** in 85-91% yields.

Step II: In a 25 mL round bottom flask, aryl carboxylic acid derivative **A3** (3.0 mmol, 1.0 equiv) was dissolved in dichloromethane (DCM) (9.9 mL, 0.3 M) and catalytic amount of *N*, *N*-dimethylformamide (DMF, 3 drops) was added dropwise and stirring was continued for 10 min. Then the solution was cool down to 0 °C and to this mixture, oxalyl chloride (0.53 mL, 6.0 mmol, 2.0 equiv) was added dropwise at the same temperature. After that, the reaction mixture was allowed to reach room temperature and stirring was continued for another 3 h. Upon completion of the reaction (as monitored by TLC), the resulting reaction mixture was concentrated under reduced pressure to afford the acyl chloride derivatives **A4** as a yellow slurry which was used for the next step without further purification.

Step III: In a 25 mL round bottom flask, *ortho*-bromoaniline derivative **A2** (1.5 mmol, 1.0 equiv) was dissolved in 5 mL of DCM at room temperature by stirring for 10 min. After that reaction mixture was cool down to 0 °C, triethylamine (0.3 mL, 2.25 mmol, 1.5 equiv) was

added dropwise and stirring was continued for another 30 min at same temperature. Then, previously prepared acyl chloride derivative A4 (3 mmol, 2.0 equiv, dissolved in 5 mL of DCM) was added dropwise at 0 °C to the reaction mixture while stirring, the mixture was allowed to reach room temperature and stirring was continued for overnight. After complete consumption of the *ortho*-bromoaniline derivative A2 (as monitored by TLC), reaction mixture was quenched by addition of saturated aq. NH₄Cl solution and organic layer was extracted with DCM (2 x 10 mL). The accumulated organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude residue was purified by silica gel chromatography by using ethyl acetate in hexane as eluent to afford the desired products S6 in 70-80% yields.

Step IV: In a 50 mL two necked round bottom flask, *N*-(2-bromophenyl)benzamide derivatives **S6** (1.5 mmol, 1.0 equiv) were taken, and the flask was evacuated and backfilled with argon (repeated twice). After that 10 mL of anhydrous tetrahydrofuran (THF) was added to it under positive argon pressure and the reaction mixture was cool down to 0 °C. Then, NaH (60% dispersion in mineral oil, 120 mg, 5.0 mmol, 2.0 equiv) was added portion wise to the reaction mixture under positive argon pressure while stirring at the same temperature. After complete addition of NaH, the resulting mixture was stirred at room temperature for 30 min. Then, the reaction mixture was cool down to 0 °C and iodomethane (0.2 mL, 3.3 mmol, 2.2 equiv) was added. The reaction mixture was then allowed to reach room temperature and stirring was continued for another 3 h. Upon completion of the reaction (as monitored by TLC), the reaction mixture was quenched with saturated aq. NH₄Cl solution and extracted with ethyl acetate (3 x 10 mL). The organic layers were dried over anhydrous Na₂SO₄ and evaporated under reduced pressure. The crude residue was purified by silica gel chromatography by using ethyl acetate in hexane as eluent to afford *ortho*-bromo substituted *N*-aryl benzamide derivatives **4a-4m** in 84-95% yields.

The benzamide derivative **4p** was synthesized according to GP II by using benzylbromide (0.27 mL, 2.25 mmol, 1.5 equiv).^{10c}

Synthesis of Imine Precursors: Aldehydes and ketones were used as received from commercial sources without further purification. All the imines were synthesised according to the literature procedures.¹¹

Synthesis of Sulfonylated Heteroaromatic and Peptide Derivatives: All the sulfonylated heteroaromatic derivatives and sulfone protected tryptophan containing peptides were synthesised according to the literature procedures.¹²

General Procedure for Borylation of Aryl Halides (GP-III):

Aryl halide 1 (if solid, 0.5 mmol, 1.0 equiv), photocatalyst NC1 (1.1 mg, 0.005 mmol, 1 mol%), bis(pinacolato)diboron (B₂pin₂, 254 mg, 1.0 mmol, 2.0 equiv), and tripotassium phosphate (K₃PO₄, 212 mg, 1.0 mmol, 2.0 equiv) were taken in an oven dried 12 mL glass reaction tube, and it was capped with rubber septum. Then, the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, aryl halide 1 (if liquid, 0.5 mmol, 1.0 equiv), N,Ndisopropylethylamine (DIPEA, 0.13 mL, 0.75 mmol, 1.5 equiv) and pyridine (5 µL, 10 mol%) were added successively by using Hamilton syringe under positive argon pressure. Anhydrous degassed 0.5 mL DMSO was added to the reaction vessel using syringe. Finally, the tube was placed 4 cm away from Kessil purple light (390 nm) and the reaction mixture was stirred under the irradiation of 390 nm at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan) for 12 h. Upon complete consumption of starting material (as monitored by TLC), the reaction mixture was quenched with saturated aq. NH₄Cl solution and the organic layer was extracted with ethyl acetate. Then, the organic solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel by using ethyl acetate in hexane as eluents to afford borylated products **2a-2r** in 30-90% yields.

Table S2: Optimization of Borylation Reaction Conditions^a

Me	Br + 1a	O O O		catalyst (x mol %) reductant, base rent, additive (y mol % purple LED, rt	→ 6) Me	O B 2a	
entry	catalyst (x mol%)	solvent	reductant	additive (y mol%)	base	time (h)	yield of 2a [%] ^b
1	NC1 (3)	DCM	Na ₂ C ₂ O ₄	4-CN-Py (10)	K ₃ PO ₄	48	nd
2	NC1 (3)	DMSO	Na ₂ C ₂ O ₄	4-CN-Py (10)	K ₃ PO ₄	48	63
3	NC1 (3)	DMF	Na ₂ C ₂ O ₄	4-CN-Py (10)	K ₃ PO ₄	48	61
4	NC1 (3)	DMSO	Hantzsch Ester	4-CN-Py (10)	K ₃ PO ₄	48	nd
5	NC1 (3)	DMSO	DIPEA	4-CN-Py (10)	K ₃ PO ₄	48	78
6	NC1 (3)	DMSO	NEt ₃	4-CN-Py (10)	K ₃ PO ₄	48	69
7	NC1 (3)	DMSO	DIPEA	4-CN-Py (10)	K ₂ HPO ₄	48	47
8	NC1 (3)	DMSO	DIPEA	4-CN-Py (10)	KF	48	63
9	NC1 (3)	DMSO	DIPEA	4-CN-Py (10)	Cs ₂ CO ₃	48	74
10	NC1 (1)	DMSO	DIPEA	Py (10)	NaOMe	48	76
11	NC1 (3)	DMSO	DIPEA	Py (10)	K ₃ PO ₄	48	83
12	NC1 (3)	DMSO	DIPEA	_	K ₃ PO ₄	48	59
13	NC1 (3)	DMSO	DIPEA	Ру (100)	K ₃ PO ₄	48	60
14	NC1 (3)	DMSO	DIPEA	4-CN-Py (100)	K ₃ PO ₄	48	nd
15	NC1 (3)	DMSO	DIPEA	Py (10)	K ₃ PO ₄	12	93
16	NC1 (3)	DMSO	DIPEA	Ру (10)	K ₃ PO ₄	24	86
17	NC1 (3)	DMSO	DIPEA	Ру (10)	K ₃ PO ₄	36	82
18	NC3 (3)	DMSO	DIPEA	Py (10)	K ₃ PO ₄	12	74
19	NC4 (3)	DMSO	DIPEA	Py (10)	K ₃ PO ₄	12	75
20	NC2 (3)	DMSO	DIPEA	Py (10)	K ₃ PO ₄	12	76
21	NC1 (0.5)	DMSO	DIPEA	Py (10)	K ₃ PO ₄	12	73
22	NC1 (1)	DMSO	DIPEA	Py (10)	K ₃ PO ₄	12	88 [72] ^c
23 ^d	NC1 (1)	DMSO	DIPEA	Py(10)	K ₃ PO ₄	12	74

24 ^e	NC1 (1)	DMSO	DIPEA	Py(10)	K ₃ PO ₄	12	69
25	NC2 (2)	DMSO	DIPEA	Ру (10)	K ₃ PO ₄	12	85
26	NC1 (1)	DMSO	DIPEA	Py (25)	K ₃ PO ₄	12	72
27	NC1 (1)	DMSO	DIPEA	Py (50)	K ₃ PO ₄	12	56
28 ^f	NC1(1)	DMSO	DIPEA	Ру (10)	K ₃ PO ₄	12	50
29	_	DMSO	DIPEA	Ру (10)	K ₃ PO ₄	12	4
30	NC1 (1)	DMSO	-	Ру (10)	K ₃ PO ₄	12	57
31	NC1(1)	DMSO	DIPEA	Ру (10)	_	12	29
32 ^g	NC1(1)	DMSO	DIPEA	Ру (10)	K ₃ PO ₄	12	51
33 ^h	NC1 (1)	DMSO	DIPEA	Ру (10)	K ₃ PO ₄	12	nd

^{*a*}Reaction conditions: **1a** (0.3 mmol), B₂Pin₂ (0.6 mmol), reductant (1.5 equiv), base (2.0 equiv), solvent (0.3 mL, 1 M), nd = not detected. ^{*b*}NMR yields by taking mesitylene as internal standard. ^{*c*}Isolated yields. ^{*d*}Using 1 equiv of DIPEA. ^{*e*}Using 2 equiv of DIPEA. ^{*f*}1 Equiv of B₂Pin₂ and 1 equiv of K₃PO₄ has been used. ^{*g*}Under air. ^{*h*}Without degassing the solvent.

General Procedure for the Phosphorylation of Aryl Halides (GP-IV):

Aryl bromide **1** (if solid, 0.2 mmol, 1.0 equiv) and photocatalyst **NC1** (1.7 mg, 0.004 mmol, 2 mol%) were taken in an oven dried 12 mL glass reaction tube and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, aryl bromide **1** (if liquid, 0.2 mmol, 1.0 equiv) and trimethylphosphite (70 μ L, 0.6 mmol, 3 equiv) were successively added using Hamilton syringe under positive argon pressure. Then 1 mL anhydrous degassed acetonitrile followed by *N*, *N*-diisopropylethylamine (42 μ L 0.24 mmol,1.2 equv) were successively added by Hamilton syringe. Finally, the tube was placed 4 cm away from Kessil purple LED light (390 nm), and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of bromide (as monitored by TLC), the reaction mixture was diluted with ethyl acetate, the crude reaction mixture was transferred to a round bottom flask and organic solvent was evaporated under

reduced pressure. The crude residue was purified by silica gel column chromatography by using ethyl

acetate in hexane as eluent to afford the desired phosphonate products **3a-3f** in 49-90% yields.

General Procedure for the Reductive C-C Coupling of *ortho*-Bromo Substituted N-Phenyl Benzamide (GP-V):

The halogen substituted *N*-methylbenzamide **4** (0.5 mmol, 1.0 equiv) and photocatalyst **NC3** (0.015 mmol, 3 mol%) were taken in an oven dried 12 mL glass reaction tube and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, 2.5 mL of anhydrous degassed acetonitrile and *N*, *N*-diisopropylethylamine (0.43 mL, 2.5 mmol, 5.0 equiv) were successively added using syringe. Finally, the tube was placed 4 cm away from purple LED light (390 nm), and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of starting material (as monitored by TLC), the reaction mixture was diluted with ethyl acetate, the crude reaction mixture was transferred to a round bottom flask and organic solvent was evaporated under reduced pressure. The crude residue was purified by silica gel column chromatography by using ethyl acetate in hexane as eluent to afford the desired phenanthridine products **5a-5i** in 55-89% yields.

O N 4a Br	catalyst (x mol base (y equiv solvent, time, r purple LED (390) rt	O N ^{Me}	
catalyst (x mol%)	base (y equiv)	solvent	time	yield (%) ^b
NC1 (2)	NBu ₃ (5)	CH ₃ CN	24	20
NC1 (2)	DIPEA (1)	CH ₃ CN	2	53
NC1 (2)	DIPEA (1)	CH ₃ CN	10	30
NC1 (2)	_	CH ₃ CN	10	0
_	DIPEA (1)	CH ₃ CN	10	0
NC1 (2)	DIPEA (0.5)	CH ₃ CN	12	<5

Table S3: Optimization of the C-C coupling Reaction Conditions:^a

entry

J	······································		~		<i>J</i> = = = = (<i>i</i> = <i>j</i>		
1	NC1 (2)	NBu ₃ (5)	CH ₃ CN	24	20		
2	NC1 (2)	DIPEA (1)	CH ₃ CN	2	53		
3	NC1 (2)	DIPEA (1)	CH ₃ CN	10	30		
4	NC1 (2)	_	CH ₃ CN	10	0		
5	_	DIPEA (1)	CH ₃ CN	10	0		
6	NC1 (2)	DIPEA (0.5)	CH ₃ CN	12	<5		
7	NC1 (2)	DIPEA (0.25)	CH ₃ CN	12	<5		
8	NC1 (2)	DIPEA (9)	CH ₃ CN	2	55		
9	NC1 (2)	DIPEA (2)	CH ₃ CN	2	66		
10	NC1 (2)	DIPEA (5)	CH ₃ CN	2	69		
11	NC1 (2)	NEt ₃ (5)	CH ₃ CN	2	0		
12	NC3 (2)	DIPEA (5)	CH ₃ CN	2	74		
13	NC2 (2)	DIPEA (5)	CH ₃ CN	2	56		
14	NC4 (2)	DIPEA (5)	CH ₃ CN	2	71		
15	NC5 (2)	DIPEA (5)	CH ₃ CN	2	45		
16	NC6(2)	DIPEA (5)	CH ₃ CN	2	73		
17	NC3 (2)	NEt ₃ (5)	CH ₃ CN	2	0		
18	NC3 (2)	DIPEA (5)	DMF	2	70		
19	NC3 (2)	DIPEA (2)	DMF	2	49		
20	NC3 (2)	DIPEA (2)	CH ₃ CN	2	71		
21	NC3 (3)	DIPEA (5)	CH ₃ CN	2	91		
22	NC3 (1)	DIPEA (5)	CH ₃ CN	2	77		
Donation	(Departion conditions: Ap (0.2 mmol) enhydrous degesed solvent (1 mL 0.2 M) bNMD viald						

^aReaction conditions: 4a (0.2 mmol), anhydrous degassed solvent (1 mL, 0.2 M). ^bNMR yield by taking mesitylene as internal standard.

General Procedure for the Reductive Dimerization of Aldehydes and Ketones (GP-VI):

Aldehyde or ketone 6 (if solid, 0.5 mmol, 1.0 equiv) and photocatalyst NC1 (1.1 mg, 0.0025 mmol, 0.5 mol%) were taken in a 12 mL oven dried glass reaction tube and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, aldehyde or ketone (if liquid, 0.5 mmol, 1.0 equiv) and N, Ndiisopropylethylamine (87µL, 0.5 mmol, 1.0 equiv) were successively added using Hamilton syringe under positive argon pressure. Then 2 mL degassed anhydrous acetonitrile was added via syringe. Finally, the tube was placed 4 cm away from Kessil purple LED light (390 nm), and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of aldehyde or ketone (as monitored by TLC), the reaction mixture was diluted with ethyl acetate, the crude reaction mixture was transferred to a round bottom flask and organic solvent was evaporated under reduced pressure. The crude residue was purified by silica gel column chromatography by using ethyl acetate in hexane as eluent to afford the desired pinacol products 7a-7i in 63-99% yields. The *meso:dl* diastereoisomeric ratio of the various products were evaluated by ¹H NMR analysis of the hydroxyl and benzylic proton (for aldehydes)/ methyl proton (for ketones) and comparing their chemical shift values with the reported data.

General Procedure for the Reductive Dimerization of Imines (GP-VII):

Imine **8** (0.5 mmol, 1.0 equiv) and photocatalyst **NC3** (1.2 mg, 0.0025 mmol, 0.5 mol%) were taken in an oven dried 12 mL glass reaction tube and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, 2 mL degassed anhydrous acetonitrile and *N*, *N*-diisopropylethylamine (0.180 μ L, 1.0 mmol, 2.0

equiv) were successively added via syringe under positive argon pressure. Finally, the tube was placed 4 cm away from Kessil purple LED light (40 W), and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of imine (as monitored by TLC), the crude reaction mixture was diluted with ethyl acetate, the crude mixture was transferred to a round bottom flask and organic solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography on neutral activated alumina to afford the desired imino-pinacol products **9a-9f** in 52-96% yield. The *meso:dl* diastereoisomeric ratios of the various products were evaluated by ¹H NMR analysis of the benzylic proton and comparing their chemical shift values with the reported data.

Table S4: Optimization of the Piancol Coupling Reaction Conditions:^a

entry	catalyst (x mol%)	base (y equiv)	solvent	yield $(\%)^d$
1	NC1 (1)	DIPEA (1)	CH ₃ CN	77
2	NC1 (0.5)	DIPEA (1)	CH ₃ CN	76
3	NC1 (0.5)	NEt ₃ (1)	CH ₃ CN	30
4	NC1 (0.5)	Hantzsch ester (1)	CH ₃ CN	30
5	NC1 (0.5)	DIPA (1)	CH ₃ CN	0
6	NC1 (0.5)	DABCO (1)	CH ₃ CN	0
7	NC1 (0.5)	DIPEA (1)	DCM	30
8	NC1 (0.5)	DIPEA (1)	DMF	41
9	NC1 (0.5)	DIPEA (1)	DMSO	38
10	-	DIPEA (1)	CH ₃ CN	0
11	NC1 (0.5)	-	CH ₃ CN	0
12 ^b	NC1 (0.5)	DIPEA (1)	CH ₃ CN	0
13 ^c	NC1 (0.5)	DIPEA (1)	CH ₃ CN	0

^{*a*}Reaction conditions: ketone **6g** (0.5 mmol), anhydrous degassed solvent (2.0 mL, 0.25 M). ^{*b*}Under air. ^{*c*}Without degassing the solvent. ^{*d*}Isolated yields.

Me of 6g	or Ba	I ^{, Bn} <u>DI</u> CH ₃ C rt (~35-	5 mol %) PEA N, argon 38 °C), 2 h ED (390 nm)	HO Me Me C 7g	or f	Bn-NH HN 9a Bn
catalyst	NC1	NC2	NC3	NC4	NC5	NC6
meso:dl ^a	1:1.11	1:1.17	1:1.18	1:1.15	1:1.11	1:1.35
yield ^a	76%	61%	71%	62%	67%	65
meso:dl ^b	1:1.76	1:2.08	1:1.82	1:3.03	1:1.91	1:1.70
yield ^b	68%	73%	89%	66%	82	63%

Table S5: Catalyst Screening for Pinacol and Imino-Pinacol Reaction:

Reaction conditions: *Pinacol reaction:*^{*a*} Ketone **6g** (0.5 mmol), NC catalyst (0.0025 mmol, 0.5 mol%), DIPEA (0.5 mmol, 1.0 equiv), anhydrous degassed CH₃CN (2.0 mL, 0.25 M). *Iminopinacol reaction:* ^{*b*}Imine **8a** (0.5 mmol), NC catalyst (0.0025 mmol, 0.5 mol%), DIPEA (1.0 mmol, 2.0 equiv), anhydrous degassed CH₃CN (2.0 mL, 0.25 M).

General Procedure for the Reductive Desulfonylation of *N*-Sulfonyl Heteroaromatic Compounds (GP-VIII):

The N-sulfonyl heteroaromatic compound **10** (0.5 mmol, 1.0 equiv) and photocatalyst **NC1** (1.1 mg, 0.0025 mmol, 0.5 mol%) were taken in an oven dried 10 mL glass reaction tube and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, 2 mL of degassed anhydrous acetonitrile and *N*, *N*-diisopropylethylamine (0.26 mL, 1.5 mmol, 3.0 equiv) were successively added via syringe under positive argon pressure. Finally, the tube was placed 4 cm away from Kessil purple LED light and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of starting material (as monitored by TLC), the crude reaction mixture was diluted with ethyl acetate, the crude mixture was transferred to a round bottom flask and organic solvent was evaporated under reduced pressure. The crude residue was purified by

column chromatography on silica gel by using ethyl acetate in hexane to afford desulfonylated heteroaromatics **12a-12m** in 75-97% yields.

Table S6: Optimization of the Desulfonylation Reaction Conditions:

entry	base (x equiv)	solvent	yield (%) ^b
1	DIPEA (1)	CH ₃ CN	72
2	DIPEA (3)	CH ₃ CN	90
3	NEt ₃ (3)	CH ₃ CN	30
4	Hantzsch ester (3)	CH ₃ CN	32
5	DIPA (3)	CH ₃ CN	0
6	DABCO (3)	CH ₃ CN	0
7	DIPEA (3)	DCM	25
8	DIPEA (3)	DMF	40
9	DIPEA (3)	DMSO	45
10	-	CH ₃ CN	0
11°	DIPEA (3)	CH ₃ CN	0
12 ^d	DIPEA (3)	CH ₃ CN	0
13 ^e	DIPEA (3)	CH ₃ CN	0

^{*a*}Reaction conditions: **10a** (0.5 mmol), NC1 (0.0025 mmol), and anhydrous degassed solvent (2.0 mL, 0.1 M). ^{*b*}Isolated yields. ^{*c*}Under air. ^{*d*}Without degassing the solvent. ^{*e*}In the absence of NC1.

General Procedure for the Reductive Desulfonylation of *N*-Sulfonylated Peptides (GP-IX):

The sulfonyl protected tryptophan containing peptide **11** (0.1 mmol, 1.0 equiv) and photocatalyst **NC1** (0.2 mg,0.0005 mmol, 0.5 mol%) were taken in an oven dried 12 mL glass reaction tube and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, degassed anhydrous acetonitrile (1.5 mL) and *N*, *N*-diisopropylethylamine (52 μ L, 0.3 mmol, 3.0 equiv) were successively added via syringe under positive argon pressure. Finally, the tube was placed 4 cm away from Kessil purple LED light, and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of starting material (as monitored by TLC), the crude reaction mixture was diluted with ethyl acetate, the crude mixture was transferred to a round bottom flask and organic solvent was evaporated under reduced pressure. The crude residue was purified by column chromatography on silica gel by using methanol in dichloromethane to afford desulfonylated peptide products **13a-13e** in 89-91% yields.

Gram-Scale Synthesis and Catalyst Recovery Experiment for Borylation Reaction:

Photocatalyst **NC1** (43.3 mg, 0.1 mmol, 1 mol%), bis(pinacolato)diboron (B₂pin₂, 5.3 g, 20.0 mmol, 2.0 equiv), and tripotassium phosphate (K₃PO₄, 4.2 g, 20.0 mmol, 2.0 equiv) were taken in an oven dried 25 mL round bottom flask, and it was capped with rubber septum. Then, the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, 1-bromo-4-methylbenzene **1a** (1.23 mL, 10.0 mmol, 1.0 equiv) and *N*, *N*-disopropylethylamine (DIPEA, 2.61 mL, 15.0 mmol, 1.5 equiv) and pyridine (0.1 mL, 10 mol%) were added successively by

Hamilton syringe under positive argon pressure. Anhydrous degassed 10 mL DMSO was added to the reaction vessel using syringe. Finally, the tube was placed 4 cm away from Kessil purple light (390 nm) and the reaction mixture was stirred under the irradiation of 390 nm at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan) for 12 h. Upon complete consumption of starting material (as monitored by TLC), the reaction mixture was quenched with saturated aq. NH4Cl solution and the organic layer was extracted with ethyl acetate. Then, the organic solvent was evaporated under reduced pressure. The crude residue was isolated after column chromatography on silica gel using 1% ethyl acetate/hexane as eluent to afford the borylated product **2a** (white solid, 1.5 g, 69% yield). In a second fractions, the catalyst NC1 was recovered by further eluting the column by using 2% ethyl acetate in hexane as eluent (light yellow solid, 10 mg, 23% recovered).

Gram-Scale Synthesis and Catalyst Recovery Experiment for C-C Coupling Reaction:

N-(2-Bromophenyl)-*N*-methylbenzamide **4a** (2 g, 7.0 mmol, 1.0 equiv) and photocatalyst **NC3** (97.3 mg, 0.21 mmol, 3 mol%) were taken in an oven dried 50 mL round bottom flask and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, degassed anhydrous acetonitrile (35 mL) and *N*, *N*-diisopropylethylamine (6.1 mL, 35 mmol, 5.0 equiv) were successively added using syringe under positive argon pressure. Finally, the tube was placed 4 cm away from purple LED light (390 nm), and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of starting material (as monitored by TLC), the reaction mixture was diluted with ethyl acetate, organic solvent was evaporated under reduced pressure. The catalyst **NC3** was recovered after column chromatography on silica gel using 2% ethyl acetate in hexane as eluent (light yellow solid, 45 mg, 46% recovered). In another fractions the desired product **5a** was also isolated by further eluting the column using 10% ethyl acetate in hexane as eluent (white solid, 1.18 g, 81% yield).

Gram-Scale Synthesis and Catalyst Recovery Experiment for Pinacol Coupling Reaction:

Photocatalyst **NC1** (21.65 mg, 0.05 mmol, 0.5 mol%) was taken in a 50 mL round bottom flask and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, ketone (1.16 mL, 10 mmol, 1.0 equiv) and *N*, *N*diisopropylethylamine (1.74 mL, 10 mmol, 1.0 equiv) were successively added using syringe under positive argon pressure. Then 25 mL degassed anhydrous acetonitrile was added by syringe. Finally, the tube was placed 4 cm away from Kessil purple LED light (40 W), and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of aldehyde or ketone (as monitored by TLC), the reaction mixture was diluted with ethyl acetate and organic solvent was evaporated under reduced pressure. The catalyst NC1 was recovered after column chromatography on silica gel using 2% ethyl acetate in hexane as eluent (light yellow solid, 7 mg, 32% recovered). In a second fractions, the desired product **7g** was isolated as white solid by further eluting the column using 10% ethyl acetate in hexane as eluent (0.847 g, 70% yield).

Gram-Scale Synthesis and Catalyst Recovery Experiment for Imino-pinacol Coupling Reaction:

Imine **8f** (1.23 g, 5.0 mmol, 1.0 equiv) and photocatalyst **NC3** (11.6 mg, 0.025 mmol, 0.5 mol%) were taken in a 12 mL oven dried glass reaction tube and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). Then 13 mL degassed anhydrous acetonitrile and *N*, *N*-diisopropylethylamine (1.74 mL, 10.0 mmol, 2.0 equiv) were added by syringe under positive argon pressure. Finally, the tube was placed 4 cm away from Kessil purple LED light, and stirred vigorously under the irradiation

of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of aldehyde or ketone (as monitored by TLC), the reaction mixture was diluted with ethyl acetate and organic solvent was evaporated under reduced pressure. The catalyst NC3 was recovered after column chromatography on silica gel using 2% ethyl acetate in hexane as eluent (light yellow solid, 3 mg, 17% recovered). In a second fractions, the desired product **9f** was isolated as white solid by further eluting the column using 10% ethyl acetate in hexane as eluent (1.05 g, 85% yield).

Gram-Scale Synthesis and Catalyst Recovery Experiment for Desulfonylation Reaction:

10k (2.6 g, 8.0 mmol, 1.0 equiv) and photocatalyst **NC1** (17.3 mg, 0.04 mmol, 0.5 mol%) were taken in an oven dried 50 mL round bottom flask and it was capped with a rubber septum. Then the reaction vessel was evacuated and backfilled with argon (repeated twice). After that, 32 mL degassed anhydrous acetonitrile and *N*, *N*-diisopropylethylamine (4.18 mL, 24.0 mmol, 3.0 equiv) were successively added using syringe under positive argon pressure. Finally, the tube was placed 4 cm away from Kessil purple LED light and stirred vigorously under the irradiation of 390 nm purple LED light at room temperature (maintaining ~35-38 °C temperature by employing one cooling fan). Upon complete consumption of starting material (as monitored by TLC), the crude reaction mixture was diluted with ethyl acetate and organic solvent was evaporated under reduced pressure. The catalyst NC1 was recovered after column chromatography on silica gel using 2% ethyl acetate in hexane as eluent (light yellow solid, 7 mg, 40% recovered). In a second fractions, the desired product **12f** was isolated as white solid by further eluting the column using 10% ethyl acetate in hexane as eluent (0.95 g, 71% yield).

13-Methyl-7,8-diphenyl-13H-naphtho[2,1-a]carbazole (NC1):^{6b} The titled compound NC1

was synthesized according to the **GP-I**. The product **NC1** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (light yellow solid, 1.95 g, 90% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.72 (d, *J* = 9.1 Hz, 1H), 7.88 (t, *J* = 7.5 Hz, 2H), 7.73 (d, *J* = 8.7 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 1H), 7.47 – 7.41 (m, 2H), 7.35 – 7.32 (m,

3H), 7.24 – 7.15 (m, 7H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.98 (t, *J* = 7.5 Hz, 1H), 6.63 (d, *J* = 7.9 Hz, 1H), 4.42 (s, 3H).

8-(3-Methoxyphenyl)-13-methyl-7-phenyl-13H-naphtho[2,1-a]carbazole (NC2): The titled

compound **NC2** was synthesized according to the **GP-I**. The product **NC2** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (light yellow solid, 2.1 g, 92% yield, mixture of two isomers). ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 8.73 (d, *J* = 9.1 Hz, 2H), 7.88 (d, *J* = 8.4 Hz, 5H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.47 – 7.39 (m, 5H), 7.37 – 7.31 (m,

5H), 7.23 – 7.13 (m, 7H), 7.11 – 7.03 (m, 3H), 7.01 – 6.94 (m, 2H), 6.88 – 6.85 (m, 2H), 6.74 (d, J = 7.8 Hz, 6H), 6.61 (d, J = 7.6 Hz, 1H), 4.45 (s, 7H), 3.68 (s, 3H), 3.63 (s, 4H).¹³C {¹H} **NMR** (126 MHz, CDCl₃): δ (ppm) 159.5, 159.3, 144.6, 143.3, 142.8, 142.1, 140.8, 136.8, 136.7, 136.6, 132.84, 132.76, 131.8, 131.73, 131.69, 131.20, 131.0, 130.5, 130.3, 129.2, 129.0, 128.7, 128.6, 128.3, 128.18, 128.12, 128.1, 128.0, 127.9, 126.8, 126.3, 126.2, 125.63, 125.57, 125.4, 125.3, 124.8, 124.7, 124.6, 123.2, 123.1, 123.0, 122.5, 122.3, 121.3, 121.2, 120.22, 120.18, 119.69, 119.66, 119.6, 117.0, 115.6, 113.0, 112.5, 109.1, 55.4, 35.4. **FTIR**: (neat)/ cm⁻¹ = 3052, 2935, 2832, 1597, 1575, 1464, 1425, 1385, 1322, 1244, 1167, 1025. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₃₄H₂₆NO, 464.2009; found 464.2021.

8-(4-Methoxyphenyl)-13-methyl-7-phenyl-13H-naphtho[2,1-a]carbazole (NC3):^{6b} The titled

compound **NC3** was synthesized according to the **GP-I**. The product **NC3** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (light yellow solid, 1.97 g, 85% yield, mixture of two isomers). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.72 (d, *J* = 9.1 Hz, 2H), 7.87 – 7.85 (m, 4H), 7.75 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 8.2 Hz, 2H), 7.45 – 7.38 (m, 4H), 7.35 – 7.31 (m, 3H),

7.23 - 7.17 (m, 5H), 7.14 - 7.07 (m, 5H), 7.06 - 7.00 (m, 3H), 7.00 - 6.96 (m, 1H), 6.93 (d, J = 7.2 Hz, 1H), 6.87 - 6.84 (m, 2H), 6.75 - 6.73 (m 2H), 6.70 (d, J = 8.0 Hz, 1H), 6.57 (d, J = 8.0 Hz, 1H), 4.44 (s, 6H), 3.85 (s, 3H), 3.79 (s, 3H).
7-(4-Chlorophenyl)-13-methyl-8-phenyl-13H-naphtho[2,1-a]carbazole (NC4): The titled

compound NC4 was synthesized according to the GP-I. The product NC4 was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (light yellow solid, 2.1 g, 90 % yield, mixture of two isomer). ¹H NMR (500 MHz, CDCl₃): δ 8.72 (d, *J* = 9.1 Hz, 3H), 7.90 – 7.87 (m, 5H), 7.69 – 7.66 (m, 3H), 7.56 – 7.53 (m, 3H), 7.47 – 7.39 (m, 6H), 7.35 – 7.32 (m, 5H), 7.30 –

7.28 (m, 2H), 7.22 – 7.13 (m, 12H), 7.12 – 7.03 (m, 8H), 7.02 – 6.98 (m, 1H), 6.95 (t, J = 7.5 Hz, 2H), 6.67 (d, J = 8.0 Hz, 1H), 6.57 (d, J = 8.0 Hz, 2H), 4.451 (s, 3H), 4.447 (s, 5H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 143.1, 142.9, 142.8, 142.0, 140.6, 139.4, 137.0, 136.9, 135.4, 133.2, 132.9, 132.7, 132.1, 132.0, 131.8, 131.7, 131.51, 131.48, 130.4, 129.8, 129.1, 128.7, 128.6, 128.4, 128.24, 128.20, 128.18, 128.1, 127.1, 126.43, 126.36, 126.3, 125.68, 125.66, 125.5, 125.4, 124.8, 123.1, 123.0, 122.3, 122.15, 121.22, 121.19, 120.4, 120.3, 119.81, 119.76, 119.7, 119.5, 109.2, 109.1, 35.3, 35.2. FTIR: (neat)/ cm⁻¹ = 3046, 2936, 2832, 2248, 1597, 1466, 1385, 1323, 1257, 1125,1085. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₃₃H₂₃ClN, 468.1514; found 468.1523.

N-(2-Bromophenyl)-N,3-dimethylbenzamide (4d): The titled compound 4d was synthesised

according to **GP-II**. The product **4d** was isolated after column chromatography using 15% ethyl acetate in hexane as eluent (white solid, 433 mg, 95% yield). ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.52 (d, *J* = 7.8 Hz, 1H), 7.22 (s, 1H), 7.16 – 7.12 (m, 1H), 7.07 – 6.98 (m,

5H), 3.37 (s, 3H), 2.20 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 170.8, 143.3, 137.1, 135.3, 133.3, 130.4, 130.3, 128.8, 128.6, 128.2, 127.1, 124.7, 122.3, 36.8, 21.0. **FTIR**: (neat)/ cm⁻¹ =3750, 3671, 2966, 2922, 2865, 1645, 1581, 1474, 1361, 1304, 1158, 1107, 1033. **HRMS (ESI)** *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₅BrNO, 304.0332; found 304.0322.

N-(2-Bromophenyl)-N,4-dimethylbenzamide (4e): The titled compound 4e was synthesised

according to **GP-II**. The desired product **4e** was purified by silica gel column chromatography by using 15% ethyl acetate in hexane as eluent (yellow solid, 424 mg, 93% yield, rotameric mixture as 28:1). The characterisation data of the major rotamer is given. ¹**H NMR** (500

MHz, CDCl₃): δ (ppm) 7.51 (d, J = 7.7 Hz, 1H), 7.23 (d, J = 7.5 Hz, 2H), 7.14 (d, J = 7.4 Hz, 1H), 7.06 (dd, J = 12.2, 8.2 Hz, 2H), 6.92 (d, J = 7.1 Hz, 2H), 3.35 (s, 3H), 2.20 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 171.1, 144.0, 140.0, 133.8, 132.8, 130.7, 129.0, 128.5,

128.4, 128.3, 122.8, 37.3, 21.4. **FTIR**: (neat)/ cm⁻¹ = 3058, 2923, 1645, 1477, 1417, 1355, 1306, 1254, 1178, 1110, 1048. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₁₅H₁₅BrNO, 304.0332; found 304.0321.

N-(2-Bromophenyl)-4-methoxy-N-methylbenzamide (4f): The titled compound 4f was

synthesised according to **GP-II**. The product **4f** was isolated after column chromatography using 50% ethyl acetate in hexane as eluent (gummy liquid, 418 mg, 87% yield, rotameric mixture as 15:1). The characterisation data of the major rotamer is given. ¹H NMR (400

MHz, CDCl₃): δ (ppm) 7.55 (d, J = 7.6 Hz, 1H), 7.30 (d, J = 7.5 Hz, 2H), 7.18 (t, J = 6.9 Hz, 1H), 7.08 (d, J = 7.5 Hz, 2H), 6.65 (d, J = 7.6 Hz, 2H), 3.71 (s, 3H), 3.36 (s, 3H). ¹³C {¹H} **NMR** (126 MHz, CDCl₃): δ (ppm) 170.8, 160.9, 133.9, 132.3, 130.7, 130.4, 129.0, 128.6, 128.0, 122.9, 113.1, 55.3, 37.5. **FTIR**: (neat)/ cm⁻¹ = 3060, 2933, 2838, 1647, 1608, 1513, 1478, 1419, 1361, 1305, 1253, 1171, 1029. **HRMS** (**ESI**) *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₅BrNO₂, 320.0281; found 320.0291.

N-(2-Bromophenyl)-3,4-dimethoxy-N-methylbenzamide (4g): The titled compound 4g was

synthesised according to **GP-II**. The product **4g** was isolated after column chromatography using 60% ethyl acetate in hexane as eluent (white solid, 446 mg, 85% yield, rotameric mixture as16:1). ¹**H NMR** (400 MHz, CDCl₃, major rotamer): δ (ppm) 7.55 (d, *J* = 7.6

Hz, 1H), 7.17 - 7.14 (m, 1H), 7.05 (t, J = 6.9 Hz, 2H), 6.96 (d, J = 7.3 Hz, 1H), 6.88 (s, 1H), 6.62 (d, J = 7.6 Hz, 1H), 3.77 (s, 3H), 3.66 (s, 3H), 3.34 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃, rotameric mixture): δ (ppm) 170.6, 150.3, 147.8, 144.4, 133.8, 130.6, 129.3, 129.0, 128.7, 127.8, 126.8, 126.4, 122.8, 122.7, 122.1, 111.6, 110.0, 55.8, 55.7, 37.5. FTIR: (neat)/cm⁻¹ = 3058, 2920, 2280, 2168, 2052, 1984, 1635, 1609, 1420, 1255, 1139, 1019. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₇BrNO₃, 350.0386; found 350.0392.

N-(2-Bromophenyl)-4-fluoro-N-methylbenzamide (4h): The titled compound **4h** was synthesised according to **GP-II**. The product **4h** was isolated after column chromatography using 15% ethyl acetate in hexane as eluent (white solid, 439 mg, 95% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.53 (d, *J* = 7.9 Hz, 1H), 7.35 – 7.32 (m, 2H), 7.18 (t, *J* = 7.5 Hz, 1H),

7.12 – 7.05 (m, 2H), 6.82 (t, J = 8.5 Hz, 2H), 3.36 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃, rotameric mixture): δ (ppm) 170.1, 168.5, 166.0 (d, J = 254.0 Hz) 163.4 (d, J = 250.4 Hz),

143.6, 133.9, 132.7 (d, J = 9.4 Hz), 131.8 (d, J = 3.3 Hz), 130.5 (d, J = 9.2 Hz), 129.3, 128.7, 122.7, 115.6 (d, J = 22.0 Hz), 114.9 (d, J = 21.8 Hz), 37.4. ¹⁹F NMR (470 MHz, CDCl₃, rotameric mixture): δ (ppm) -105.5, -109.7. FTIR: (neat)/ cm⁻¹ =3068, 2927, 1652, 1611, 1513, 1479, 1419, 1365, 1307, 1228, 1157, 1112, 1048. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₄H₁₂BrFNO, 308.0081; found 308.0081.

N-(2-Bromophenyl)-N-methyl-3-(trifluoromethyl)benzamide (4i): The titled compound 4i

was synthesised according to **GP-II**. The product **4i** was isolated after column chromatography using 20% ethyl acetate in hexane as eluent (yellow liquid, 489 mg, 91% yield, rotameric mixture as 3:1). ¹**H NMR** (500 MHz, CDCl₃, major rotamer): δ (ppm) 7.62 (s, 1H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.28 (t, *J* = 7.9 Hz, 1H), 7.20 (t, *J* = 7.5

Hz, 1H), 7.13 (d, J = 7.5 Hz, 1H), 7.08 (t, J = 7.5 Hz, 1H), 3.41 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃, rotameric mixture): δ (ppm) 169.6, 168.8, 143.2, 136.5, 134.0, 133.4, 131.5, 131.2, 130.8, 130.6, 130.4, 130.1, 130.0 (q, J = 3.6 Hz), 129.7, 129.3, 128.8, 128.4, 127.2 (q, J = 3.8 Hz), 126.61, 126.58, 125.40, 15.38, 123.8 (q, J = 272.3 Hz), 123.7 (q, J = 272.4 Hz), 122.9, 37.3. ¹⁹F NMR (471 MHz, CDCl₃, rotameric mixture as 3:1): δ (ppm) -102.8, -103.0. FTIR: (neat)/ cm⁻¹ = 3069, 2933, 1725, 1654, 1584, 1479, 1371, 1327, 1304, 1167, 1126, 1073. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₂F₃NO, 358.0049; found 358.0056.

N-(2-Bromo-4-methylphenyl)-N-methylbenzamide (4j): The titled compound 4j was

synthesised according to **GP-II**. The product **4j** was isolated after column chromatography using 15% ethyl acetate in hexane as eluent (brown liquid, 419 mg, 92% yield, rotameric mixture as 1:1). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.35 (d, J = 7.6 Hz, 3H), 7.30 (d, J = 7.1 Hz, 2H), 7.24 – 7.18 (m, 2H), 7.18 – 7.14 (m, 4H), 7.01 (d, J = 8.1 Hz, 2H), 6.97 – 6.90 (m, 4H), 3.47 (s, 3H), 3.36 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H). ¹³C {¹H} **NMR**

(101 MHz, CDCl₃, rotameric mixture): δ (ppm) 171.3, 170.9, 167.9, 142.2, 140.5, 139.5, 136.4, 135.8, 135.7, 134.4, 134.0, 133.0, 132.1, 130.1, 130.0, 129.8, 129.64, 129.55, 129.2, 128.7, 128.10, 128.05, 127.70, 127.66, 126.7, 122.2, 38.6, 37.3, 21.0, 20.7. **FTIR**: (neat)/ cm⁻¹ = 3029, 2924, 1721, 1647, 1576, 1512, 1494, 1362, 1302, 1111, 1048. **HRMS (ESI)** *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₅BrNO, 304.0332; found 304.0323.

N-(2-Bromo-4-methoxyphenyl)-N-methylbenzamide (4k): The titled compound 4k was

3.68 (s, 3H), 3.33 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 171.2, 159.1, 136.5, 136.0, 130.9, 129.6, 128.0, 127.7, 123.2, 118.4, 114.3, 55.7, 37.3. FTIR: (neat)/ cm⁻¹ = 2938, 1645, 1600, 1494, 1364, 1312, 1286, 1228, 1113, 1031. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₅BrNO₂, 320.0281; found 320.0274.

N-(2-Bromo-4-(trifluoromethyl)phenyl)-N-methylbenzamide (4l): The titled compound **4l** was synthesised according to **GP-II**. The product **4l** was isolated after column chromatography using 20% ethyl acetate in hexane as eluent (yellow gummy liquid, 495 mg, 92% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.79 (s, 1H), 7.40 – 7.31 (m, 3H), 7.22 – 7.16 (m, 4H), 3.36 (s, 3H). ¹³**C** {¹**H**} **NMR** (101 MHz, CDCl₃): δ (ppm) 170.8, 147.1, 135.1, 131.1, 131.0 (q, J = 3.7 Hz), 130.3, 128.1, 128.0, 125.5, 123.1, 122.7 (q, J = 272.3 Hz). 37.02. ¹⁹**F NMR** (471 MHz, CDCl₃): δ (ppm) -62.7. **FTIR**: (neat)/ cm⁻¹ = 3066, 2940, 1655, 1605, 1498, 1356, 1320, 1255, 1172, 1078. **HRMS (ESI)** m/z: [M+H]⁺ calcd for C₁₅H₁₂F₃NO, 358.0049; found 358.0043.

N-(2-Bromophenyl)-N-ethylbenzamide (4n): The titled compound **4n** was synthesised according to **GP-II** by using bromoethane (0.2 mL, 3.0 mmol, 2.0 equiv). The product **4n** was isolated after column chromatography using 15% ethyl acetate in hexane as eluent (white solid, 410 mg, 90% yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.52 (d, *J* = 7.8 Hz, 1H), 7.33 (d, *J* = 7.4 Hz, 2H),

7.21 – 7.11 (m, 4H), 7.05 (t, J = 6.9 Hz, 2H), 4.27 (dq, J = 14.1, 7.1 Hz, 1H), 3.57 (dq, J = 14.1, 7.1 Hz, 1H), 1.22 (t, J = 7.1 Hz, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 170.5, 141.9, 136.3, 133.9, 132.1, 129.7, 129.1, 128.1, 127.7, 123.5, 44.2, 12.6. FTIR: (neat)/ cm⁻¹ = 3057, 2981, 2931, 2870, 1638, 1577, 1472, 1435, 1391, 1304, 1115, 1029. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₅BrNO, 304.0332; found 304.0330.

N-(2-Bromophenyl)-N-hexylbenzamide (40): The titled compound 40 was synthesised

O N-Hex Br

according to **GP-II** by using 1-bromohexane (0.3 mL, 2.25 mmol, 1.5 equiv). The product **40** was isolated after column chromatography using 5% ethyl acetate in hexane as eluent (liquid, 281 mg, 50% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.51 (d, *J* = 7.7 Hz, 1H), 7.31 (d, *J* = 7.5 Hz,

2H), 7.21 - 7.10 (m, 4H), 7.06 - 7.02 (m, 2H), 4.26 - 4.19 (m, 1H), 3.47 - 3.40 (m, 1H), 1.71 - 1.65 (m, 1H), 1.58 - 1.49 (m, 1H), 1.40 - 1.25 (m, 6H), 0.87 - 0.85 (m, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 170.6, 142.2, 136.3, 133.9, 132.0, 129.6, 129.0, 128.1, 128.0, 127.7, 123.5, 49.4, 31.7, 27.4, 26.8, 22.7, 14.1. FTIR: (neat)/ cm⁻¹ = 3060, 2955, 2928, 2857, 1651, 1580, 1446, 1388, 1310, 1130, 1029. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₉H₂₃BrNO, 360.0958; found 360.0956.

N-(2-Bromo-4-methylphenyl)-N-tosylbenzamide (10q):^{10b,12} The titled compound **10q** was synthesised according to modified literature procedure by using the corresponding **S6** (578 mg, 2 mmol, 1.0 equiv), triethylamine (3 mmol, 1.5 equiv) and tosyl chloride (3 mmol, 1.5 equiv). The desired product **10q** was isolated after silica gel column chromatography by using 5% ethyl acetate

Me in hexane as eluent (white solid, 799 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ 8.00 (d, J = 8.2 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 7.40 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.30 – 7.26 (m, 1H), 7.18 – 7.11 (m, 3H), 2.45 (s, 3H), 2.28 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 169.3, 145.2, 141.7, 136.0, 134.4, 134.2, 133.9, 133.3, 131.5, 130.2, 129.3, 129.04, 128.96, 127.8, 124.6, 21.9, 21.0. FTIR: (neat)/ cm⁻¹ = 1692, 1598, 1448, 1364, 1278, 1259, 1242, 1085, 1027. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₁H₁₉BrNO₃S, 444.0264; found 444.0272.

4,4,5,5-*Tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane* (2*a*):^{13a} The titled compound 2**a** was synthesised according to the **GP-III** by using 1-bromo-4-methylbenzene 1**a** (62 μ L, 0.5 mmol, 1.0 equiv) as prototype. The borylated product 2**a** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 79 mg, 72% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.73 (d, *J* = 7.8 Hz, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 2.38 (s, 3H), 1.36 (s, 12H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 141.5, 134.9, 128.6, 83.7, 25.0, 21.9. (The carbon directly attached

to the boron atom was not detected due to quadrupolar broadening). ¹¹**B** NMR (160 MHz, CDCl₃): δ (ppm) 31.0.

2-(4-(tert-Butyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2b):^{13a} The titled compound 2b was synthesised according to the GP-III by using 1-bromo-4-(tertbutyl)benzene 1b (87 µL, 0.5 mmol, 1.0 equiv) as prototype. The product 2b was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 110 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 7.6 Hz, 2H), 1.36 (s, 12H), 1.35 (s, 9H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 154.6, 134.8, 124.8, 83.7, 35.0, 31.3, 25.0. (The carbon

directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹**B** NMR (160 MHz, CDCl₃): δ (ppm) 31.0.

2-(4-Methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2c):^{13a} The titled compound 2c was synthesised according to the GP-III by using 1-bromo-4-methoxylbenzene 1c (63 µL, 0.5 mmol, 1.0 equiv). The borylated product 2c was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 94.8 mg, 81% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.78 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.5 Hz, 2H), 3.83 (s, 3H), 1.34 (s, 12H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 162.3, 136.7, 113.5, 83.7, 55.2, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 30.79.

2-([1,1'-Biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2d):^{13a} The titled compound 2d was synthesised according to the GP-III by using 4-bromo-1,1'biphenyl 1d (117 mg, 0.5 mmol, 1.0 equiv). The product 2d was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 126 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.94 (d, J = 7.8 Hz, 2H), 7.66 (d, J = 7.2 Hz, 4H), 7.48 (t, J = 7.3 Hz, 2H), 7.39 (t, J = 7.0 Hz, 1H), 1.40 (s, 12H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 144.0, 141.2, 135.4, 128.9, 127.7, 127.4, 126.6, 83.9, 25.0. (The carbon directly attached to the boron atom was not

detected due to quadrupolar broadening). ¹¹**B** NMR (160 MHz, CDCl₃): δ (ppm) 31.2.

Methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (2e):^{13a} The titled compound

2e was synthesised according to the **GP-III** by using methyl 4-bromobenzoate **1e** (108 mg, 0.5 mmol, 1.0 equiv). The product **2e** was isolated after column chromatography using 4% ethyl acetate in hexane as eluent (white solid, 106 mg, 81% yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 8.02 (d, *J* = 7.9 Hz, 2H), 7.87 (d, *J* = 7.9 Hz, 2H), 3.92 (s, 3H), 1.35 (s, 12H). ¹³C {¹H} NMR (126 MHz, CDCl₃):

 δ (ppm) 167.3, 134.8, 132.5, 128.7, 84.3, 52.3, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹**B** NMR (160 MHz, CDCl₃): δ (ppm) 30.8.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile (2f):^{13a} The titled compound 2f was synthesised according to the **GP-III** by using 4-bromobenzonitrile 1h (91 mg, 0.5 mmol, 1.0 equiv). The product 2f was isolated after column chromatography using 3% ethyl acetate in hexane as eluent (white solid, 76.7 mg, 67% yield). ¹H **NMR** (500 MHz, CDCl₃): δ (ppm) 7.87 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 8.2 Hz, 2H), 1.34 (s, 12H). ¹³C {¹H} **NMR** (126 MHz, CDCl₃): δ (ppm) 135.2, 131.2, 119.1, 114.9, 84.6, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B **NMR** (160 MHz, CDCl₃): δ (ppm) 30.6.

Methyl 2-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)acetate (2g):^{13b} The titled

compound **2g** was synthesised according to the **GP-III** by using methyl 2-(2-bromophenyl)acetate **1i** (115 mg, 0.5 mmol, 1.0 equiv). The product **2g** was isolated after column chromatography using 5% ethyl acetate in hexane as eluent (colourless liquid, 81.4 mg, 59% yield). ¹H NMR (400

MHz, CDCl₃): δ (ppm) 7.84 (d, J = 7.2 Hz, 1H), 7.39 (dt, J = 7.5, 3.8 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.20 (d, J = 7.4 Hz, 1H), 3.99 (s, 2H), 3.67 (s, 3H), 1.33 (s, 12H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 173.0, 140.5, 136.2, 131.1, 130.2, 126.5, 83.8, 51.8, 41.1, 24.8. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.1.

4,4,5,5-Tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane (2h):^{13a} The titled compound

2h was synthesised according to the **GP-III** by using 1-bromonaphthalene **1j** (104 mg, 0.5 mmol, 1.0 equiv). The product **2h** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 58.4 mg, 46% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.81 (d, *J* = 8.3 Hz, 1H), 8.13 (d, *J* = 6.4 Hz, 1H), 7.97 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 8.0 Hz,

1H), 7.57 (t, J = 7.2 Hz, 1H), 7.51 (t, J = 7.4 Hz, 2H), 1.46 (s, 12H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 137.1, 135.8, 133.3, 131.7, 128.6, 128.5, 126.5, 125.6, 125.1, 83.8, 25.1. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.8.

4,4,5,5-Tetramethyl-2-(pyren-1-yl)-1,3,2-dioxaborolane (2i):^{13c} The titled compound 2i was

synthesised according to the **GP-III** by using 1-bromopyrene **1k** (104 mg, 0.5 mmol, 1.0 equiv). The product **2i** was isolated after column chromatography using 5% ethyl acetate in hexane as eluent (white solid, 131 mg, 80% yield). ¹H **NMR** (500 MHz, CDCl₃): δ (ppm) 9.14 – 9.12 (m, 1H), 8.59 (ddd, J = 7.5, 3.1, 1.9 Hz, 1H), 8.24 (d, J = 7.6 Hz, 1H), 8.21 – 8.17 (m, 3H), 8.13 (d, J = 8.9 Hz, 1H), 8.08 (d, J = 8.9 Hz, 1H), 8.02 (t,

J = 7.6 Hz, 1H), 1.53 (s, 12H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 136.6, 134.0, 133.6, 131.3, 130.9, 128.7, 128.2, 127.9, 127.6, 125.8, 125.5, 125.3, 124.8, 124.5, 124.2, 84.0, 25.2. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.9.

5-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (2j):^{13d} The titled compound 2j was synthesised according to the **GP-III** by using 5-bromo-1H-indole 1l (98 mg, 0.5 mmol, 1.0 equiv). The product 2j was isolated after column chromatography using 3% ethyl acetate in hexane as eluent (white solid, 36.5 mg, 30% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.24 (br s, 1H), 8.20 (s, 1H), 7.65 (d, J = 8.2 Hz, 1H), 7.38 (d, J = 8.2 Hz, 1H), 7.18 (t, J = 2.7 Hz, 1H), 6.57 (s, 1H), 1.38 (s, 12H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm)

138.0, 128.8, 128.2, 127.7, 124.3, 110.6, 103.3, 83.6, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹**B** NMR (160 MHz, CDCl₃): δ (ppm) 31.6.

Methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole-1-carboxylate (2k): The

titled compound **2k** was synthesised according to the **GP-III** by using methyl 5-bromo-1*H*-indole-1-carboxylate **1m** (127 mg, 0.5 mmol, 1.0 equiv). The product **2k** was isolated after column chromatography using 5% ethyl acetate in hexane as eluent (white solid, 93.4 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.17 (d, *J* = 7.8 Hz, 1H),

8.07 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.59 (d, J = 3.3 Hz, 1H), 6.60 (d, J = 3.6 Hz, 1H), 4.04 (s, 3H), 1.37 (s, 12H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 151.6, 137.4, 131.0, 130.2, 128.4, 125.7, 114.6, 108.5, 83.9, 53.9, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.4. FTIR: (neat)/ cm⁻¹ = 3672, 2978, 1745, 1612, 1540, 1444, 1243, 1214, 1145, 1087. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₆H₂₁BNO₄, 302.1558; found 302.1555.

2-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-indole (2l): The titled A compound 2l was synthesised according to the GP-III by using methyl 2-(4-bromophenyl)-1H-indole 1n (135 mg, 0.5 mmol, 1.0 equiv). The product 2l was isolated after column

chromatography using 3% ethyl acetate in hexane as eluent (white solid, 104 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.42 (s, 1H), 7.88 (d, *J* = 8.0 Hz, 2H), 7.68 (d, *J* = 8.1 Hz, 2H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.91 (s, 1H), 1.37 (s, 12H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 137.7, 137.0, 135.6, 134.9, 129.3, 124.3, 122.8, 120.9, 120.5, 111.1, 100.8, 84.1, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 30.6. FTIR: (neat)/ cm⁻¹ = 3344, 2977, 2924, 2853, 1609, 1453, 1360, 1283, 1121. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₂₀H₂₃BNO₂, 320.1816; found 320.1820.

3-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (2m):^{13e} The titled compound

2m was synthesised according to the **GP-III** by using 3-bromo-9*H*-carbazole **1o** (123 mg, 0.5 mmol, 1.0 equiv). The product **2m** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 88 mg, 60% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.61 (s, 1H), 8.16 (br s, 1H), 8.12 (d, *J* = 7.3 Hz, 1H),

7.90 (d, J = 8.0 Hz, 1H), 7.44 – 7.39 (m, 3H), 7.25 (d, J = 7.5 Hz, 1H), 1.42 (s, 12H). ¹³C {¹H} **NMR** (126 MHz, CDCl₃): δ (ppm) 141.9, 139.6, 132.5, 127.9, 126.0, 123.6, 123.2, 120.7, 120.0, 110.7, 110.2, 83.8, 25.1. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.6.

3,6-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (2n):^{13f} The titled compound 2n was synthesised according to the GP-III by using 3,6-dibromo-9H-carbazole 1p (163 mg, 0.5 mmol, 1.0 equiv). The product 2n was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 46 mg, 22% yield). In another fractions, the

debrominated mono-borylation product **2m** was isolated as major product (79 mg, 54% yield). **¹H NMR** (400 MHz, CDCl₃): δ (ppm) 8.65 (s, 2H), 8.25 (br s, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.39 (d, *J* = 8.1 Hz, 2H), 1.39 (s, 24H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 141.8, 132.5, 128.3, 123.4, 110.2, 83.8, 25.2. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹**B** NMR (160 MHz, CDCl₃): δ (ppm) 31.5.

1,3-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (20):^{13g} The titled compound 20

was synthesised according to the **GP-III** by using 1,3dibromobenzene **1q** (60 μ L, 0.5 mmol, 1.0 equiv). The product **2o** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent (white solid, 91 mg, 55% yield). ¹**H** NMR (400

MHz, CDCl₃): δ (ppm) 8.28 (s, 1H), 7.90 (d, *J* = 8.1 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 1H), 1.34 (s, 24H). ¹³C {¹H} NMR (101 MHz, CDCl₃): 141.4, 137.8, 127.2, 83.9, 25.0. ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.2.

1,4-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (2p):^{13a} The titled compound 2p

was synthesised according to the **GP-III** by using 1,4dibromobenzene 1r (65 µL, 0.5 mmol, 1.0 equiv). The product 2p was isolated after column chromatography using 2% ethyl

acetate in hexane as eluent (white solid, 119 mg, 72% yield). ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.80 (s, 4H), 1.35 (s, 24H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 134.0, 84.0, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.01.

3,3'-Bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1'-biphenyl (2q):^{13h} The titled

compound **2q** was synthesised according to the **GP-III** by using 3,3'-dibromo-1,1'-biphenyl **1s** (156 mg, 0.5 mmol, 1.0 equiv). The product **2q** was isolated after column chromatography using 2% ethyl acetate in hexane as eluent

(white solid, 144 mg, 71% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.07 (s, 2H), 7.80 (d, J = 7.3 Hz, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 1.37 (s, 24H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃): δ (ppm) 140.7, 133.8, 133.7, 130.4, 128.2, 84.0, 25.0. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening). ¹¹B NMR (160 MHz, CDCl₃): δ (ppm) 31.2.

1,1'-(2,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-fluorene-9,9-diyl) bis(hexan-1,1)-9H-fluorene-9,9-diyl) bi

1-one) (*2r*):¹³ⁱ The titled compound **2r** was synthesised according to the **GP-III** by using 1,1'-(2,7-dibromo-9H-fluorene-9,9-diyl)bis(hexan-1-one) **1t** (260 mg, 0.5

mmol, 1.0 equiv). The product **2r** was isolated after column chromatography using 5% ethyl acetate in hexane as eluent (white solid, 175 mg, 57% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80 (d, J = 7.5 Hz, 2H), 7.74 (s, 2H), 7.72 (d, J = 7.6 Hz, 2H), 2.02 – 1.97 (m, 4H), 1.39 (s, 24H), 1.10 – 1.00 (m, 12H), 0.76 – 0.72 (m, 6H), 0.57 – 0.50 (m, 4H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 150.6, 144.1, 133.8, 129.1, 119.5, 83.9, 55.3, 40.2, 31.6, 29.8, 25.1, 23.7, 22.7, 14.2. (The carbon directly attached to the boron atom was not detected due to quadrupolar broadening).

Dimethyl [1,1'-biphenyl]-4-ylphosphonate (3a):¹⁴ The titled compound 3a was synthesized according to GP-IV by using 4-bromo-1,1'-biphenyl 1d (47 mg, 0.2 mmol). The desired product 3a was isolated after silica gel column chromatography by using 60% ethyl acetate in hexane as eluent (yellow solid, 48.2 mg, 92% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 – 7.84 (m, 2H), 7.69 (dd, J = 7.9, 3.8 Hz, 2H), 7.60 (d, J = 7.6 Hz, 2H), 7.46 (t, J = 7.5 Hz, 2H), 7.39 (t, J = 7.0 Hz, 1H), 3.78 (d, J = 11.1 Hz, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 145.6 (d, J = 3.2Hz) 139.9, 132.5 (d, J = 10.3 Hz), 129.1, 128.3, 127.37, 127.36 (d, J = 15.4 Hz), 125.4 (d, J = 190.7 Hz), 52.7 (d, J = 5.5 Hz). ³¹P NMR (202 MHz, CDCl₃): δ (ppm) 22.5.

Dimethyl benzo[d][1,3]*dioxol-5-ylphosphonate* (*3b*)*:* The titled compound **3b** was synthesized according to **GP-IV** by using 5-bromobenzo[*d*][1,3]*dioxole* **1u** (24 μ L mg, 0.2 mmol). The desired product **3b** was isolated after silica gel column chromatography by using 80% ethyl acetate in hexane as eluent (yellow oil, 22 mg, 49% yield). ¹**H NMR** (400 MHz, CDCl₃) δ (ppm) 7.37 (ddd, *J* = 14.0, 7.9, 0.9 Hz, 1H), 7.18 (d, *J* = 14.1 Hz, 1H), 6.90 (dd, *J* = 7.9, 3.7 Hz, 1H), 6.03 (s, 2H), 3.74 (d, *J* = 11.1 Hz, 6H). ¹³**C** {¹**H**} **NMR** (101 MHz, CDCl₃): δ (ppm) 151.6 (d, *J* = 3.5 Hz), 148.1 (d, *J* = 22.7 Hz), 127.8 (d, *J* = 11.1 Hz), 119.8 (d, *J* = 194.4 Hz), 111.4 (d, *J* = 12.3 Hz), 108.8 (d, *J* = 18.8 Hz), 101.8, 52.8 (d, *J* = 5.4 Hz). ³¹**P NMR** (202 MHz, CDCl₃): δ (ppm) 22.5. **FTIR**: (neat)/ cm⁻¹ = 3458, 2923, 2853, 1722, 1604, 1485, 1428, 1344, 1246, 1184, 1029. **HRMS** (**ESI**) *m*/*z*: [M+H]⁺ calcd for C₉H₁₂O₅P, 231.0417; found 231.0414.

Dimethyl naphthalen-1-ylphosphonate (3c):¹⁴ The titled compound 3c was synthesized

according to **GP-IV** by using 1-bromonaphthalene **1j** (28 μ L, 0.2 mmol). The desired product **3c** was isolated after silica gel column chromatography by using 50% ethyl acetate in hexane as eluent (colourless oil, 40.5 mg, 86% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.46 (d, *J* = 8.3 Hz, 1H), 8.23

(dd, J = 16.2, 6.6 Hz, 1H), 8.05 (d, J = 7.9 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.63 – 7.60 (m, 1H), 7.57 – 7.51 (m, 2H), 3.79 (d, J = 11.3 Hz, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 135.1 (d, J = 9.2 Hz), 134.0 (d, J = 3.4 Hz), 133.7 (d, J = 12.8 Hz), 132.8 (d, J = 11.0 Hz), 128.9 (d, J = 1.9 Hz), 127.8, 126.59, 126.55 (d, J = 4.4 Hz), 124.7 (d, J = 16.7 Hz), 123.3 (d, J = 183.6 Hz), 52.8 (d, J = 5.4 Hz). ³¹P NMR (202 MHz, CDCl₃): δ (ppm) 23.0.

Dimethyl phenanthren-9-ylphosphonate (3d): The titled compound 3d was synthesized according to GP-IV by using 9-bromophenanthrene 1v (52 mg, 0.2 mmol). The desired product 3d was isolated after silica gel column chromatography by using 50% ethyl acetate in hexane as eluent (yellow solid, 36.6 mg, 64% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.73 (d, *J* = 7.3 Hz, 1H), 8.69 (d,

J = 8.4 Hz, 1H), 8.64 (d, J = 18.1 Hz, 1H), 8.48 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 7.9 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.73 – 7.64 (m, 3H), 3.82 (d, J = 11.3 Hz, 6H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 138.7 (d, J = 8.7 Hz), 132.6 (d, J = 2.8 Hz), 130.7 (d, J = 12.1 Hz), 130.2, 130.0 (d, J = 10.2 Hz), 129.9, 129.5, 127.6, 127.47 (d, J = 3.6 Hz), 127.35, 127.3, 123.2 (d, J = 1.6 Hz), 122.9, 122.2 (d, J = 183.3 Hz), 52.9 (d, J = 5.3 Hz). ³¹P NMR (202 MHz, CDCl₃): δ (ppm) 23.3. FTIR: (neat)/ cm⁻¹ = 3476, 2952, 2850, 1450, 1256, 1024. HRMS (ESI) m/z: [M+H]⁺ calcd for C₁₆H₁₆O₃P, 287.0832; found 287.0832.

Dimethyl (4-(1H-indol-2-yl)phenyl)phosphonate (3e): The titled compound 3e was synthesized according to GP-IV by using methyl 2-(4-bromophenyl)-1H-indole 1n (57.2mg, 0.2 mmol). The desired product 3e was isolated after silica gel column chromatography by using 80% ethyl acetate in hexane as eluent (yellow solid, 40.4 mg, 67% yield). ¹H NMR (400

MHz, CDCl₃): δ (ppm) 9.58 (br s, 1H), 7.80 (d, J = 8.4 Hz, 4H), 7.65 (d, J = 7.9 Hz, 1H), 7.47 (d, J = 8.2 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 7.13 (t, J = 7.4 Hz, 1H), 6.92 (s, 1H), 3.78 (d, J = 11.1 Hz, 6H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 137.7, 136.96 (d, J = 3.3 Hz), 136.6, 132.66 (d, J = 10.3 Hz), 129.1, 125.3 (d, J = 15.4 Hz), 124.9 (d, J = 191.9 Hz), 123.1, 121.0, 120.4, 111.5, 101.6, 53.0 (d, J = 5.6 Hz). ³¹P NMR (202 MHz, CDCl₃): δ (ppm) 22.2. FTIR: (neat)/ cm⁻¹ = 3215, 2952, 1604, 1434, 1343, 1306, 1238, 1183, 1052, 1026. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₆H₁₇NO₃P, 302.0941; found 302.0941.

Dimethyl (1-benzyl-1H-indol-5-yl)phosphonate (3f): The titled compound 3f was synthesized

according to **GP-IV** by using 1-benzyl-5-bromo-1*H*-indole **1w** (55mg, 0.2 mmol). The desired product **3f** was isolated after silica gel column chromatography by using 60% ethyl acetate in hexane as eluent (yellow oil, 33 mg, 52% yield). **¹H NMR** (400 MHz, CDCl₃): δ (ppm) 8.18 (d,

J = 14.4 Hz, 1H), 7.56 (dd, J = 11.9, 8.5 Hz, 1H), 7.37 (dd, J = 8.4, 3.1 Hz, 1H), 7.33 – 7.27 (m, 3H), 7.22 (d, J = 3.0 Hz, 1H), 7.11 (d, J = 7.3 Hz, 2H), 6.64 (d, J = 3.0 Hz, 1H), 5.35 (s, 2H), 3.75 (d, J = 11.1 Hz, 6H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 138.4 (d, J = 2.8 Hz), 136.8, 129.7, 128.9, 128.4 (d, J = 17.9 Hz), 127.9, 126.8, 126.7 (d, J = 11.3 Hz), 124.5 (d, J = 12.1 Hz), 116.6 (d, J = 192.3 Hz), 110.0 (d, J = 16.7 Hz), 102.9 (J = 1.3 Hz), 52.6 (d, J = 5.3 Hz), 50.28. ³¹P NMR (202 MHz, CDCl₃): δ (ppm) 25.6. FTIR: (neat)/ cm⁻¹ = 3458, 3029, 2951, 2851, 1717, 1608, 1454, 1336, 1243,1183, 1026. HRMS (ESI) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₉NO₃P, 316.1097; found 316.1098.

5-Methylphenanthridin-6(5H)-one (5a):^{15a} The titled compound 5a was synthesized

according to **GP-V** by using *N*-(2-bromophenyl)-*N*-methylbenzamide **4a** (145 mg, 0.5 mmol). The desired product **5a** was isolated after silica gel column chromatography by using 4% ethyl acetate in hexane as eluent (white solid, 93 mg, 89% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.51 (dd, *J* = 8.0, 1.0

Hz, 1H), 8.19 (d, J = 8.1 Hz, 2H), 7.70 (t, J = 8.3 Hz, 1H), 7.54 (t, J = 8.0 Hz, 1H), 7.49 (t, J = 8.5 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.26 (t, J = 8.0 Hz, 1H), 3.75 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 161.6, 138.0, 133.5, 132.4, 129.6, 128.9, 128.0, 125.6, 123.2, 122.5, 121.6, 119.3, 115.0, 30.0.

5,8-Dimethylphenanthridin-6(5H)-one (5b):^{15b} The titled compound 5b was synthesized

according to **GP-V** by using *N*-(2-bromophenyl)-*N*,3dimethylbenzamide **4d** (152 mg, 0.5 mmol). The desired product **5b** was isolated after silica gel column chromatography by using 7% ethyl acetate in hexane as eluent (white solid, 61.5 mg, 55% yield). ¹H NMR

(400 MHz, CDCl₃): δ (ppm) 8.35 (s, 1H), 8.26 (d, J = 7.6 Hz, 1H), 8.18 (d, J = 8.2 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.42 (d, J = 8.3 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 3.82 (s, 3H), 2.53 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 161.9, 138.3, 137.8, 133.9, 131.2, 129.2, 128.8, 125.6, 123.1, 122.6, 121.8, 119.6, 115.2, 30.2, 21.5.

5,9-Dimethylphenanthridin-6(5H)-one (5c):^{15a} The titled compound 5c was synthesized

MeO

GP-V by using according to N-(2-bromophenyl)-N,4dimethylbenzamide 4e (153 mg, 0.5 mmol). The desired product 5c was isolated after silica gel column chromatography by using 6% ethyl acetate in hexane as eluent (white solid, 73 mg, 65% yield). ¹H NMR

(400 MHz, CDCl₃): δ (ppm) 8.43 (d, J = 8.1 Hz, 1H), 8.28 (d, J = 7.7 Hz, 1H), 8.06 (s, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.41 (d, J = 8.6 Hz, 2H), 7.31 (t, J = 7.6 Hz, 1H), 3.81 (s, 3H), 2.56 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 161.9, 143.0, 138.4, 133.7, 129.6, 129.5, 129.1, 123.5, 123.3, 122.5, 121.8, 119.5, 115.2, 30.0, 22.3.

9-Methoxy-5-methylphenanthridin-6(5H)-one (5d):^{15a} The titled compound 5d was synthesized according to GP-V by using N-(2-bromophenyl)-4-__Me methoxy-N-methylbenzamide 4f (160 mg, 0.5 mmol). The desired product **5d** was isolated after silica gel column chromatography by using 20% ethyl acetate in hexane as eluent (white solid, 84 mg, 70%

yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.48 (d, J = 8.8 Hz, 1H), 8.21 (d, J = 8.0 Hz, 1H), 7.64 (s, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.40 (d, J = 8.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.15 (d, J = 8.9 Hz, 1H), 3.99 (s, 3H), 3.79 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 163.1, 161.6, 138.7, 135.7, 131.3, 129.9, 123.4, 122.4, 119.6, 119.3, 116.0, 115.3, 104.7, 55.7, 29.9.

8,9-Dimethoxy-5-methylphenanthridin-6(5H)-one (5e):^{15b} The titled compound 5e was synthesized according to GP-V by using N-(2-bromophenyl)-3,4-MeO Me

MeO

dimethoxy-N-methylbenzamide 4g (175 mg, 0.5 mmol). The desired product 5e was isolated after silica gel column chromatography by using 25% ethyl acetate in hexane as eluent (white solid, 78 mg, 58%

yield).¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.16 (d, J = 8.0 Hz, 1H), 7.94 (s, 1H), 7.60 (s, 1H), 7.52 (t, J = 7.7 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 4.09 (s, 3H), 4.04 (s, 3H), 3.82 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 161.4, 153.5, 150.1, 137.8, 128.8, 128.5, 119.9, 119.4, 109.4, 102.8, 56.4, 56.3, 30.1.

9-Fluoro-5-methylphenanthridin-6(5H)-one (5f):^{15a} The titled compound 5f was synthesized

GP-V using N-(2-bromophenyl)-4-fluoro-Naccording to by methylbenzamide 4h (154 mg, 0.5 mmol). The desired product 5f was isolated after silica gel column chromatography by using 5% ethyl acetate in hexane as eluent (white solid, 82 mg, 72% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.56 (dd, J = 8.6, 6.3 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.89 – 7.86 (m, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.30 – 7.26 (m, 1H), 3.80 (s, 3H). ¹³**C {1H} NMR** (101 MHz, CDCl₃): δ (ppm) 165.7 (d, J = 252.1 Hz), 161.1, 138.6, 136.3 (d, J = 9.5 Hz), 132.3 (d, J = 9.8 Hz), 130.5, 123.6, 122.7, 122.3, 118.7 (d, J = 3.1 Hz), 116.4 (d, J = 22.9 Hz), 115.4, 107.7 (d, J = 23.3 Hz), 30.1. ¹⁹**F {¹H}** (471 MHz, CDCl₃): δ (ppm) -145.9.

2,5-Dimethylphenanthridin-6(5H)-one (5g):^{15c} The titled compound 5g was synthesized

according to **GP-V** by using *N*-(2-bromo-4-methylphenyl)-*N*-methylbenzamide **4j** (153 mg, 0.5 mmol). The desired product **5g** was isolated as white solid after silica gel column chromatography by using 7% ethyl acetate in hexane as eluent (74 mg, 66% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.55 (d, *J* = 8.0 Hz, 1H), 8.28 (d, *J* = 8.1 Hz, 1H), 8.09 (s,

1H), 7.75 (t, J = 7.6 Hz, 1H), 7.58 (t, J = 7.6 Hz, 1H), 7.37 (d, J = 8.6 Hz, 1H), 7.32 (d, J = 8.5 Hz, 1H), 3.81 (s, 3H), 2.50 (s, 3H). ¹³C {¹H} **NMR** (101 MHz, CDCl₃): δ (ppm) 161.6, 136.1, 133.6, 132.4, 132.1, 130.7, 129.1, 128.0, 125.8, 123.5, 121.7, 119.3, 115.1, 30.1, 21.1.

2-Methoxy-5-methylphenanthridin-6(5H)-one (5h):^{15c} The titled compound 5h was synthesized according to GP-V by using N-(2-bromo-4-methoxyphenyl)-Nmethylbenzamide 4k (160 mg, 0.5 mmol). The desired product 5h was isolated as white solid after silica gel column chromatography by using 30% ethyl acetate in hexane as eluent (74.2 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.56 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 8.1 Hz, 1H), 7.77 – 7.74 (m, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.36 (d, J = 9.1 Hz, 1H), 7.15 (dd, J = 9.1, 2.8 Hz, 1H),

3.94 (s, 3H), 3.80 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 161.4, 155.3, 133.4, 132.6, 132.4, 129.2, 128.3, 126.1, 121.8, 120.4, 116.7, 116.4, 107.3, 55.9, 30.2.

5-Methyl-2-(trifluoromethyl)phenanthridin-6(5H)-one (5i):^{15d} The titled compound 5i was synthesized according to GP-V by using *N*-(2-bromo-4-(trifluoromethyl)phenyl)-*N*-methylbenzamide 4l (180 mg, 0.5 mmol). The desired product 5i was isolated after silica gel column chromatography by using 9% ethyl acetate in hexane as eluent (white solid, 90 mg, 65% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.55 (d, *J* = 7.9 Hz, 1H), 8.50 (s, 1H),

8.28 (d, J = 8.1 Hz, 1H), 7.81 (t, J = 7.7 Hz, 1H), 7.77 (d, J = 8.8 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.50 (d, J = 8.8 Hz, 1H), 3.83 (s, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃): δ (ppm) 161.7,

140.4, 133.0, 132.7, 129.2, 129.0, 126.2 (q, J = 3.5 Hz), 125.9, 124.7 (q, J = 33.2 Hz), 124.4 (q, J = 271.7 Hz), 121.9, 120.8 (q, J = 3.9 Hz), 119.4, 115.6, 30.4. ¹⁹F {¹H} NMR (471 MHz, CDCl₃): δ (ppm) -61.72.

1'-Methyl-3-(trifluoromethyl)spiro[cyclohexane-1,3'-indoline]-2,5-dien-2'-one (5'a): The

Me titled compound 5'a was synthesized according to GP-V by using N-(2bromophenyl)-N-methyl-3-(trifluoromethyl)benzamide 4i (179 mg, 0.5 mmol). The desired product 5'a was isolated after silica gel column chromatography by using 5% ethyl acetate in hexane as eluent (brown solid,

chromatography by using 5% ethyl acetate in hexane as eluent (brown solid, 81 mg, 58% yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.36 – 7.31 (m, 1H), 7.09 – 7.08 (m, 2H), 6.88 (d, J = 7.8 Hz, 1H), 6.21 – 6.17 (m, 1H), 5.98 (s, 1H), 5.44 (dd, J = 9.9, 2.0 Hz, 1H), 3.25 (s, 3H), 3.11 (d, J = 22.6 Hz, 1H), 3.00 (d, J = 22.4 Hz, 1H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 176.1, 143.2, 132.4, 130.6, 129.4, 129.0 (q, J = 31.1 Hz), 126.7 (q, J = 5.8Hz), 125.9, 125.1, 123.5 (q, J = 272.4 Hz), 123.4, 123.3, 108.5, 52.0, 26.9, 23.4. ¹⁹F NMR (471 MHz, CDCl₃): δ (ppm) -109.7. FTIR: (neat)/ cm⁻¹ = 2924, 2854, 1711, 1610, 1490, 1470, 1211369, 1343, 1258, 1182, 1201. HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃F₃NO, 280.0944; found 280.0946.

1-Methyl-4'H-spiro[indoline-3,1'-naphthalen]-2-one (5'b):^{15e} The titled compound 5'b was

Ο

synthesized according to **GP-V** by using *N*-(2-bromophenyl)-*N*-methyl-1naphthamide **4m** (170 mg, 0.5 mmol). The desired product **5'b** was isolated after silica gel column chromatography by using 5% ethyl acetate in hexane as eluent (white solid, 81 mg, 62% yield). ¹H NMR (500 MHz, CDCl₃): δ

(ppm) 7.32 (t, J = 7.9 Hz, 1H), 7.26 – 7.24 (d, J = 9.5Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 7.06 – 7.01 (m, 3H), 6.94 (d, J = 8.5 Hz, 1H), 6.55 (d, J = 7.8 Hz, 1H), 6.35 – 6.31 (m, 1H), 5.57 (d, J = 9.8 Hz, 1H), 3.80 (d, J = 21.8 Hz, 1H), 3.59 (dd, J = 21.8, 3.8 Hz, 1H), 3.27 (s, 3H). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 178.4, 143.9, 136.0, 134.5, 134.4, 128.9, 128.6, 128.2, 127.5, 127.0, 126.8, 125.6, 124.9, 123.4, 108.2, 54.9, 30.2, 26.8.

1,2-Diphenylethane-1,2-diol (7a):¹¹ The titled compound 7a was synthesized according to the

GP-VI by using benzaldehyde **6a** (51 μ L, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **7a** was isolated after column chromatography on silica gel using 20% ethyl acetate in hexane as eluent (white solid, 45 mg, 84% yield). *meso:dl* 1:1.05. ¹H NMR (400 MHz, CDCl₃): δ

(ppm) 7.33 – 7.30 (m, 6H), 7.23 – 7.22 (m, 10H), 7.11 – 7.09 (m, 4H), 4.80 (s, 2H, *meso*), 4.66 (s, 1.05 × 2H, *dl*), 3.12 (s, 1.05 × 2H, *dl*), 2.46 (br s, 2H, *meso*).

1,2-Bis(2-methoxyphenyl)ethane-1,2-diol (7b):¹¹ The titled compound 7b was synthesized according to the **GP-VI** by using 2-methoxybenzaldehyde **6b** (60 µL, 0.5 mmol, 1.0 equiv). The reaction was continued for 1.5 h. The desired product 7b was isolated after column chromatography on silica gel using 30% ethyl acetate in hexane as eluent (colorless oil, 55.5 mg, 81% yield). *meso:dl* 1:1.1. ¹H **NMR** (400 MHz, CDCl₃): δ (ppm) 7.23 – 7.15 (m 8H), 6.90 – 6.85 (m, 4H), 6.80 (d, *J* = 8.2 Hz, 2H), 6.75 (d, *J* = 8.6 Hz, 2H), 5.26 (s, 2H, *meso*), 5.04 (s, 1.1 × 2H, *dl*), 3.67 (s, 6H, *meso*), 3.64 (s, 1.1 × 6H, *dl*), 3.52 (br s, 1.1 × 2H, *dl*), 3.21 (br s, 2H, *meso*).

1,2-Bis(4-methoxyphenyl)ethane-1,2-diol (7c):¹¹ The titled compound 7c was synthesized according to the **GP-VI** by using 4-methoxybenzaldehyde 6c (60 μ L, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product 7c was isolated after column chromatography on silica gel using 30% ethyl acetate in

hexane as eluent (white solid, 48 mg, 70% yield). *meso:dl* 1:2.52. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.19 (dd, J = 8.6, 1.6 Hz, 4H), 7.02 (dd, J = 8.6, 1.6 Hz, 10H), 6.85 (dd, J = 8.6, 1.6 Hz, 4H), 6.75 (dd, J = 8.6, 1.7 Hz, 10H), 4.72 (s, 2H, *meso*), 4.61 (s, 2.52 × 2H, *dl*), 3.80 (s, 6H, *meso*), 3.76 (s, 2.52 × 6H, *dl*), 2.95 (br s, 2.52 × 2H, *dl*), 2.22 (br s, 2H, *meso*).

I,2-Bis(2-*fluorophenyl)ethane-1,2-diol* (7*d*): The titled compound 7d was synthesized according to the **GP-VI** by using 2-fluorobenzaldehyde 6d (53 µL, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product 7d was isolated after column chromatography on silica gel using 30% ethyl acetate in hexane as eluent (white solid, 40 mg, 64% yield). *meso:dl* 1:1.26. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.44 (t, *J* = 6.8 Hz, 2H), 7.26 – 7.25 (m, 1H), 7.23 – 7.18 (m, 6H), 7.10 (t, *J* = 7.5 Hz, 3H), 7.03 (t, *J* = 7.5 Hz, 2H), 6.93 – 6.88 (m, 4H), 5.35 (s, 2H, *meso*), 5.14 (s, 1.26 × 2H, *dl*), 2.98 (br s, 4.5H, 2H *meso* and 1.26×2 H *dl*). ¹³C {¹H} NMR (126 MHz, CDCl₃): δ (ppm) 161.2, 161.1, 159.3, 159.1, 129.7, 129.6, 129.41, 129.35, 128.60, 128.57, 128.44, 128.41, 127.2, 127.1, 126.6, 126.5, 124.2, 123.94, 123.92, 115.4, 115.2, 115.0, 114.8, 72.01, 70.64 (all signal for both the diastereomers are reported) ¹⁹F NMR (471 MHz, CDCl₃) δ (ppm) -118.16, -118.60. **FTIR**: (neat)/ cm⁻¹ = 3372, 2925, 1618, 1588, 1489, 1456, 1398, 1271, 1227, 1102, 1034. **HRMS (ESI)** *m/z*: [M+Na]⁺ calcd for C₁₄H₁₂F₂NaO₂, 273.0698 found 273.0703.

1,2-Bis(4-fluorophenyl)ethane-1,2-diol (7e):¹¹ The titled compound 7e was synthesized

according to the **GP-VI** by using 4-fluorobenzaldehyde **6e** (54 μ L, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **7e** was isolated after column chromatography on

silica gel using 30% ethyl acetate in hexane as eluent (white solid, 62 mg, 99% yield). *meso:dl* 1.3:1. ¹**H NMR** (500 MHz, CDCl₃): δ (ppm) 7.17 – 7.14 (m, 1.3 × 4H, *meso*), 7.07 – 7.04 (m, 4H, *dl*), 6.99 – 6.96 (m, 1.3 × 4H, *dl*), 6.93 – 6.90 (m, 4H, *meso*), 4.82 (s, 1.3 × 2H, *meso*), 4.63 (s, *dl*), 2.90 (s, 2H, *dl*), 2.31 (s, 1.3 × 2H *meso*).

4,4'-(1,2-Dihydroxyethane-1,2-diyl)dibenzonitrile (7f):¹¹ The titled compound 7f was synthesized according to the **GP-VI** by using 4formylbenzonitrile **6f** (66 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 15 h. The desired product 7f was isolated after column chromatography on silica gel using 50% ethyl acetate in

hexane as eluent (orange solid, 47 mg, 71% yield). *meso:dl* 1:1.5. ¹H NMR (400 MHz, DMSO*d*₆): δ (ppm) 7.73 (d, *J* = 7.9 Hz, 1.5 × 4H, *dl*), 7.68 (d, *J* = 7.9 Hz, 4H, *meso*), 7.43 (d, *J* = 7.8 Hz, 1.5×4H, *dl*), 7.34 (d, *J* = 7.9 Hz, 4H, *meso*), 5.75 (s, 2H, meso), 5.69 (s, 1.5 × 2H, *dl*), 4.83 (s, 2H, *meso*), 4.69 (s, 1.5 × 2H, *dl*).

2,3-Diphenylbutane-2,3-diol (7g):¹¹ The titled compound 7g was synthesized according to the

GP-VI by using acetophenone **6g** (58 μ L, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **7g** was isolated after column chromatography on silica gel using 50% ethyl acetate in hexane

as eluent (white solid, 46 mg, 76% yield). *meso:dl* 1:1.11. ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.29-7.21 (m, 10H *meso* and 1.11 ×10H *dl*), 2.82 (s, 1.11 × 2H, *dl*), 2.51 (s, 2H, *meso*), 1.61 (s, 6H, *meso*), 1.52 (s, 1.11× 6H, *dl*).

2,3-Bis(4-methoxyphenyl)butane-2,3-diol (7h):¹¹ The titled compound 7h was synthesized

according to the **GP-VI** by using 1-(4methoxyphenyl)ethan-1-one **6h** (75 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **7h** was isolated after column chromatography on

silica gel using 30% ethyl acetate in hexane as eluent (white solid, 48 mg, 63% yield). meso:dl

1:1.2 ¹**H NMR** (400 MHz, CDCl₃) δ 7.11 (dd, *J* = 12.8, 8.8 Hz, 8H), 6.76 (dd, *J* = 8.8, 6.2 Hz, 8H), 3.80 (s, 1.18 × 6H, *dl*), 3.78 (s, 6H, *meso*), 2.64 (s, 1.2 × 2H, *dl*), 2.35 (s, 2H, *meso*), 1.55 (s, 6H, *meso*), 1.46 (s, 1.2 × 6H, *dl*).

1,1,2,2-Tetraphenylethane-1,2-diol (7i):¹¹ The titled compound 7i was synthesized according

to the **GP-VI** by using benzophenone **6i** (91 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **7i** was isolated after column chromatography on silica gel using 50% ethyl acetate in

hexane as eluent (white solid, 87 mg, 95% yield). ¹**H NMR** (500 MHz, CDCl₃) δ (ppm) 7.34 – 7.32 (m, 8H), 7.22 – 7.13 (m, 12H), 3.06 (br s, 2H).

 N^{1},N^{2} -Dibenzyl-1,2-diphenylethane-1,2-diamine (9a):¹¹ The titled compound 9a was synthesized according to the **GP-VII** by using (*E*)-*N*-benzyl-1phenylmethanimine 8a (98 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product 9a was isolated after column chromatography on neutral activated aluminium oxide using 2% ethyl

acetate in hexane as eluent (white solid, 87 mg, 89% yield). The ratio *meso:dl* 1:1.82 was determined by ¹H NMR analysis of the crude reaction mixture.¹H NMR (400 MHz, CDCl₃) δ (ppm): δ 7.36 – 7.28 (m, 10H), 7.24 – 7.15 (m, 6H), 6.98 (d, *J* = 6.6 Hz, 4H), 3.76 (s, 2H), 3.55 (d, *J* = 13.8 Hz, 2H), 3.31 (d, *J* = 13.7 Hz, 2H), 1.68 (s, 2H).

N¹, N²-Dibenzyl-1, 2-bis (2-methoxyphenyl) ethane-1, 2-diamine (9b):¹¹ The titled compound

9b was synthesized according to the **GP-VII** by using (*E*)-*N*-benzyl-1-(2-methoxyphenyl)methanimine **8b** (113 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 1.5 h. The desired product **9b** was isolated after column chromatography on neutral activated aluminium

oxide using 5% ethyl acetate in hexane as eluent (greenish yellow liquid, 59 mg, 52% yield, major diastereomer). The ratio *meso:dl* 1:1.23 was determined by ¹H NMR analysis of the crude reaction mixture. ¹H NMR (400 MHz, CDCl₃): δ (ppm) δ 7.28 – 7.18 (m, 14H), 6.88 (t, J = 7.0 Hz, 2H), 6.79 (d, J = 7.9 Hz, 2H), 4.53 (s, 2H), 3.65 (d, J = 13.3 Hz, 2H), 3.56 (s, 6H), 3.48 (d, J = 13.4 Hz, 2H), 2.04 (s, 2H).

N¹,N²-dibenzyl-1,2-bis(4-methoxyphenyl)ethane-1,2-diamine (9c):¹¹ The titled compound 9c

was synthesized according to the **GP-VII** by using (*E*)-*N*-benzyl-1-(4-methoxyphenyl)methanimine **8c** (113 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The

desired product **9c** was isolated after column chromatography on neutral activated aluminium oxide using 10% ethyl acetate in hexane as eluent (white solid, 77 mg, 68% yield). *meso:dl* 1:2.38. ¹H NMR (500 MHz, CDCl₃): δ (ppm) 7.25 – 7.08 (m, 34H), 6.91 – 6.88 (m, 13H), 6.80 (d, *J* = 7.3 Hz, 10H), 6.64 (d, *J* = 8.2 Hz, 3H), 3.75 (s, 14H), 3.72 (s, 1H), 3.67 (s, 5H), 3.58 (d, *J* = 10.0 Hz, 8H), 3.46 (d, *J* = 13.8 Hz, 5H), 3.41 (d, *J* = 13.4 Hz, 2H, *meso*), 3.21 (d, *J* = 13.8 Hz, 2 × 2.38 H, *dl*), 1.76(br s, 8H).

Dimethyl 4,4'-(1,2-bis(benzylamino)ethane-1,2-diyl)dibenzoate (9d):¹¹ The titled compound

9d was synthesized according to the **GP-VII** by using methyl (*E*)-4-((benzylimino)methyl)benzoate **8d** (134 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **9d** was isolated after column

chromatography on neutral activated aluminium oxide using 15% ethyl acetate in hexane as eluent (white solid, 96.5 mg, 76% yield). *meso:dl* 1:1.36. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99 (d, J = 8.4 Hz, 5H), 7.85 (d, J = 8.4 Hz, 4H), 7.35 – 7.20 (m, 26H), 7.11 (d, J = 8.3 Hz, 4H), 7.04 (d, J = 7.9 Hz, 5H), 3.94 (s, 8H), 3.90 (s, 3H), 3.88 (s, 4H), 3.78 (s, 2H), 3.65 (d, J = 13.2 Hz, 2H), 3.58 (d, J = 13.6 Hz, 3H), 3.49 (d, J = 13.3 Hz, 2H, *meso*), 3.35 (d, J = 13.6 Hz, 1.36×2H, *dl*), 2.08 (br s, 5H).

*N1,N2-Dibenzyl-1,2-di(pyridin-3-yl)ethane-1,2-diamine (9e):*¹¹ The titled compound **9e** was Bn_{NH} synthesized according to the **GP-VII** by using methyl (*E*)-4-((benzylimino)methyl)benzoate **8d** (98 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **9e** was isolated after column chromatography on neutral activated aluminium oxide using 40% ethyl acetate in hexane as eluent (white solid, 114 mg, 58% yield) *meso:dl* 1:2.86. ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.53 – 8.51 (m, 6H), 8.40 – 8.37 (m, 7H), 8.21 (s, 1H), 7.46 – 7.39 (m, 8H), 7.29 – 7.19 (m, 34H), 7.10 – 7.08 (m, 14H), 3.88 (s, 2.86× 2H *dl*), 3.75 (s, 2H, meso), 3.68 (d, *J* = 13.4 Hz, 2H, meso), 3.61 (d, *J* = 13.4 Hz, 2.86× 2H *dl*), 3.51 (d, *J* = 13.2 Hz, 2H, *meso*), 3.39 (d, *J* = 13.5 Hz, 2.86× 2H, *dl*), 2.34 (br s, 7H). N^{I} , N^{2} -Bis(3-chlorophenyl)-1,2-bis(4-methoxyphenyl)ethane-1,2-diamine (9f):¹¹ The titled

using (E)-N-(3-chlorophenyl)-1-(4-methoxyphenyl) methanimine **8f** (123 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **9f** was isolated after column chromatography on neutral activated aluminium oxide using 2% ethyl acetate in hexane as eluent (gummy

compound 9f was synthesized according to the GP-VII by

liquid, 118 mg, 96% yield). *meso:dl* 1.01:1. ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.02 – 6.96 (m, 8H), 6.86 (d, J = 8.3 Hz, 4H), 6.80 – 6.77 (m, 8H), 6.64 (d, J = 7.8 Hz, 4H), 6.51 (s, 4H), 6.38 (d, J = 8.2 Hz, 4H), 4.83 (d, J = 7.4 Hz, 1.01 × 2H, meso), 4.54 (d, J = 7.8 Hz, 1.01 × 2H, *meso* and 2H *dl*), 4.48 (br s, 2H), 3.79 (s, 1.01 × 6H, *meso*), 3.77 (s, 6H, *dl*).

1H-Indole (12a):¹² The titled compound 12a was synthesized according to **GP-VIII** by using 1-tosyl-1*H*-indole 10a, 10f-10h (0.5 mmol, 1.0 equiv). The reactions were continued for 1.5-4.5 h. The desired product 12a was isolated after silica gel column chromatography by using 5% ethyl acetate in hexane as eluent (white solid, 85-97% yields).¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.11 (br s, 1H), 7.74 (d, *J* = 7.8

Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 7.24 (s, 1H), 7.21 (t, J = 7.7 Hz, 1H), 6.63 (s, 1H).

1H-Indole-5-carbonitrile (12c):¹² The titled compound 12c was synthesized according to GP-NC VIII by using 1-tosyl-1*H*-indole-5-carbonitrile 10c (148 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 3 h. The desired product 12c was isolated after silica gel column chromatography by using 10% ethyl acetate in hexane as eluent (yellow solid, 64 mg, 90% yield). ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.72 (br s, 1H), 8.00 (s, 1H), 7.48 (d, *J* = 8.5 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 1H), 7.36 – 7.35 (m, 1H), 6.64 – 6.63 (m, 1H).

4-Bromo-1H-indole (12d):¹² The titled compound 12d was synthesized according to GP-VIII

by using 4-bromo-1-tosyl-1*H*-indole **10d** (175 mg, 0.5 mmol, 1.0 equiv) as prototype. The reaction was continued for 4.5 h. The desired product **12d** was isolated after silica gel column chromatography by using 5% ethyl acetate in hexane as eluent (liquid, 83.3 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ

(ppm) 8.23 (br s, 1H), 7.35 – 7.32 (m, 2H), 7.23 (s, 1H), 7.09 (t, *J* = 7.8 Hz, 1H), 6.65 (s, 1H).

1-(1H-Indol-3-yl)ethan-1-one (12e):¹² The titled compound 12e was synthesized according to

GP-VIII by using 1-(1-(phenylsulfonyl)-1*H*-indol-3-yl)ethan-1-one **10e** (149 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **12e** was isolated after silica gel column chromatography by using

60% ethyl acetate in hexane as eluent (yellow solid, 59.5 mg, 75% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.91 (br s, 1H), 8.42 – 8.38 (m, 1H), 7.88 – 7.87 (m, 1H), 7.44 – 7.40 (m, 1H), 7.32 – 7.27 (m, 2H), 2.56 (s, 3H).

9H-Carbazole (12f):¹² The titled compound **12f** was synthesized according to **GP-VIII** by using 9-tosyl-9*H*-carbazole **10k** (160 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 10 h. The desired product **12f** was isolated after silica gel column chromatography by using 5% ethyl acetate in hexane as eluent (white

solid, 62.7 mg, 75% yield). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ (ppm) 11.24 (br s, 1H), 8.11 (d, *J* = 7.5 Hz, 2H), 7.48 (d, *J* = 8.0 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 2H), 7.15 (t, *J* = 7.1 Hz, 2H).

*IH-Imidazole (12g):*¹² The titled compound 12g was synthesized according to GP-VIII by using 1-tosyl-1*H*-imidazole 10l (111 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2.5 h. The desired product 12g was isolated after silica gel column chromatography by using DCM as eluent (white solid, 27 mg, 80% yield). ¹H NMR (400 MHz, CDCl₃) δ (ppm) 11.17 (br s, 1H), 7.72 (s, 1H), 7.13 – 7.10 (m, 2H).

*IH-1,2,4-Triazole (12h):*¹² The titled compound **12h** was synthesized according to **GP-VIII** by using 1-tosyl-1*H*-imidazole **10m** (112 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2.5 h. The desired product **12h** was isolated after silica gel column chromatography by using DCM as eluent (white solid, 29.3 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 2H), 5.89 (br s, 1H). **1H-Benzo**[d][1,2,3]triazole (12i):¹² The titled compound **12i** was synthesized according to N_{H} **GP-VIII** by using 1-tosyl-1*H*-benzo[d][1,2,3]triazole **10n** (136 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 1 h. The desired product **12i** was isolated after silica gel column chromatography by using 25% ethyl acetate in hexane as eluent (white solid, 45.2 mg, 76% yield). ¹H NMR (500 MHz, CDCl₃): δ (ppm) 13.33 (br s, 1H), 7.94 (dd, J = 6.3, 3.0 Hz, 2H), 7.42 (d, J = 6.1 Hz, 2H).

N-Benzylbenzamide (12*j*):¹² The titled compound 12*j* was synthesized according to GP-VIII

by using *N*-benzyl-*N*-tosylbenzamide **10o** (182 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 3.5 h The desired product **12j** was isolated after silica gel column chromatography by using 15%

ethyl acetate in hexane as eluent (white solid, 91.7 mg, 87% yield). ¹**H** NMR (400 MHz, CDCl₃): δ (ppm) 7.81–7.78 (m, 2H), 7.52–7.48 (m, 1H), 7.45 – 7.40 (m, 2H), 7.36 – 7.35 (m, 4H), 7.33 – 7.28 (m, 1H), 6.47 (br s, 1H), 4.65 (d, J = 5.7 Hz, 2H).

N-Benzyl-4-methylbenzenesulfonamide (12k):¹² The titled compound 12k was synthesized

according to **GP-VIII** by using *N*-benzyl-4-methyl-*N*-tosylbenzenesulfonamide **10p** (207 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 1.5 h. The desired product **12k** was

isolated after silica gel column chromatography by using 10% ethyl acetate in hexane as eluent (white solid, 116 mg, 89% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.79 – 7.76 (m, 2H), 7.34 – 7.27 (m, 5H), 7.22 (s, 2H), 4.86 (br s, 1H), 4.15 – 4.12 (m, 2H), 2.45 (s, 3H).

N-(2-Bromo-4-methylphenyl)benzamide (121):^{10c} The titled compound 12l was synthesized

according to **GP-VIII** by using *N*-(2-bromo-4-methylphenyl)-*N*-tosylbenzamide **10q** (221 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **12l** was isolated after silica gel

column chromatography by using 5% ethyl acetate in hexane as eluent (white solid, 123 mg, 85% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.40 (d, J = 8.5 Hz, 1H), 8.39 (br s, 1H), 7.93 (d, J = 7.4 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.3 Hz, 2H), 7.41 (s, 1H), 7.18 (d, J = 8.4 Hz, 1H), 2.33 (s, 3H).

Naphthalen-2-ol (12m):¹² The titled compound 12m was synthesized according to GP-VIII OH by using naphthalen-2-yl 4-methylbenzenesulfonate 10r (149 mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 12 h. The desired product 12m was isolated after silica gel column chromatography by using 10% ethyl acetate in hexane as eluent (white solid, 50.4 mg, 70% yield). ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.78 (t, J = 8.3 Hz, 2H), 7.69 (d, J = 8.2 Hz, 1H), 7.45 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.16 (d, J = 1.4 Hz, 1H), 7.12 (dd, J = 8.8, 2.4 Hz, 1H), 5.23 (br s, 1H).

Methyl N², N⁶-bis(tert-butoxycarbonyl)-L-lysyl-L-tryptophanate (13a):¹² The titled compound

13a was synthesized according to **GP-IX** by using methyl N^{a} - $(N^{2},N^{6}$ -bis(tert-butoxycarbonyl)-*L*-lysyl)-1-tosyl-*L*-tryptophanate **12a** (70 mg, 0.1 mmol, 1.0 equiv). The reaction was continued for 2 h The desired product **11a** was isolated as after silica gel column chromatography by using 2% MeOH in DCM as eluent (yellow semiliquid, 49 mg, 90% yield). ¹H NMR (500 MHz, DMSO-*d*₆): δ (ppm) 10.86 (s, 1H), 8.12 (d, *J* = 7.4 Hz, 1H), 7.47 (d, *J* = 7.9

Hz, 1H), 7.33 (d, J = 8.1 Hz, 1H), 7.15 – 7.11 (m, 1H), 7.06 (t, J = 7.9 Hz, 1H), 6.98 (t, J = 7.7 Hz, 1H), 6.77 – 6.69 (m, 2H), 4.51 (dd, J = 13.7, 7.1 Hz, 1H), 3.91 (dd, J = 13.1, 8.4 Hz, 1H), 3.54 (s, 3H), 3.14 (dd, J = 14.6, 5.8 Hz, 1H), 3.07 (dd, J = 14.7, 7.6 Hz, 1H), 2.89 – 2.84 (m, 2H), 1.56 – 1.41 (m, 2H), 1.37 (s, 18H), 1.23 – 1.16 (m, 4H). **HRMS (ESI)** *m/z*: [M+H]⁺ calcd for C₂₈H₄₃N₄O₇, 547.3126; found 547.3127.

Methyl (tert-butoxycarbonyl)-L-phenylalanyl-L-tryptophyl-L-leucyl-L-tyrosinate (13b):¹²

The titled compound 13b was synthesized according to GP-IX by using methyl N^a-((tert-butoxycarbonyl)-L-phenylalanyl)-1-tosyl-L-tryptophyl-L-leucyl-L-tyrosinate 11b (90 mg, 0.1 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product 13b was isolated after silica gel column

chromatography by using 5% MeOH in DCM as eluent (white solid, 67.4 mg, 91% yield). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ (ppm) 10.80 (s, 1H), 9.25 (s, 1H), 8.23 (d, *J* = 7.0 Hz, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.20 – 7.11 (m, 6H), 7.05 (t, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 7.5 Hz, 2H), 6.96 – 6.90 (m, 2H), 6.66 (d, *J* = 7.6 Hz, 2H), 4.60 (dd, *J* = 12.9, 7.6 Hz, 1H), 4.41 – 4.37 (m, 2H), 4.13 – 4.07 (m, 1H), 3.54 (s, 3H), 3.11 (dd, *J* = 14.6, 4.2 Hz, 1H), 2.97 (dd, *J* = 14.7, 8.4 Hz, 1H), 2.91 – 2.81 (m, 3H), 2.68 – 2.62 (m, 1H), 1.58 – 1.51 (m, 1H), 1.42 – 1.38 (m, 2H), 1.27 (s, 9H), 0.86 (d, *J* = 6.2 Hz, 3H), 0.82 (d, *J* = 6.1 Hz, 3H). **HRMS (ESI)** *m*/*z*: [M+H]⁺ calcd for C₄₁H₅₂N₅O₈, 742.3810; found 742.3813. $Methyl \qquad N^2, N^6-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-D-alloisoleucyl-L-bis(tert-butoxycarbonyl)-L-bis(tert-butoxycarb$

The titled compound **13c** was synthesized according to **GP-IX** by using methyl N^{a} - N^{2} , N^{6} -bis(tertbutoxycarbonyl)-*L*-lysyl-*L*-tyrosyl-*L*methionyl-*D*-alloisoleucyl-1-tosyl-*L*tryptophyl-*L*-phenylalaninate **11c** (125)

tryptophyl-L-phenylalaninate (13c):¹²

mg, 0.5 mmol, 1.0 equiv). The reaction was continued for 2 h. The desired product **13c** was isolated after silica gel column chromatography by using 3% MeOH in DCM as eluent (99 mg, yellow foamy solid, 90% yield). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ (ppm) 10.79 (s, 1H), 9.13 (s, 1H), 8.41 – 8.36 (m, 1H), 8.20 – 8.10 (m, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.5 Hz, 1H), 7.68 – 7.61 (m, 1H), 7.54 (d, *J* = 7.8 Hz, 1H), 7.31 (d, *J* = 8.1 Hz, 1H), 7.23 (d, *J* = 6.9 Hz, 2H), 7.19 (d, *J* = 7.1 Hz, 1H), 7.15 (d, *J* = 7.5 Hz, 2H), 7.07 – 7.03 (m, 2H), 6.97 – 6.92 (m, 3H), 6.86 (t, *J* = 8.3 Hz, 1H), 6.74 – 6.73 (m, 1H), 6.59 (d, *J* = 7.4 Hz, 2H), 4.63 – 4.56 (m, 1H), 4.47 – 4.35 (m, 3H), 3.79 – 3.77 (m, 1H), 3.54 – 3.50(m, 3H), 3.07 – 2.78 (m, 8H), 2.71 – 2.58 (m, 1H), 2.40 – 2.32 (m, 1H), 1.97 – 1.96 (m, 2H), 1.91 – 1.65 (m, 3H), 1.36 (s, 18H), 1.27 – 1.17 (m, 8H), 1.04 – 0.98 (m, 2H), 0.75 (t, *J* = 6.9 Hz, 3H), 0.71 (d, *J* = 6.6 Hz, 3H). **HRMS (ESI)** *m*/z: [M+H]⁺ calcd for C₅₇H₈₁N₈O₁₂S, 1101.5689; found 1101.5696.

$Methyl \qquad N^2, N^6-bis(tert-butoxycarbonyl)-L-lysyl-L-tyrosyl-L-methionyl-L-alloisoleucyl-L-tyrophyl-L-alloisoleucinate$

(13d):¹² The titled compound 13d was synthesized according to GP-IX by using methyl $N^{a}-N^{2},N^{6}$ -bis(tert-butoxycarbonyl)-*L*-lysyl-*L*-tyrosyl-*L*-methionyl-*L*-

alloisoleucyl-1-tosyl-L-tryptophyl-

L-alloisoleucinate **11d** (122 mg, 0.1 mmol, 1.0 equiv). The reaction was continued for 3 h. The desired product **13d** was isolated after silica gel column chromatography by using 5% MeOH in DCM as eluent (yellow foamy solid, 95 mg, 89% yield). ¹**H NMR** (400 MHz, DMSO-*d*₆): δ (ppm) 10.81 (br s, 1H), 9.11 (s, 1H), 8.32 – 8.07 (m, 3H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.54 (d, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 1H), 7.10 (s, 1H), 7.04 (t, *J* = 7.5 Hz, 1H), 6.97 – 6.92 (m, 4H), 6.86 (d, *J* = 7.5 Hz, 1H), 6.75 – 6.72 (m, 1H), 6.59 – 6.55 (m, 2H), 4.68 – 4.62 (m, 1H), 4.46 – 4.40 (m, 1H), 4.25 – 4.19 (m, 1H), 3.80 – 3.74 (m, 1H), 3.62–3.57 (m, 4H), 3.51 – 3.50

(m, 1H), 3.08 (dd, J = 14.9, 5.9 Hz, 1H), 2.94 (dd, J = 14.3, 7.6 Hz, 1H), 2.87 – 2.80 (m, 4H), 2.67 – 2.62 (m, 1H), 1.81 – 1.65(m, 2H), 1.36 – 1.16 (m, 34H), 0.85 – 0.75 (m, 12H). **HRMS** (**ESI**) m/z: [M+H]⁺ calcd for C₅₄H₈₃N₈O₁₂S, 1067.5846; found 1067.5874.

(3S,6S)-3-((1H-Indol-3-yl)methyl)-6-benzylpiperazine-2,5-dione (13e):¹² The titled compound 13e was synthesized according to GP-IX by using (3S,6S)-3-benzyl-6-((1-tosyl-1H-indol-3-yl)methyl)piperazine-2,5-dione 11e (49 mg, 0.1 mmol, 1.0 equiv). The reaction was continued for 4 h. The desired product 13e was isolated after

silica gel column chromatography by using 4% MeOH in DCM as eluent (white solid, 30 mg, 89% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.91 (s, 1H), 7.94 (s, 1H), 7.73 (s, 1H), 7.49 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 8.1 Hz, 1H), 7.20 – 7.14 (m, 3H), 7.07 (t, *J* = 7.5 Hz, 1H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.96 (s, 1H), 6.70 (d, *J* = 7.3 Hz, 2H), 3.97 (s, 1H), 3.85 (s, 1H), 2.80 (dd, *J* = 14.4, 4.3 Hz, 1H), 2.54 (d, *J* = 5.8 Hz, 1H), 2.46 (dd, *J* = 13.5, 4.6 Hz, 1H), 1.84 (dd, *J* = 13.4, 7.1 Hz, 1H). HRMS (ESI) *m/z*: [M+H]⁺ calcd for C₂₀H₂₀N₃O₂, 334.1550; found 334.1555.

Computational Studies:

All the calculations were performed with the Gaussian 16, Revision B.01 program package.¹⁶ We selected the hybrid density functional B3LYP¹⁷ together with Pople's 6-311+G** triple- ξ valence basis set,¹⁷ with diffuse function on heavy atoms and polarization function on all atoms, considering the Grimme's D3 (BJ-damping) dispersion effect. The SMD solvent model¹⁸ was used to simulate the implicit solvent effect. Here, acetonitrile was utilized as the solvent. In all cases, ultrafine integral grid was employed. Harmonic vibrational frequencies were computed at the same level of theory to verify the optimized geometries as minima with all real modes in the Hessian matrix. TD-DFT calculations were conducted with the optimized geometries, at the same level of theory, with n states =5 and root =1 (Figure S14).

	S ₀	S_1	T ₁
LUMO			
номо			

Figure S14. DFT (B3LYP-D3(BJ)/6-311+G**/SMD(ϵ =MeCN)) optimized geometries and calculated frontier MOs for NC1 in S₀, S₁ and T₁ states. HOMO (Highest Occupied Molecular Orbital); LUMO (Lowest Unoccupied Molecular Orbital); Color coding: N(blue), C(grey).

	S ₀	S ₁	T ₁
LUMO			
номо			

Figure S15. DFT (B3LYP-D3(BJ)/6-311+G**/SMD(ϵ =MeCN)) optimized geometries and calculated frontier MOs for NC2 in S₀, S₁ and T₁ states. HOMO (Highest Occupied Molecular Orbital); LUMO (Lowest Unoccupied Molecular Orbital); Color coding: N(blue), C(grey), O(red).

Figure S16. DFT (B3LYP-D3(BJ)/6-311+G**/SMD(ϵ =MeCN)) optimized geometries and calculated frontier MOs for NC3 in S₀, S₁ and T₁ states. HOMO (Highest Occupied Molecular Orbital); LUMO (Lowest Unoccupied Molecular Orbital); Color coding: N(blue), C(grey), O(red).

	So	S ₁	T 1
LUMO			
номо			

Figure S17. DFT (B3LYP-D3(BJ)/6-311+G**/SMD(ϵ =MeCN)) optimized geometries and calculated frontier MOs for NC4 in S₀, S₁ and T₁ states. HOMO (Highest Occupied Molecular Orbital); LUMO (Lowest Unoccupied Molecular Orbital); Color coding: N(blue), C(grey), Cl(green).

Figure S18. DFT (B3LYP-D3(BJ)/6-311+G**/SMD(ϵ =MeCN)) optimized geometries and calculated frontier MOs for NC5 in S₀, S₁ and T₁ states. HOMO (Highest Occupied Molecular Orbital); LUMO (Lowest Unoccupied Molecular Orbital); Color coding: N(blue), C(grey).

	So	S_1	T ₁
LUMO			
номо			

Figure S19. DFT (B3LYP-D3(BJ)/6-311+G**/SMD(ϵ =MeCN)) optimized geometries and calculated frontier MOs for NC6 in S₀, S₁ and T₁ states. HOMO (Highest Occupied Molecular Orbital); LUMO (Lowest Unoccupied Molecular Orbital); Color coding: N(blue), C(grey).

Table S7. Enthalpy and Gibbs free energies (in Hartree) of all the catalysts at the B3LYP-D3(BJ)/6311+G**/SMD(ϵ =MeCN) level of theory.

Structures	E	G	Structures	E	G
NC1 (S ₀)	-1326.177785	-1326.259784	NC4 (S ₀)	-1785.814685	-1785.900146
NC1 (S ₁)	-1326.070065	-1326.152005	NC4 (S ₁)	-1785.706897	-1785.792242
NC1 (T ₁)	-1326.100888	-1326.183653	NC4 (T ₁)	-1785.737848	-1785.824097
NC2 (S ₀)	-1440.708793	-1440.797054	NC5 (S ₀)	-1418.457123	-1418.543515
NC2 (S ₁)	-1440.601364	-1440.689304	NC5 (S ₁)	-1418.347961	-1418.434414
NC2 (T ₁)	-1440.632087	-1440.721195	NC5 (T ₁)	-1418.380004	-1418.467238
NC3 (S ₀)	-1440.707928	-1440.796246	NC6 (S ₀)	-1517.933781	-1518.024882
NC3 (S ₁)	-1440.600504	-1440.688342	NC6 (S ₁)	-1517.824193	-1517.914589
NC3 (T ₁)	-1440.631177	-1440.719932	NC6 (T ₁)	-1517.856101	-1517.947133

G = Sum of electronic and thermal free energies.

Table S8: Computational spectral data from TDDFT calculations at B3LYP-D3(BJ)/6311+G**/SMD(ε=MeCN)

Catalyst	Transition	$\Delta E(eV)/\lambda (nm)$	f (Oscillator	Transition Character
			Strength)	
NC1	$S_0 \rightarrow S_1$ (absorption)	3.30/375.4	0.15	$HOMO \rightarrow LUMO$
				(67%)
NC2	$S_0 \rightarrow S_1$ (absorption)	3.30/375.9	0.15	$HOMO \rightarrow LUMO$
				(67%)
NC3	$S_0 \rightarrow S_1$ (absorption)	3.30/376.0	0.15	$HOMO \rightarrow LUMO$
				(67%)
NC4	$S_0 \rightarrow S_1$ (absorption)	3.30/375.3	0.14	$HOMO \rightarrow LUMO$
				(67%)
NC5	$S_0 \rightarrow S_1$ (absorption)	3.33/372.3	0.08	$HOMO \rightarrow LUMO$
				(66%)
NC6	$S_0 \rightarrow S_1$ (absorption)	3.37/368.2	0.13	$HOMO \rightarrow LUMO$
				(66%)

Table S9. Cartesian coordinates (Å) of the optimized structures of all the catalysts (NC1-NC6) at B3LYP-D3(BJ)/6311+G**/SMD(ϵ =MeCN) level of theory.

No. 8 No. 8 <th< th=""><th>NC</th><th>21 (S₀)</th><th></th><th></th><th>С</th><th>3.476568000</th><th>5.934958000</th><th>19.975833000</th></th<>	NC	21 (S ₀)			С	3.476568000	5.934958000	19.975833000
C 8.411006000 1.6.60403000 14.188575000 C 3.39699900 4.542783000 19.929401000 C 8.823532000 1.2.34709000 12.924158000 C 4.384768000 3.807190000 19.278973000 C 8.30534000 1.576191000 11.813431000 C 5.467594000 4.448572000 18.6678422000 C 7.357148000 2.917443000 11.953373000 H 10.50941600 0.55430500 15.82581000 C 6.95060500 3.33294300 11.068177000 H 10.472594000 0.25753000 15.82581000 C 7.4754400 2.17783400 14.350368000 H 4.3202500 2.3305000 16.4425000 C 7.39268100 2.87472200 15.777909000 H 6.36872600 3.3081000 16.4425000 C 8.86793000 0.438914000 15.40258000 16.41810000 C 8.651934000 0.43804700 17.869881000 C 8.3311700 17.44159000 14.40258000 C 8.65193400			1 181631000	15 438257000	Н	2.708417000	6.508877000	20.481822000
C 8.828352000 1.234709000 12.92415800 H 2.563593000 4.02942000 2.939743000 H 9.53474000 0.423527000 12.80288500 C 4.38476800 3.807190000 19.278973000 C 8.290534000 1.876191000 11.813431000 C 5.46795400 4.48872000 18.667842000 C 7.357148000 2.917443000 11.95337300 H 10.50941600 0.23180400 15.627311000 C 6.45987000 3.342182000 13.21172400 H 0.47259400 2.7255300 14.4721745000 C 7.475944000 2.71783400 15.30568000 H 6.36872600 3.80316500 18.243568000 C 8.687329000 1.589548000 16.411810000 H 3.83346300 3.80316500 12.86110000 15.423568000 C 8.687292000 1.895458000 16.41781000 H 3.83345000 1.73423684000 C 8.687292000 1.895458000 16.411810000 C 8.513117000 1.286110000					С	3.396999000	4.542783000	19.929401000
H 9.534746000 0.423527000 12.802885000 C 4.384768000 3.807190000 19.278973000 C 8.290534000 1.876191000 11.81341100 C 5.467954000 0.23184000 15.667812000 H 8.593821000 1.559614000 10.82182000 H 10.599416000 0.23184000 16.867812000 C 7.357148000 2.317472000 H 9.498226000 0.277553000 16.847710000 H H 6.55605000 3.342182000 13.30560800 H 4.320225000 2.725553000 12.825810000 C 7.47594000 2.717834000 14.330368000 H 6.368726000 6.353055000 18.243568000 C 8.6631934000 0.588781000 18.467399000 N 8.87676000 1.286110000 15.442320001 H 9.020513000 0.453273000 2.054834000 C 9.01293700 1.30178000 12.8413000 C 8.661934000 0.453273000 0.264844000 C 9.012937000 1.28611000 <t< td=""><td></td><td></td><td></td><td></td><td>Н</td><td>2.563593000</td><td>4.029942000</td><td>20.396743000</td></t<>					Н	2.563593000	4.029942000	20.396743000
C 8,290534000 1.876191000 11.813431000 C 5.467954000 4.448572000 18.667842000 H 8.593821000 1.559614000 10.821820000 C 9.89449000 0.23180400 15.627311000 C 7.357148000 2.917443000 11.933373000 H 10.509416000 0.5535000 15.82581000 H 6.95065000 3.392943000 11.068177000 H 9.49822000 2.72553000 15.82581000 C 6.45987000 2.717834000 4.3130560800 H 4.32022500 2.72553000 15.82581000 C 7.475944000 2.717834000 14.350308000 H 6.36872600 6.353055000 15.82358000 C 8.087292000 1.895458000 16.41181000 N 8.87976000 1.28611000 15.4232000 H 9.097931000 -0.189624000 17.86981000 C 8.53117000 1.30789000 1.460010000 C 8.068615000 0.453273000 2.0281141000 H 9.77506600 3.17851600 <th< td=""><td></td><td></td><td></td><td></td><td>С</td><td>4.384768000</td><td>3.807190000</td><td>19.278973000</td></th<>					С	4.384768000	3.807190000	19.278973000
H 8.593821000 1.559614000 10.821820000 C 9.869449000 0.231840000 15.627311000 C 7.357148000 2.917443000 11.953373000 H 10.509416000 0.554305000 16.447610000 C 6.95065000 3.39243000 11.068177000 H 9.498226000 0.207872000 14.721745000 C 6.945987000 3.412931000 13.305608000 H 4.320225000 2.20553000 19.244422000 C 7.475944000 2.717834000 14.350308000 H 6.373052000 4.60981100 20.535946000 C 8.062329000 1.27501000 17.80974000 H 3.334463000 1.8243568000 C 8.062329000 1.72501000 17.80974000 NN 8.373463000 12.86110000 15.42320000 C 8.062329000 1.72501000 17.869881000 C 8.531117000 1.236110000 14.40010000 C 8.062329000 1.450201000 17.869881000 C 8.531117000 1.300789000 12.8514000 C 8.062329000 1.45021000 17.869881000 C 8.531117000 1.286110000 12.8514000 C 8.062329000 1.45021000 17.869881000 2.053754000 2.934103000 1.460210000 C 8.062329000 1.45021000 17.869881000 2.053754000 2.934103000 1.420170000 C 8.07338000 1.45021000 17.869881000 2.053754000 2.73816300 1.288					С	5.467954000	4.448572000	18.667842000
C 7.357148000 2.917443000 11.953373000 H 10.509416000 0.554305000 16.47610000 H 6.950605000 3.32943000 11.068177000 H 9.49852600 0.776535000 15.825810000 C 6.945987000 3.342182000 13.215608000 H 4.320225000 2.077653000 14.72174000 C 7.47594000 2.17834000 14.350308000 H 6.77502500 4.608981000 2.92442200 C 7.47594000 2.874722000 15.777909000 H 4.33343000 3.408916000 16.42350800 C 8.062329000 1.725021000 17.820974000 N 8.876976000 1.286110000 15.442320001 H 9.020513000 0.189624000 17.869874000 C 8.013071800 1.286110000 1.416011000 C 8.610718000 0.453273000 2.281141000 H 9.77505000 2.38177000 1.2851700 C 8.10217000 1.35483000 2.264528000 H 8.811222001 1.54925000					С	9.869449000	0.231804000	15.627311000
H 6.95060500 3.39294300 11.06817700 H 9.49822600 0.77653500 15.8281000 C 6.94598700 3.34218200 13.21172400 H 10.47259400 0.2078700 14.72174500 H 6.225894000 4.142931000 13.305608000 H 4.32022500 0.2078700 0.20387000 C 7.475944000 2.71783400 14.350308000 H 6.736872600 6.33355500 18.243568000 C 7.292681000 2.87472200 15.77909000 H 3.3346300 3.40891600 16.02839000 C 8.06729200 1.89545800 16.411810000 H 3.3346300 3.40891600 15.4232000 C 8.65193400 0.58878100 18.467399000 N 8.876976000 1.28611000 15.44232000 H 9.09793100 0.18962400 17.86988100 C 8.51117000 1.3078900 12.8817400 C 8.0681500 0.453273000 20.281141000 H 9.77506000 0.53575400 12.8874000 C 8.0738900 1.46201000 20.64846000 C 8.45948300 1.58242500 11.78162900 C 8.0738900 1.46261000 20.64846000 C 7.45099500 2.881700 11.78162900 C 8.7794300 1.429614000 22.94734100 C 7.45099500 2.881700 11.8819500 C 7.77667200 2.3858600 22.9452100 H 8.9122200 1.5829500 1.97244000 <					Н	10.509416000	0.554305000	16.447610000
C 6.945987000 3.342182000 13.211724000 H 10.472594000 0.207872000 14.721745000 H 6.225894000 4.142931000 13.305608000 H 4.320225000 2.725553000 19.24442200 C 7.475944000 2.717834000 14.350308000 H 6.368726000 6.35081000 10.2432500 C 8.087292000 1.89545800 16.411810000 H 6.368726000 1.28611000 15.442320000 C 8.063239000 1.72502100 17.80974000 NCL I.S51 C 8.66815000 0.488781000 18.467399000 N 8.876976000 1.286110000 15.44232000 H 9.020513000 0.458273000 2.28111000 H 9.71506000 0.353754000 12.85874000 C 8.61071800 0.451147000 2.2470341000 C 8.45948000 1.85195000 1.88195000 C 7.7767200 2.38358600 2.39374800 2.39354800 2.248734100 C 7.4594900 2.58854000 1.31654					Н	9.498226000	-0.776535000	15.825810000
H6.2258940004.14293100013.305608000H4.3202250002.72555300019.244422000C7.4759440002.71783400014.350308000H6.775025004.60898100020.335946000C8.0872920001.8854580016.411810000H6.368760003.40891600016.002839000C8.063290001.72502100017.820974000NCL (S1)12.8611000015.442320000H9.0979310000.58878100018.467399000N8.876976001.28611000014.160110000H9.005130000.48527300020.281141000C9.0129370001.30078900012.934103000C8.0733890001.46206100020.648346000C8.4594830001.87359600011.781629000C8.1793430001.3554830022.054528000H8.8112200015.5492500010.807753000C7.776672002.385560022.878311000H7.025409003.27356100013.168413000H7.0869460002.29591400022.93306600C7.224634002.7282500013.165413000H7.0869460002.2959140002.301786000C7.281680002.855400015.71223900C7.7365740003.648510002.301786000C7.281680002.855400015.71223900C7.776672002.3854510002.301786000H8.977225003.27356100013.165413000C7.7365490003.645810002.33736000C7.281680002.8557000 </td <td></td> <td></td> <td></td> <td></td> <td>Н</td> <td>10.472594000</td> <td>0.207872000</td> <td>14.721745000</td>					Н	10.472594000	0.207872000	14.721745000
C7.4759440002.71783400014.350308000H6.7750250004.60898100020.535946000C7.2926810002.87472200015.777909000H6.368726006.35305500018.243568000C8.0632320001.72502100017.820974000NCI (SJ)12.861100015.44232000C8.651934000.58878100017.820974000N8.876976001.2861100015.44232000H9.097931000.1896240017.820974000N8.876976001.2861100015.44232000H9.097931000.43507400019.815164000C9.012370001.3078900012.934103000C8.608615000.4350740002.0281141000H9.0129370001.3578900012.858740000C8.073389001.46206100020.648346000C8.459483001.87359600012.858740000C8.179343001.3554830022.054528000H8.811220001.55492500010.807753000C7.776672002.3835860022.301786000H8.707920003.27858100013.10865000C7.77672002.3835860022.301786000H6.107191004.169010500013.10865000C7.7864490003.64681002.301786000C7.281680002.855400015.712239001C7.483497002.6185470002.035318000C7.281680002.855400015.71223900C7.33748002.6854700015.34198000C8.405220001.63075700014.82					Н	4.320225000	2.725553000	19.244422000
C7.2926810002.87472200015.777909000H6.3687260006.35305500018.243568000C8.0872920001.89545800016.411810000H3.833463003.40891600016.002839000C8.0623290001.72502100017.820974000NCL (S1)VVC8.6519340000.58878100018.467399000N8.8769760001.28611000015.442320000H9.097931000-0.18962400017.869881000C8.5311170001.73415000012.85410000C8.608150000.43500400019.815164000C9.0129370001.3078900012.8574000C8.6073890001.4506100020.648346000C8.4594830001.57359600011.781629000C8.1793430001.3554830022.054528000H8.8112220001.55492500010.807753000H8.6107180000.45114700022.470341000C7.4509950003.2588980001.976244000C7.7766720002.3335600022.301786000H6.1971910004.01910500013.10865000C7.2782440003.676830002.29331800C7.284630002.2885400015.312289000C7.3337480002.61854700015.9372000C8.142220001.6809700017.785705000C7.4834970002.61854700015.3198600H8.997940000.26613500015.7239000C7.3337480003.6533600017.934725000C8.142220001.6809700017.787					Н	6.775025000	4.608981000	20.535946000
C8.0872920001.89545800016.411810000H3.8334630003.40891600016.002839000C8.0623290001.72502100017.820974000NCL (S1)C8.6519340000.58878100018.467399000N8.8769760001.28611000015.442320000H9.097931000-0.18962400017.869881000C8.5311170001.30078900012.93410300C8.608150000.4350040020.281141000H9.775006000.3078900012.93410300C8.073389001.46206100020.648346000C8.4594830001.87359600011.781629000C8.07389001.45206100022.470341000C7.4509950002.8381700011.88015000C7.776720002.3358600022.87831100H7.025490003.2588980010.97624400C7.766720002.3358600022.301786000H6.1971910004.0191050013.12865000C7.2782440003.5648100022.301786000H6.1971910004.0191050013.65413000C7.33734002.6854700015.98972000C8.022930001.6809700017.785705000C7.337450002.6854700015.3382800C8.36520001.63075700018.4211700C5.562390004.6731660015.3382800C8.36520001.43012002.626598000C5.5628390004.6731660015.3382800C8.36520001.43012002.626598000C5.562839000 </td <td></td> <td></td> <td></td> <td></td> <td>Н</td> <td>6.368726000</td> <td>6.353055000</td> <td>18.243568000</td>					Н	6.368726000	6.353055000	18.243568000
C 8.062329000 1.725021000 17.820974000 NCL (S1) C 8.651934000 0.588781000 18.467399000 N 8.876976000 1.286110000 15.442320000 H 9.097931000 -0.189624000 17.869881000 C 8.531117000 1.734150000 12.934103000 C 8.60815000 0.43504000 19.815164000 C 9.012937000 0.535754000 12.85874000 C 8.073389000 1.46201000 20.648346000 C 8.459483000 1.873596000 1.781629000 C 8.179343000 1.355483000 22.470341000 C 7.45099000 3.28898000 10.9075244000 C 7.77672000 2.383586000 22.878311000 H 8.1022000 3.273561000 13.120865000 C 7.77672000 3.67583000 2.933086000 C 7.524634000 3.273561000 15.12289000 C 7.136594000 3.67583000 2.933086000 C 7.28168800 2.88554000 15.712239000 C 7.33					Н	3.833463000	3.408916000	16.002839000
C 8.651934000 0.588781000 18.467399000 N 8.876976000 1.286110000 15.442320000 H 9.097931000 -0.189624000 17.869881000 C 8.531117000 1.73415000 14.160010000 C 8.60815000 0.43504000 19.815164000 C 9.012937000 1.30789000 1.293410300 H 9.020513000 -0.453273000 20.281141000 H 9.77506000 0.535754000 12.858740000 C 8.0122000 1.355483000 22.054528000 H 8.81122000 1.554925000 10.807753000 C 7.776672000 2.383586000 22.878311000 H 7.025409000 3.25889800 10.976244000 C 7.27824400 3.564681000 22.391786000 H 6.197191000 4.01910500 13.165413000 C 7.278244000 3.65845000 2.393006000 C 7.28168000 2.88554000 15.71223900 C 7.136594000 2.618547000 2.0393748000 C 8.10222001 1.92610001					Ν	C1 (S ₁)		
H9.09793100-0.18962400017.869881000C8.5311170001.73415000014.16001000C8.6086150000.43500400019.815164000C9.0129370001.30078900012.934103000H9.02051300-0.45327300020.281141000H9.7750060000.53575400012.85874000C8.0733890001.46206100020.648346000C8.4594830001.87359600011.781629000C8.1793430001.35548300022.054528000H8.8112220001.55492500010.807753000H8.6107180000.45114700022.470341000C7.4509950002.83817700011.880195000C7.7766720002.3835860022.878311000H7.0254090003.2588980010.976244000H7.8694960002.9591400023.954811000C6.9772250003.27356100013.165413000C7.2782440003.5648100022.93306600C7.5246340002.72882500014.28996000C7.1365940003.6758300020.932318000C7.281680002.8855400015.71223900C7.434970002.61854700020.932318000C8.104222001.9256100016.370757000C7.4384970002.61854700018.598972000C8.104222001.9256100016.370757000C6.4356920003.6753300017.934725000C8.498840000.5663300017.847919000C5.562830004.67316600015.833828000C7.9263							1.286110000	15.442320000
C8.608615000.4350040019.815164000C9.012937001.300789001.293410300H9.020513000.4532730020.281141000H9.775006000.535754001.285874000C8.073389001.46206100020.648346000C8.4594830001.8735960001.781629000C8.179343001.3554830022.054528000H8.811222001.5549250001.880195000C8.610718000.4511470022.470341000C7.450995002.8381770001.880195000C7.76672002.3835860022.878311000H7.0254090003.2588980010.97624400H7.0869406002.295914002.3954811000C6.9772250003.27356100013.16865000C7.2782440003.5646810022.301786000H6.197191004.01910500013.165413000C7.1365940003.6753300020.932318000C7.281680002.88554000015.71223900C7.337480002.68354700018.598972000C8.104220001.92561000016.370757000C6.4856920003.63533600017.934725000C8.498084000.5363200017.847919000C5.562839004.67316600015.496499000C7.9263630001.4300120002.68365000C5.214312006.7443200014.366769000H8.2825590000.4009050002.249201000C5.2143120006.7443200014.456434000C7.988980002.44123000								
H9.020513000-0.45327300020.281141000H9.7750060000.53575400012.858740000C8.0733890001.46206100020.648346000C8.4594830001.87359600011.781629000C8.1793430001.35548300022.054528000H8.8112220001.55492500010.807753000H8.6107180000.45114700022.470341000C7.4509950002.38317700011.880195000C7.7766720002.3835860022.878311000H7.0254090003.25889800010.976244000H7.8694960002.29591400023.954811000C6.9772250003.27356100013.165413000C7.2782440003.5646810022.301786000H6.1971910004.01910500013.165413000H7.0086960004.40396400022.933066000C7.2816880002.72882500016.37057000C7.1365940003.6758300020.932318000C7.2816880002.88554000015.712239000C7.4834970002.61854700010.54458000C8.1042220001.92561000016.370757000C7.337480002.68554700018.598972000C8.0292930001.68696700017.847919000C6.456920003.6736600015.833828000C8.3655200000.36978700019.804693000C5.5628390004.67316600015.833828000C7.9263630001.4300120002.264845000C5.2143120006.7443200014.659586000C <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
C8.0733890001.46206100020.648346000C8.4594830001.8735960001.781629000C8.1793430001.35548300022.054528000H8.8112220001.55492500010.807753000C7.766720002.38358600022.470341000C7.4509950002.383817700011.880195000C7.766720002.38358600022.878311000H7.0254090003.25889800010.97624000C7.2782440003.56468100022.301786000H6.1971910004.0191050013.165413000C7.2782440003.56468100022.93306000C7.5246340002.72882500014.28996000C7.1365940003.6758300020.932318000C7.281688002.88554000015.71223900C7.4834970002.6185470020.054458000C8.1042220001.9256100016.370757000C7.337480002.6835470018.59897200C8.0292930001.68696700017.847919000C6.4856920003.635360017.934725000C8.4980840000.53603200018.420117000C6.4856920003.7241070016.543562000H8.937994000-0.26613500017.847919000C5.5628390004.6731660015.41986000H8.69905300-0.55197300020.268365000C5.2143120006.1409120015.496499000C7.9263630001.4420100022.49201100C5.2143120006.43569300014.45634000C7.981987								
C8.1793430001.35548300022.054528000H8.8112220001.55492500010.807753000H8.6107180000.45114700022.470341000C7.4509950002.83817700011.880195000C7.7766720002.38358600022.878311000H7.0254090003.25889800010.976244000H7.8694960002.29591400023.954811000C6.9772250003.27356100013.120865000C7.2782440003.56468100022.301786000H6.1971910004.01910500013.165413000C7.1365940003.6758300020.93306000C7.284680002.72882500014.28996000C7.1365940003.6758300020.932318000C7.284680002.88554000015.712239000C7.4834970002.6185470020.54458000C8.104222001.92561000016.370757000C7.333748002.6835470018.598972000C8.0292930001.6869700017.785705000C6.485692003.6353360017.934725000C8.492980000.53603200018.420117000C5.562839004.67316600015.833828000C7.926363000.3697870019.804693000C5.214312006.7443200015.434969000C7.9263630001.4300120002.244743000C5.214312006.7443200014.286769000H8.282559000.4009050002.44723000C5.214312006.3569300014.456434000C7.9898800								
H8.6107180000.45114700022.470341000C7.4509950002.83817700011.880195000C7.7766720002.38358600022.878311000H7.0254090003.25889800010.976244000H7.8694960002.29591400023.954811000C6.9772250003.27356100013.120865000C7.2782440003.56468100022.301786000H6.1971910004.01910500013.165413000C7.1365940003.6758300020.932318000C7.2816880002.8855400015.712239000C7.434970002.61854700020.054458000C8.1042220001.92561000016.370757000C7.3337480002.68354700018.598972000C8.0292930001.68696700017.785705000C6.4856920003.63533600017.934725000C8.4980840000.53603200018.420117000C6.4705000003.72410700016.543562000H8.937994000-0.26613500017.847919000C5.5628390004.67316600015.341986000H8.69953000-0.55197300020.268365000C5.2143120006.76443200015.469598000C7.9819870001.34246500022.49201100C5.2143120006.76443200014.286769000H8.282559000.40090500022.49201100C5.2143120006.43569300014.456434000C7.698980002.44123000022.49201000C3.3789510005.22482600014.456434000C </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
C7.766720002.38358600022.878311000H7.0254090003.25889800010.976244000H7.8694960002.29591400023.954811000C6.9772250003.27356100013.120865000C7.2782440003.5648100022.301786000H6.1971910004.01910500013.165413000H7.0086960004.40396400022.93306600C7.5246340002.72882500014.28996000C7.1365940003.67583000020.932318000C7.2816880002.88554000015.712239000C7.4834970002.61854700020.054458000C8.1042220001.92561000016.370757000C7.3337480002.68354700018.598972000C8.0292930001.68696700017.785705000C6.4856920003.63533600017.934725000C8.498084000.53603200018.420117000C6.470500003.72410700016.543562000H8.93799400-0.26613500017.847919000C5.5628390004.67316600015.341986000H8.69953000-0.55197300020.268365000H7.0957990006.14091200015.44699000C7.9263630001.43001200022.839354000C5.2143120006.76443200014.286769000H8.2825590000.40090500022.49201000C5.2143120006.43569300014.456434000C7.698980002.44123000022.839354000C3.2198700007.11814600013.925362000H <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
H7.8694960002.29591400023.954811000C6.9772250003.27356100013.120865000C7.2782440003.56468100022.301786000H6.1971910004.01910500013.165413000H7.0086960004.40396400022.933006000C7.5246340002.72882500014.289960000C7.1365940003.67583000020.932318000C7.281688002.88554000015.712239000C7.4834970002.61854700020.054458000C8.1042220001.92561000016.370757000C7.3337480002.68354700018.598972000C8.0292930001.68696700017.785705000C6.4856920003.6353360017.934725000C8.4980840000.53603200018.420117000C6.470500003.72410700016.543562000H8.93799400-0.26613500017.847919000C6.562839004.67316600015.83828000C8.365520000.36978700019.804693000C5.5628390006.1409120015.496499000C7.926363001.430012002.026365000H7.0957990006.1409120015.49586000C7.9819870001.3424650002.49201000C3.8738690006.43569300014.456434000C7.6989080002.4412300002.83934000H3.2198700007.11814600013.925362000H7.2077180003.6670410002.242300000C3.3789510005.22482600014.786075000H7.2	С	7.776672000		22.878311000	Н	7.025409000	3.258898000	10.976244000
C7.2782440003.56468100022.301786000H6.1971910004.01910500013.165413000H7.0086960004.40396400022.933006000C7.5246340002.72882500014.289960000C7.1365940003.67583000020.932318000C7.2816880002.88554000015.712239000C7.4834970002.61854700020.054458000C8.1042220001.92561000016.370757000C7.3337480002.68354700018.598972000C8.0292930001.68696700017.785705000C6.4856920003.63533600017.934725000C8.4980840000.53603200018.420117000C6.4705000003.72410700016.543562000H8.937994000-0.26613500017.847919000C6.0534460005.88621100015.833828000C8.365520000.36978700020.268365000H7.095790006.14091200015.496499000C7.9263630001.43001200020.625698000C5.214312006.76443200014.286769000H8.2825590000.40090500022.492001000H3.2198700007.11814600013.925362000H7.51250002.358798002.3919662000H3.2198700005.22482600014.940490000C7.382380003.66704100022.853941000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C3.3789510005.24482600014.786075000H<				23.954811000	С	6.977225000	3.273561000	13.120865000
H7.0086960004.40396400022.933006000C7.5246340002.72882500014.28996000C7.1365940003.67583000020.932318000C7.2816880002.88554000015.712239000C7.4834970002.6185470002.0054458000C8.1042220001.92561000016.370757000C7.3337480002.68354700018.598972000C8.0292930001.68696700017.785705000C6.4856920003.63533600017.934725000C8.4980840000.53603200018.420117000C6.4705000003.72410700016.543562000H8.937994000-0.26613500017.847919000C5.5628390004.67316600015.83828000C8.365520000.36978700019.804693000C6.0534460005.88621100015.341986000H8.699053000-0.55197300020.268365000H7.0957990006.14091200015.496499000C7.9263630001.43001200020.625698000C5.2143120006.76443200014.286769000H8.282559000.40090500022.49201000C3.8738690006.43569300014.456434000C7.698908002.44123000022.4330000H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000H3.2198700005.22482600014.786075000H7.2077180004.54484200022.853941000C3.3789510005.24482600014.786075000H<		7.278244000	3.564681000	22.301786000	Н	6.197191000	4.019105000	13.165413000
C7.4834970002.61854700020.054458000C8.1042220001.92561000016.370757000C7.3337480002.68354700018.598972000C8.0292930001.68696700017.785705000C6.4856920003.63533600017.934725000C8.4980840000.53603200018.420117000C6.4705000003.72410700016.543562000H8.937994000-0.26613500017.847919000C5.5628390004.67316600015.833828000C8.3655200000.36978700019.804693000C6.0534460005.88621100015.341986000H8.699053000-0.55197300020.268365000H7.0957990006.14091200015.496499000C7.9263630001.43001200020.625698000C5.2143120006.76443200014.286769000H8.2825590000.40090500022.49201000C3.8738690006.43569300014.456434000C7.6989080002.44123000022.4230000H3.2198700007.11814600013.925362000H7.2077180003.66704100022.42230000H2.3383340004.96198900014.786075000H7.2077180003.66704100022.839341000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000		7.008696000	4.403964000	22.933006000	С	7.524634000	2.728825000	14.289960000
C7.3337480002.68354700018.598972000C8.0292930001.68696700017.785705000C6.4856920003.63533600017.934725000C8.4980840000.53603200018.420117000C6.4705000003.72410700016.543562000H8.937994000-0.26613500017.847919000C5.5628390004.67316600015.833828000C8.3655200000.36978700019.804693000C6.0534460005.88621100015.341986000H8.699053000-0.55197300020.268365000H7.0957990006.14091200015.496499000C7.9263630001.43001200020.625698000C5.2143120006.76443200014.659586000C7.9819870001.34246500022.044743000H5.6065230007.70407100014.286769000H8.2825590000.40090500022.492001000C3.8738690006.43569300014.456434000C7.6989080002.35879800023.919662000H3.2198700007.11814600013.925362000H7.7512500002.35879800022.242300000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	7.136594000	3.675830000	20.932318000	С	7.281688000	2.885540000	15.712239000
C6.4856920003.63533600017.934725000C8.4980840000.53603200018.420117000C6.4705000003.72410700016.543562000H8.937994000-0.26613500017.847919000C5.5628390004.67316600015.833828000C8.3655200000.36978700019.804693000C6.0534460005.88621100015.341986000H8.699053000-0.55197300020.268365000H7.0957990006.14091200015.496499000C7.9263630001.43001200020.625698000C5.2143120006.76443200014.659586000C7.9819870001.34246500022.49201000H5.6065230007.70407100014.286769000H8.2825590000.40090500022.492001000C3.8738690006.43569300014.456434000C7.6989080002.44123000022.42300000H3.2198700007.11814600013.925362000H7.7512500002.35879800022.242300000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	7.483497000	2.618547000	20.054458000	С	8.104222000	1.925610000	16.370757000
C6.470500003.72410700016.543562000H8.937994000-0.26613500017.847919000C5.5628390004.67316600015.83828000C8.3655200000.36978700019.804693000C6.0534460005.88621100015.341986000H8.699053000-0.55197300020.268365000H7.0957990006.14091200015.496499000C7.9263630001.43001200020.625698000C5.2143120006.76443200014.659586000C7.9819870001.34246500022.044743000H5.6065230007.70407100014.286769000H8.2825590000.40090500022.492001000C3.8738690006.43569300014.456434000C7.698908002.35879800023.919662000H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000C3.3789510005.22482600014.940490000C7.382380003.66704100022.242300000H2.3383340004.96198900014.786075000H7.2077180003.76625800020.845952000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	7.333748000	2.683547000	18.598972000	С	8.029293000	1.686967000	17.785705000
C5.5628390004.67316600015.833828000C8.3655200000.36978700019.804693000C6.0534460005.88621100015.341986000H8.699053000-0.55197300020.268365000H7.0957990006.14091200015.496499000C7.9263630001.43001200020.625698000C5.2143120006.76443200014.659586000C7.9819870001.34246500022.044743000H5.6065230007.70407100014.286769000H8.2825590000.40090500022.492001000C3.8738690006.43569300014.456434000C7.6989080002.44123000022.839354000H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	6.485692000	3.635336000	17.934725000	С	8.498084000	0.536032000	18.420117000
C6.0534460005.88621100015.341986000H8.699053000-0.55197300020.268365000H7.0957990006.14091200015.496499000C7.9263630001.4301200020.625698000C5.2143120006.76443200014.659586000C7.9819870001.34246500022.044743000H5.6065230007.70407100014.286769000H8.2825590000.40090500022.492001000C3.8738690006.43569300014.456434000C7.6989080002.44123000022.839354000H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000C3.3789510005.22482600014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	6.470500000	3.724107000	16.543562000	Н	8.937994000	-0.266135000	17.847919000
H7.095799006.1409120015.49649900C7.926363001.4300120020.62569800C5.214312006.7644320014.65958600C7.981987001.3424650022.044743000H5.606523007.7040710014.28676900H8.282559000.4009050022.49201000C3.873869006.4356930014.456434000C7.698908002.4412300022.839354000H3.219870007.1181460013.92536200H7.751250002.3587980023.919662000C3.378951005.2248260014.94049000C7.382380003.6670410022.242300000H2.338334004.9619890014.786075000H7.207718004.5448420022.853941000C4.2196350004.34865100015.62523000C7.2849280003.76625800020.849592000C5.534522005.8451460018.71166600C7.476504002.65567700020.015289000	С	5.562839000	4.673166000	15.833828000	С	8.365520000	0.369787000	19.804693000
C5.2143120006.76443200014.659586000C7.9819870001.34246500022.044743000H5.6065230007.70407100014.286769000H8.2825590000.40090500022.492001000C3.8738690006.43569300014.456434000C7.6989080002.44123000022.839354000H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000C3.3789510005.22482600014.940490000C7.3823800003.66704100022.242300000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	6.053446000	5.886211000	15.341986000	Н	8.699053000	-0.551973000	20.268365000
H5.6065230007.70407100014.286769000H8.2825590000.40090500022.492001000C3.8738690006.43569300014.456434000C7.6989080002.44123000022.839354000H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000C3.3789510005.22482600014.940490000C7.3823800003.66704100022.242300000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	Н	7.095799000	6.140912000	15.496499000	С	7.926363000	1.430012000	20.625698000
C3.8738690006.43569300014.456434000C7.6989080002.44123000022.839354000H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000C3.3789510005.22482600014.940490000C7.3823800003.66704100022.242300000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	5.214312000	6.764432000	14.659586000	С	7.981987000	1.342465000	22.044743000
H3.2198700007.11814600013.925362000H7.7512500002.35879800023.919662000C3.3789510005.22482600014.940490000C7.3823800003.66704100022.242300000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	Н	5.606523000	7.704071000	14.286769000	Н	8.282559000	0.400905000	22.492001000
C3.3789510005.22482600014.940490000C7.3823800003.66704100022.242300000H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	3.873869000	6.435693000	14.456434000	С	7.698908000	2.441230000	22.839354000
H2.3383340004.96198900014.786075000H7.2077180004.54484200022.853941000C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	Н	3.219870000	7.118146000	13.925362000	Н	7.751250000	2.358798000	23.919662000
C4.2196350004.34865100015.625230000C7.2849280003.76625800020.849592000C5.5345220005.84514600018.711666000C7.4765040002.65567700020.015289000	С	3.378951000	5.224826000	14.940490000	С	7.382380000	3.667041000	22.242300000
C 5.534522000 5.845146000 18.711666000 C 7.476504000 2.655677000 20.015289000	Н	2.338334000	4.961989000	14.786075000	Н	7.207718000	4.544842000	22.853941000
	С	4.219635000	4.348651000	15.625230000	С	7.284928000	3.766258000	20.849592000
C 4.548735000 6.583554000 19.362986000 C 7.289797000 2.676542000 18.556089000	С	5.534522000	5.845146000	18.711666000	С	7.476504000	2.655677000	20.015289000
	С	4.548735000	6.583554000	19.362986000	С	7.289797000	2.676542000	18.556089000

Н

4.618362000

7.665338000

19.391856000

С

6.414887000

3.563381000

17.889942000

С	6.401912000	3.694968000	16.457084000	Н	[8.892251000	-0.287830000	17.824016000
С	5.519526000	4.668637000	15.783946000	С		8.279332000	0.325073000	19.811449000
С	6.073172000	5.704416000	15.011807000	Н	[8.581450000	-0.612368000	20.263181000
Н	7.150550000	5.775501000	14.916995000	С		7.867991000	1.390637000	20.633174000
С	5.260756000	6.648911000	14.393615000	С		7.915238000	1.291709000	22.050231000
Н	5.711405000	7.447706000	13.814811000	Н	[8.163586000	0.333465000	22.493696000
С	3.871486000	6.575965000	14.523894000	С		7.684471000	2.401596000	22.852836000
Н	3.237651000	7.311818000	14.042201000	Н	[7.728486000	2.309988000	23.932337000
С	3.307206000	5.547588000	15.281273000	С		7.428076000	3.638334000	22.260457000
Н	2.229878000	5.477041000	15.384321000	Н	[7.287459000	4.521955000	22.871842000
С	4.119910000	4.607646000	15.907226000	С		7.333955000	3.744954000	20.859338000
С	5.379347000	5.746286000	18.608383000	С		7.478858000	2.637116000	20.030176000
С	4.435566000	6.456091000	19.343334000	С		7.292614000	2.679755000	18.557143000
Н	4.431154000	7.539689000	19.307941000	С		6.423120000	3.551690000	17.908889000
С	3.494514000	5.777267000	20.119017000	С		6.385801000	3.653308000	16.462936000
Н	2.752865000	6.330819000	20.683704000	С		5.467311000	4.603312000	15.794035000
С	3.510034000	4.382330000	20.160378000	С		5.975096000	5.697610000	15.080045000
Н	2.776938000	3.847554000	20.753748000	Н	[7.048120000	5.838237000	15.018085000
С	4.467911000	3.673411000	19.443053000	С		5.119211000	6.609878000	14.468139000
С	5.415465000	4.345963000	18.659442000	Н	[5.531414000	7.455407000	13.928545000
С	9.968922000	0.351077000	15.679439000	С		3.736840000	6.439955000	14.552922000
Н	10.483032000	0.614911000	16.600799000	Н	[3.069322000	7.149669000	14.077372000
Н	9.598459000	-0.674697000	15.743798000	С		3.219265000	5.351461000	15.256224000
Н	10.673089000	0.423551000	14.853322000	Н	[2.146435000	5.208979000	15.324913000
Н	4.484751000	2.590706000	19.480684000	С	l	4.076366000	4.444296000	15.874057000
Н	7.043923000	4.725568000	20.417462000	С		5.516516000	5.791579000	18.630291000
Н	6.106993000	6.277087000	18.007691000	С		4.593689000	6.561577000	19.333196000
Н	3.671996000	3.813424000	16.491382000	Н	[4.659972000	7.643391000	19.300132000
N	C1 (T ₁)			С		3.586227000	5.944619000	20.075955000
		1.287347000	15.422314000	Н	[2.864507000	6.543908000	20.619517000
N C	8.910498000 8.561239000		13.422314000	С		3.510275000	4.552128000	20.110301000
C		1.741069000		Н	[2.726427000	4.063862000	20.678678000
С	9.064475000	1.348530000	12.916407000	С		4.439365000	3.783953000	19.412923000
H	9.843468000 8.513239000	0.601249000	12.832052000	С	l	5.455666000	4.393993000	18.670068000
С	8.878078000	1.934042000	11.781158000	С		10.019311000	0.375221000	15.667521000
H		1.643284000	10.802725000	Н	[10.510248000	0.635490000	16.603010000
C	7.482261000	2.883982000 3.314206000	11.884883000	Н	[9.680143000	-0.662877000	15.709383000
H C	7.062011000		10.982905000	Н	[10.742823000	0.478328000	14.860360000
С ц	6.989954000 6.194797000	3.279641000	13.124172000	Н	[4.380087000	2.702024000	19.441746000
H C	6.194797000	4.009193000	13.180813000	Н		7.127397000	4.714401000	20.431322000
C C	7.534029000	2.718197000	14.289051000	Н	[6.296946000	6.275457000	18.055733000
C C	7.283787000	2.857229000	15.711901000 16.257201000	Н	[3.668372000	3.604909000	16.424210000
C C	8.122413000	1.929686000	16.357391000			2 (S ₀)		
C C	8.032344000	1.674779000	17.778176000				1 101120000	15 102125000
С	8.451109000	0.515522000	18.394197000	Ν	I	8.856831000	1.191168000	15.423135000

С	8.501459000	1.665472000	14.167415000	С	4.352198000	3.744696000	19.171465000
С	8.940116000	1.241052000	12.909736000	С	5.439798000	4.408038000	18.592326000
Н	9.655481000	0.436132000	12.799582000	С	9.949842000	0.250411000	15.629398000
С	8.410770000	1.874501000	11.790331000	Н	10.573359000	0.577338000	16.460473000
Н	8.730316000	1.558456000	10.803661000	Н	9.584085000	-0.761353000	15.820506000
С	7.464932000	2.906459000	11.915116000	Н	10.568249000	0.232726000	14.734037000
Н	7.065113000	3.375329000	11.023333000	Н	4.309888000	2.662046000	19.133796000
С	7.033197000	3.330440000	13.166784000	Н	6.704445000	4.581151000	20.488369000
Н	6.304465000	4.124533000	13.250061000	Н	6.314411000	6.330025000	18.194287000
С	7.554829000	2.714692000	14.313793000	Н	3.891987000	3.381350000	15.976490000
С	7.348284000	2.871291000	15.738249000	0	2.086318000	4.943742000	14.671848000
С	8.140605000	1.898552000	16.385272000	С	1.530338000	3.730689000	15.187507000
С	8.090578000	1.724771000	17.793416000	Н	2.011458000	2.854858000	14.742035000
С	8.682223000	0.594936000	18.449177000	Н	1.621915000	3.687214000	16.276735000
Н	9.151743000	-0.175315000	17.859221000	Н	0.477343000	3.746809000	14.910984000
С	8.612563000	0.436245000	19.795320000	NC	2 (S ₁)		
Н	9.027174000	-0.447591000	20.267315000	N	9.056414000	1.306333000	15.425909000
С	8.044732000	1.452603000	20.620022000	C	8.738963000	1.731402000	14.129031000
С	8.120421000	1.342360000	22.027871000	C C	9.279298000	1.306733000	12.924319000
Н	8.554891000	0.442605000	22.450344000	н	10.072678000	0.571513000	12.882963000
С	7.684887000	2.361771000	22.845724000	п С	8.743987000	1.847442000	12.882903000
Н	7.754506000	2.271457000	23.923751000	н	9.140717000	1.534413000	10.790115000
С	7.182885000	3.537920000	22.262117000	C	7.695853000	2.772717000	11.803313000
Н	6.887484000	4.370966000	22.890027000	н	7.285429000	3.168544000	10.881282000
С	7.070473000	3.652020000	20.890201000	C II	7.164245000	3.200918000	13.022749000
С	7.452086000	2.602854000	20.017079000	н	6.356782000	3.918035000	13.022749000
С	7.333439000	2.671125000	18.559027000	C II	0.330782000 7.691709000	2.687896000	14.215146000
С	6.488300000	3.615010000	17.880664000	C C	7.392757000	2.845129000	15.627021000
С	6.503588000	3.710749000	16.489866000	C C	8.226691000	1.921739000	16.321524000
С	5.601747000	4.656354000	15.767360000	C	8.106321000	1.684420000	17.733454000
С	6.095724000	5.859385000	15.265335000	C C	8.100321000	0.555778000	18.390158000
Н	7.137734000	6.117508000	15.410471000	н	9.098042000	-0.226031000	17.839384000
С	5.240947000	6.724922000	14.580674000	C	8.413845000	0.383214000	19.767661000
Н	5.620590000	7.663360000	14.192199000	н	8.767970000	-0.522870000	20.246719000
С	3.904142000	6.398784000	14.391907000	C	7.890278000	1.421411000	20.240717000
Н	3.231904000	7.065211000	13.864135000	C	7.885353000	1.334477000	21.987114000
С	3.408138000	5.188780000	14.894090000	н	8.207124000	0.406628000	22.448068000
С	4.257935000	4.316814000	15.578200000	C	7.518425000	2.418554000	22.767214000
С	5.477572000	5.805394000	18.638507000	н	7.525533000	2.337269000	23.848845000
С	4.457188000	6.523595000	19.258491000	п С	7.175526000	3.629944000	23.848843000 22.155350000
Н	4.503830000	7.606587000	19.288779000	н	6.935589000	4.498686000	22.133330000 22.757756000
С	3.379553000	5.853509000	19.837644000	п С	7.136547000	4.498080000 3.726286000	20.759673000
Н	2.584235000	6.411820000	20.318496000	C C	7.414058000	2.626133000	19.935960000
С	3.330098000	4.459906000	19.790528000	C C	7.291528000	2.640525000	19.933960000
Н	2.493037000	3.930328000	20.231974000	C	1.271328000	2.040323000	10.407J04000

С	6.408642000	3.488802000	17.766228000	С	7.691672000	2.686833000	14.215050000
С	6.452538000	3.621277000	16.332715000	С	7.388415000	2.827811000	15.627790000
С	5.568206000	4.565568000	15.622945000	С	8.231047000	1.929084000	16.307843000
С	6.118831000	5.608570000	14.863575000	С	8.095360000	1.672899000	17.724548000
Н	7.194776000	5.708762000	14.791396000	С	8.529322000	0.528457000	18.358251000
С	5.285789000	6.529354000	14.232789000	Н	9.019117000	-0.259509000	17.806712000
Н	5.718790000	7.341720000	13.659521000	С	8.308393000	0.331376000	19.766709000
С	3.901551000	6.430246000	14.340228000	Н	8.626181000	-0.594607000	20.231167000
Н	3.245918000	7.146533000	13.859270000	С	7.825369000	1.380893000	20.570383000
С	3.343287000	5.387478000	15.092626000	С	7.818714000	1.283333000	21.988166000
С	4.168122000	4.459179000	15.724295000	Н	8.084071000	0.334783000	22.442511000
С	5.237460000	5.619073000	18.440725000	С	7.515584000	2.383765000	22.779179000
С	4.217790000	6.277607000	19.119695000	Н	7.519602000	2.293740000	23.859704000
Н	4.159748000	7.359634000	19.083493000	С	7.238182000	3.610783000	22.175335000
С	3.267999000	5.549493000	19.837963000	Н	7.041320000	4.488509000	22.779668000
Н	2.466398000	6.062862000	20.356749000	С	7.196677000	3.714144000	20.772062000
С	3.352427000	4.157189000	19.880358000	С	7.415532000	2.612180000	19.950821000
Н	2.613471000	3.583828000	20.428714000	С	7.288791000	2.649519000	18.471588000
С	4.385456000	3.500212000	19.219908000	С	6.414801000	3.489898000	17.789059000
С	5.340329000	4.222188000	18.491415000	С	6.437382000	3.597466000	16.341332000
С	10.175241000	0.416535000	15.707942000	С	5.534624000	4.536332000	15.638267000
Н	10.643857000	0.704475000	16.646060000	С	6.058706000	5.618033000	14.922355000
Н	9.843613000	-0.622960000	15.764297000	Н	7.131328000	5.758710000	14.870732000
Н	10.905899000	0.514237000	14.907787000	С	5.200501000	6.522278000	14.297072000
Н	4.453546000	2.419454000	19.255821000	Н	5.610376000	7.364752000	13.751029000
Н	6.873896000	4.674505000	20.315992000	С	3.822079000	6.363505000	14.374165000
Н	5.968969000	6.187737000	17.880585000	Н	3.146791000	7.064981000	13.898379000
Н	3.745545000	3.651546000	16.302356000	С	3.290907000	5.281280000	15.088457000
0	1.980553000	5.357085000	15.154491000	С	4.142463000	4.370369000	15.712769000
С	1.366286000	4.349235000	15.961960000	С	5.365787000	5.680413000	18.477624000
Н	1.591604000	3.347221000	15.584377000	С	4.367312000	6.397075000	19.131669000
Н	1.687286000	4.429703000	17.004763000	Н	4.375656000	7.480975000	19.100947000
Н	0.294312000	4.528968000	15.895225000	С	3.357115000	5.724515000	19.820464000
NC	2 (T ₁)			Н	2.575587000	6.282326000	20.323965000
Ν	9.071436000	1.306665000	15.405411000	С	3.356551000	4.329941000	19.852898000
C	8.752459000	1.741454000	14.126690000	Н	2.571736000	3.798268000	20.379437000
C	9.309833000	1.354911000	12.906688000	С	4.360720000	3.615482000	19.204405000
Н	10.115060000	0.632824000	12.856446000	С	5.377901000	4.281587000	18.512429000
C	8.778139000	1.911851000	11.748084000	С	10.202248000	0.435154000	15.694551000
н	9.184770000	1.624973000	10.785104000	Н	10.644269000	0.710358000	16.649770000
C	7.713061000	2.827371000	11.808574000	Н	9.900348000	-0.614917000	15.720854000
Н	7.308331000	3.234654000	10.889011000	Н	10.953807000	0.567277000	14.917655000
C	7.167643000	3.218169000	13.026956000	Н	4.357429000	2.531805000	19.228103000
н	6.348007000	3.921890000	13.050741000	Н	6.972702000	4.675261000	20.334008000
	0.0007000	2.7=10,0000		Н	6.145402000	6.207495000	17.941257000

Н	3.744533000	3.535481000	16.270256000	Н	2.379844000	4.894191000	14.679927000
0	1.930196000	5.197053000	15.124009000	С	4.260944000	4.312281000	15.530034000
С	1.340958000	4.155230000	15.907094000	С	5.505397000	5.829897000	18.606082000
Н	1.609567000	3.167868000	15.519601000	С	4.501981000	6.569010000	19.228831000
Н	1.642203000	4.233364000	16.955891000	Н	4.562028000	7.651683000	19.243331000
Н	0.264305000	4.296189000	15.824963000	С	3.424161000	5.920028000	19.831605000
NC3	B (S ₀)			Н	2.642321000	6.494488000	20.315550000
Ν	8.852660000	1.156091000	15.453783000	С	3.356986000	4.526792000	19.803385000
C	8.503623000	1.618469000	14.191881000	Н	2.519577000	4.013424000	20.262981000
C	8.948028000	1.181979000	12.940399000	С	4.362533000	3.790564000	19.181231000
Н	9.661973000	0.374357000	12.841012000	С	5.451258000	4.432288000	18.580603000
C	8.426827000	1.807353000	11.812559000	С	9.942452000	0.215017000	15.674725000
Н	8.751106000	1.481960000	10.830479000	Н	10.561409000	0.547886000	16.506845000
C	7.483774000	2.843423000	11.923116000	Н	9.573518000	-0.794325000	15.872643000
Н	7.091026000	3.306348000	11.025094000	Н	10.566476000	0.188271000	14.783472000
C	7.045816000	3.279095000	13.168699000	Н	4.307250000	2.708036000	19.160575000
Н	6.318792000	4.075885000	13.240847000	Н	6.721182000	4.623606000	20.471228000
C	7.558170000	2.670887000	14.323929000	Н	6.343202000	6.338297000	18.144923000
C	7.345800000	2.842244000	15.745800000	Н	3.862193000	3.381040000	15.915659000
C C	8.134689000	1.875646000	16.405683000	0	3.176630000	7.290272000	13.638728000
C C	8.081607000	1.719300000	17.815586000	С	1.794825000	7.002754000	13.408842000
C C	8.665466000	0.594142000	18.486191000	Н	1.674004000	6.090529000	12.816938000
Н	9.128689000	-0.187486000	17.906156000	Н	1.249805000	6.904122000	14.352395000
C	8.595525000	0.454282000	19.834415000	Н	1.404304000	7.852170000	12.850557000
Н	9.003594000	-0.426113000	20.318416000	NC3	3 (S ₁)		
C	8.036657000	1.486714000	20.645265000	Ν	9.001226000	1.251786000	15.468195000
C	8.114713000	1.396386000	22.054407000	C	8.675038000	1.656408000	14.168807000
Н	8.543168000	0.499466000	22.488889000	C	9.197976000	1.205457000	12.964754000
C	7.689316000	2.431014000	22.858397000	Н	9.982608000	0.460574000	12.927863000
Н	7.760840000	2.355878000	23.937469000	C	8.657252000	1.731790000	12.927803000
C	7.195518000	3.602551000	22.258793000	Н	9.040372000	1.397992000	10.829192000
Н	6.908535000	4.447157000	22.875067000	C	7.619001000	2.669929000	11.835236000
C II	7.080505000	3.697387000	20.885607000	Н	7.203492000	3.053824000	10.910395000
C	7.451279000	2.632551000	20.026833000	C	7.104795000	3.124409000	13.051622000
C C	7.329772000	2.680430000	18.567970000	Н	6.303566000	3.848712000	13.057378000
C C	6.488548000	3.618431000	17.876273000	C II	7.639012000	2.626911000	14.248249000
C C	6.500045000	3.693515000	16.483577000	C C	7.358158000	2.814159000	15.659559000
C C	5.600266000	4.628273000	15.747290000	C C	8.188989000	1.897504000	16.361443000
C C	6.088532000	4.828273000 5.837322000	15.237026000	C C	8.079893000	1.688219000	17.779273000
н	7.128867000	6.100779000	15.390581000	C C	8.559510000	0.564600000	17.779275000
	5.261341000	6.705986000	14.540171000	С Н	9.040140000	-0.236250000	18.452559000
С ц							
H C	5.640939000 3.915404000	7.643655000	14.150997000	С ц	8.385291000 8.727775000	0.423101000	19.836398000
C C		6.378399000	14.331552000	H	8.727775000	-0.480045000	20.329550000
С	3.414151000	5.172277000	14.828274000	С	7.893114000	1.486853000	20.621413000

С	7.902308000	1.429337000	22.043519000	С	8.702949000	1.666061000	14.167686000
Н	8.206670000	0.503709000	22.520581000	С	9.247056000	1.254477000	12.949746000
С	7.570108000	2.538631000	22.805040000	Н	10.040342000	0.518938000	12.904530000
Н	7.587783000	2.478930000	23.888065000	С	8.718551000	1.805064000	11.786616000
С	7.248294000	3.744636000	22.172983000	Н	9.115412000	1.498826000	10.825510000
Н	7.034673000	4.630806000	22.759727000	С	7.669350000	2.739299000	11.840045000
С	7.194008000	3.812368000	20.774554000	Н	7.267300000	3.141648000	10.917142000
С	7.435364000	2.689254000	19.971622000	С	7.136524000	3.154553000	13.055916000
С	7.291299000	2.673420000	18.506774000	Н	6.327978000	3.871299000	13.073768000
С	6.411540000	3.519647000	17.796500000	С	7.657261000	2.629265000	14.248207000
С	6.432652000	3.614766000	16.360450000	С	7.364652000	2.795868000	15.659768000
С	5.550464000	4.554594000	15.645992000	С	8.198599000	1.896626000	16.348941000
С	6.099612000	5.578300000	14.849849000	С	8.069020000	1.668192000	17.770755000
Н	7.176456000	5.660619000	14.760533000	С	8.488405000	0.528665000	18.422779000
С	5.295218000	6.501452000	14.205180000	Н	8.961572000	-0.277374000	17.882952000
Н	5.728930000	7.297774000	13.611347000	С	8.274581000	0.363103000	19.837139000
С	3.898816000	6.423983000	14.322966000	Н	8.577847000	-0.559875000	20.317133000
С	3.328540000	5.408368000	15.097575000	С	7.819865000	1.437184000	20.624329000
Н	2.255621000	5.319234000	15.198364000	С	7.822861000	1.366563000	22.043900000
С	4.152488000	4.495694000	15.750984000	Н	8.071137000	0.421111000	22.514113000
С	5.305265000	5.695217000	18.430025000	С	7.550122000	2.488198000	22.816388000
С	4.324025000	6.400544000	19.118820000	Н	7.561017000	2.418275000	23.898383000
Н	4.293767000	7.482312000	19.052975000	С	7.294285000	3.709164000	22.191669000
С	3.378546000	5.719147000	19.886685000	Н	7.121212000	4.602314000	22.780496000
Н	2.607703000	6.268502000	20.415231000	С	7.242745000	3.786693000	20.786498000
С	3.427530000	4.326525000	19.967182000	С	7.430334000	2.665175000	19.984605000
Н	2.691558000	3.789542000	20.555001000	С	7.288790000	2.675242000	18.505942000
С	4.422470000	3.623131000	19.296470000	С	6.424960000	3.519200000	17.813814000
С	5.374317000	4.297779000	18.519630000	С	6.429729000	3.593066000	16.365196000
С	10.111784000	0.353642000	15.756695000	С	5.527116000	4.522886000	15.652112000
Н	10.594594000	0.654549000	16.683571000	С	6.045857000	5.602011000	14.917756000
Н	9.769269000	-0.680691000	15.837747000	Н	7.119462000	5.740685000	14.863052000
Н	10.835374000	0.425946000	14.947335000	С	5.212308000	6.507311000	14.279770000
Н	4.464680000	2.542597000	19.364331000	Н	5.621155000	7.345126000	13.726755000
Н	6.946070000	4.756602000	20.313929000	С	3.821283000	6.353459000	14.350909000
Н	6.036462000	6.227843000	17.835346000	С	3.283052000	5.280206000	15.067231000
Н	3.696026000	3.715950000	16.347554000	Н	2.213889000	5.133090000	15.133382000
0	3.188611000	7.371799000	13.654174000	С	4.136699000	4.384999000	15.710597000
С	1.761914000	7.347916000	13.760509000	С	5.457377000	5.756736000	18.462220000
Н	1.352773000	6.413975000	13.364326000	С	4.500246000	6.523335000	19.121354000
Н	1.442585000	7.479903000	14.798517000	Н	4.546850000	7.605302000	19.066273000
Н	1.406467000	8.184172000	13.160734000	С	3.483138000	5.902759000	19.848029000
NC	(T 1)			Н	2.734480000	6.499280000	20.357130000
N	9.022981000	1.245612000	15.450680000	С	3.432873000	4.510161000	19.910824000
		1.2.0012000		Н	2.642312000	4.018778000	20.467120000
С	4.396197000	3.745629000	19.256997000	С	6.490205000	3.634423000	17.932206000
----	---------------------	--------------	--------------	----	---------------------	--------------	--------------
С	5.421750000	4.359189000	18.530025000	С	6.474392000	3.724000000	16.541018000
С	10.140172000	0.359147000	15.746958000	С	5.565062000	4.674036000	15.834900000
Н	10.597223000	0.645783000	16.691807000	С	6.056467000	5.883881000	15.336093000
Н	9.819364000	-0.684401000	15.798264000	Н	7.102155000	6.132692000	15.477188000
Н	10.886259000	0.460965000	14.960272000	С	5.213228000	6.767240000	14.665449000
Н	4.356311000	2.663601000	19.307522000	Н	5.605830000	7.704668000	14.287572000
Н	7.034933000	4.744000000	20.332476000	С	3.868049000	6.446845000	14.481398000
Н	6.244441000	6.243477000	17.899313000	С	3.372553000	5.238695000	14.971684000
Н	3.706056000	3.563650000	16.270469000	Н	2.328245000	4.982403000	14.831986000
0	3.079911000	7.291128000	13.697870000	С	4.217222000	4.357375000	15.644600000
С	1.654756000	7.194204000	13.770011000	С	5.528146000	5.842535000	18.696807000
Н	1.299139000	6.258965000	13.327627000	С	4.542271000	6.587773000	19.337808000
Н	1.306594000	7.268121000	14.804662000	Н	4.597704000	7.668664000	19.361581000
Н	1.271194000	8.036341000	13.196139000	С	3.487267000	5.918283000	19.946256000
NC	4 (S ₀)			С	3.396060000	4.531256000	19.925790000
N	8.784534000	1.180796000	15.438222000	Н	2.563298000	4.025943000	20.398191000
С	8.414626000	1.658856000	14.187996000	С	4.392572000	3.804869000	19.280730000
C	8.832010000	1.232208000	12.923953000	С	5.471442000	4.446046000	18.663736000
Н	9.538341000	0.420906000	12.803232000	С	9.871347000	0.229330000	15.628005000
С	8.294297000	1.873063000	11.812838000	Н	10.511638000	0.551439000	16.448175000
Н	8.597568000	1.555809000	10.821446000	Н	9.498299000	-0.778208000	15.827008000
С	7.361034000	2.914541000	11.952012000	Н	10.474490000	0.203998000	14.722503000
Н	6.954581000	3.389444000	11.066467000	Н	4.328825000	2.723452000	19.257885000
С	6.950029000	3.340332000	13.210008000	Н	6.783183000	4.613192000	20.532836000
Н	6.230056000	4.141246000	13.303478000	Н	6.356663000	6.357137000	18.227259000
С	7.479905000	2.716551000	14.348890000	Н	3.830342000	3.420491000	16.028491000
С	7.296724000	2.874520000	15.776269000	Н	3.210707000	7.133725000	13.960276000
С	8.090984000	1.895034000	16.411077000	Cl	2.227083000	6.853471000	20.760667000
С	8.065441000	1.724472000	17.820408000	NC	4 (S ₁)		
С	8.653676000	0.588263000	18.468100000	Ν	8.881845000	1.287594000	15.442262000
Н	9.100972000	-0.190232000	17.871707000	С	8.538794000	1.735897000	14.159664000
С	8.607077000	0.434479000	19.815850000	С	9.025102000	1.304653000	12.934581000
Н	9.017410000	-0.454095000	20.282603000	Н	9.789148000	0.541441000	12.860778000
С	8.070837000	1.461708000	20.648193000	С	8.473700000	1.877182000	11.781287000
С	8.172590000	1.354953000	22.054648000	Н	8.828855000	1.560161000	10.808122000
Н	8.601036000	0.449842000	22.471752000	С	7.462830000	2.839555000	11.877755000
С	7.769596000	2.383923000	22.877234000	Н	7.038954000	3.260146000	10.972964000
Н	7.858957000	2.295976000	23.953987000	С	6.984661000	3.272898000	13.117469000
С	7.276112000	3.566522000	22.299515000	Н	6.202903000	4.016755000	13.160339000
Н	7.007648000	4.406726000	22.929964000	С	7.529911000	2.728452000	14.287442000
С	7.139020000	3.678059000	20.929670000	С	7.282764000	2.883780000	15.709291000
С	7.484641000	2.619316000	20.053114000	С	8.105574000	1.925279000	16.369100000
С	7.337009000	2.683233000	18.597726000	С	8.027936000	1.685164000	17.783952000

С	8.493221000	0.533586000	18.419292000	Ν	8.913112000	1.286541000	15.422173000
Н	8.934544000	-0.268588000	17.848161000	С	8.565249000	1.740309000	14.157292000
С	8.354683000	0.366229000	19.803592000	С	9.069752000	1.347736000	12.916372000
Н	8.684722000	-0.556612000	20.267567000	Н	9.848571000	0.600197000	12.832778000
С	7.914426000	1.426267000	20.623753000	С	8.519980000	1.933659000	11.780663000
С	7.963302000	1.337829000	22.043179000	Н	8.885789000	1.642932000	10.802589000
Н	8.257528000	0.394763000	22.491446000	С	7.489295000	2.884044000	11.883335000
С	7.681571000	2.437422000	22.836724000	Н	7.070329000	3.314602000	10.980930000
Н	7.728217000	2.354153000	23.917213000	С	6.995691000	3.279692000	13.122082000
С	7.374422000	3.665510000	22.239089000	Н	6.200740000	4.009543000	13.177963000
Н	7.202282000	4.544022000	22.850388000	С	7.538236000	2.717697000	14.287368000
С	7.283904000	3.765701000	20.845972000	С	7.286460000	2.856702000	15.709847000
С	7.471837000	2.654128000	20.012767000	С	8.124473000	1.929017000	16.356380000
С	7.287380000	2.674746000	18.553034000	С	8.033334000	1.674067000	17.777100000
С	6.414149000	3.560362000	17.885651000	С	8.450201000	0.515111000	18.394938000
С	6.399695000	3.691142000	16.452411000	Н	8.891870000	-0.289095000	17.826372000
С	5.513667000	4.662532000	15.781401000	С	8.274821000	0.325690000	19.812068000
С	6.062203000	5.699371000	15.006797000	Н	8.574713000	-0.611967000	20.264788000
Н	7.138922000	5.771127000	14.905513000	С	7.862560000	1.391849000	20.632540000
С	5.245609000	6.644539000	14.395326000	С	7.905153000	1.293856000	22.049731000
Н	5.692369000	7.444147000	13.814653000	Н	8.149962000	0.335469000	22.494802000
С	3.857205000	6.571908000	14.535358000	С	7.673903000	2.404942000	22.850771000
С	3.297852000	5.542573000	15.294983000	Н	7.713861000	2.313867000	23.930458000
Н	2.221266000	5.472157000	15.405548000	С	7.422849000	3.641993000	22.256997000
С	4.114670000	4.601495000	15.913748000	Н	7.282844000	4.526460000	22.867282000
С	5.381098000	5.746529000	18.594122000	С	7.334023000	3.747907000	20.855359000
С	4.446109000	6.469664000	19.325045000	С	7.477662000	2.638726000	20.027933000
Н	4.434390000	7.551252000	19.285874000	С	7.293349000	2.679343000	18.554974000
С	3.523701000	5.778230000	20.103378000	С	6.424516000	3.550173000	17.904916000
С	3.520146000	4.388855000	20.169985000	С	6.387100000	3.652300000	16.459537000
Н	2.788555000	3.866959000	20.773390000	С	5.466547000	4.601726000	15.792795000
С	4.476240000	3.683064000	19.449328000	С	5.971695000	5.696404000	15.077453000
С	5.419336000	4.347587000	18.655339000	Н	7.044500000	5.835773000	15.009426000
С	9.974040000	0.353526000	15.682266000	С	5.113303000	6.611222000	14.472939000
Н	10.484472000	0.616998000	16.605768000	Н	5.523374000	7.457170000	13.932408000
Н	9.604208000	-0.672619000	15.744332000	С	3.731205000	6.443837000	14.566975000
Н	10.681048000	0.427595000	14.858737000	С	3.216217000	5.354801000	15.271291000
Н	4.487584000	2.601259000	19.498614000	Н	2.143614000	5.214327000	15.347150000
Н	7.051738000	4.727037000	20.413404000	С	4.075759000	4.444754000	15.881294000
Н	6.102344000	6.278081000	17.987297000	С	5.509038000	5.788422000	18.618253000
Н	3.670310000	3.806399000	16.499517000	С	4.589250000	6.564990000	19.315688000
Н	3.220287000	7.308812000	14.059397000	Н	4.642218000	7.645601000	19.280651000
Cl	2.323227000	6.687410000	21.024093000	С	3.600663000	5.927292000	20.056801000
NC	4 (T ₁)			С	3.512993000	4.541330000	20.114539000
	× -/			н	2.731689000	4.060949000	20.689510000

H 2.731689000 4.060949000 20.689510000

С	4.447061000	3.782363000	19.415931000	Н	7.092227000	6.150949000	15.504646000
С	5.457394000	4.391557000	18.665950000	С	5.216862000	6.762243000	14.644838000
С	10.020719000	0.373268000	15.668715000	Н	5.608963000	7.701521000	14.271189000
Н	10.510831000	0.633126000	16.604750000	С	3.880457000	6.426014000	14.428407000
Н	9.680287000	-0.664417000	15.710237000	Н	3.229647000	7.102323000	13.885772000
Н	10.745241000	0.475595000	14.862376000	С	3.385303000	5.215614000	14.913281000
Н	4.387862000	2.701304000	19.454589000	Н	2.347738000	4.947338000	14.748409000
Н	7.133559000	4.718207000	20.426299000	С	4.222156000	4.346207000	15.611099000
Н	6.282358000	6.278552000	18.040434000	С	5.529984000	5.845221000	18.713449000
Н	3.669790000	3.605047000	16.432538000	С	4.543198000	6.581083000	19.366021000
Н	3.061866000	7.156025000	14.097745000	Н	4.610457000	7.662963000	19.395297000
Cl	2.422024000	6.903516000	20.941381000	С	3.472927000	5.929765000	19.979221000
NC5	5 (S ₀)			Н	2.703941000	6.501857000	20.485968000
N	8.775831000	1.186941000	15.426902000	С	3.395932000	4.537498000	19.932311000
C	8.406885000	1.664759000	14.187695000	Н	2.563847000	4.022867000	20.399940000
C	8.821783000	1.240294000	12.919259000	С	4.384839000	3.804024000	19.281301000
Н	9.525438000	0.428557000	12.792975000	С	5.465816000	4.448685000	18.670100000
C	8.291173000	1.877653000	11.812346000	С	9.851358000	0.220033000	15.615043000
Н	8.586096000	1.568949000	10.817470000	Н	10.502468000	0.542870000	16.425938000
C	7.355518000	2.927957000	11.963613000	Н	9.461270000	-0.777459000	15.828023000
C	6.942285000	3.356740000	13.231134000	Н	10.445148000	0.176739000	14.704587000
Н	6.226429000	4.160415000	13.319847000	Н	4.322910000	2.722274000	19.246574000
C	7.472286000	2.726992000	14.354517000	Н	6.776609000	4.610965000	20.534421000
C	7.290583000	2.881538000	15.781706000	Н	6.362750000	6.354854000	18.244733000
C	8.082290000	1.900401000	16.409345000	Н	3.836685000	3.405865000	15.987833000
С	8.062022000	1.726995000	17.817534000	С	6.821589000	3.560865000	10.806021000
С	8.655570000	0.592064000	18.462524000	Ν	6.388578000	4.075449000	9.863427000
н	9.103192000	-0.185405000	17.865518000	NC	5 (S ₁)		
С	8.614169000	0.439359000	19.810171000	Ν	8.878267000	1.302332000	15.433862000
Н	9.028956000	-0.447718000	20.275738000	С	8.528827000	1.745750000	14.156904000
С	8.078355000	1.465233000	20.644194000	С	9.009838000	1.313447000	12.930830000
С	8.187059000	1.358228000	22.050035000	Н	9.772580000	0.550277000	12.852140000
Н	8.620191000	0.454373000	22.464869000	С	8.460213000	1.878649000	11.778034000
С	7.784807000	2.385987000	22.874270000	Н	8.805581000	1.567945000	10.801044000
Н	7.879626000	2.298475000	23.950574000	С	7.440784000	2.844812000	11.887348000
С	7.284226000	3.566682000	22.298876000	С	6.960840000	3.283532000	13.132647000
Н	7.015142000	4.405541000	22.930772000	Н	6.176191000	4.023242000	13.170378000
С	7.139752000	3.678105000	20.929861000	С	7.517357000	2.741189000	14.292462000
С	7.486420000	2.621070000	20.051831000	С	7.278397000	2.898414000	15.711209000
С	7.334814000	2.685868000	18.596732000	С	8.103836000	1.938598000	16.366222000
С	6.484190000	3.638030000	17.935350000	С	8.028326000	1.698562000	17.778031000
С	6.467975000	3.731311000	16.545588000	С	8.497050000	0.544681000	18.408796000
С	5.561525000	4.678213000	15.832038000	Н	8.936764000	-0.255199000	17.833100000
С	6.052528000	5.891381000	15.340840000	С	8.366027000	0.371208000	19.789573000

C 7.924651000 1.427605000 2.0.617154000 C 9.061618000 1.362902000 1.2.20927000 C 7.988079000 1.330730000 22.03305100 H 9.40076000 0.166651200 1.2.20927000 H 8.299676000 2.4.2524000 C 8.51951900 1.06651200 10.77337000 H 7.75858300 2.33544600 23.91519200 C 7.48202600 2.29256100 1.8.93149000 C 7.37515200 3.64662000 2.244810000 C 6.98224600 3.29265000 1.3.1067800 C 7.27230000 2.86187000 2.85457600 C 7.2721700 2.73026801 1.5.211318000 C 7.28166500 2.681452000 1.65511700 C 8.116100 0.32677400 1.77228700 C 5.3176100 4.68292000 1.57816300 H 8.851100 0.51633800 1.83597200 C 5.3764900 5.1766200 1.4301000000 C 7.8278700 1.77228700 2.28457000 1.2864600 <	Н	8.700272000	-0.552616000	20.248150000	С	8.557321000	1.750360000	14.155319000
C 7,988079000 1,3073000 22,033051000 H 9,840076000 0,16682000 12,829927000 H 8,29697600 0,38823500 22,472249000 C 8,51951000 1,946634000 1,1778898000 C 7,70181000 2,3235794000 C 8,7954000 2,96925000 1,14678000 C 7,37151200 3,64866200 22,244810000 C 7,4822600 2,96925000 1,3140678000 C 7,37155200 3,5736700 0,284576000 C 7,272747000 2,552000 1,31400700 C 7,48127000 2,681452000 1,55351000 C 8,11310900 1,9440400 1,631814000 C 5,3765200 3,5736700 0,28417000 C 8,13161900 1,6735500 1,772287000 C 5,3765200 3,5736700 1,554551000 C 8,13161900 1,5735200 1,772287000 C 5,3765200 3,57357000 1,587546000 1,873139000 1,873458000 1,81319900 C 3,27642000 </td <td>С</td> <td></td> <td></td> <td>20.617154000</td> <td></td> <td>9.061618000</td> <td>1.362902000</td> <td>12.910570000</td>	С			20.617154000		9.061618000	1.362902000	12.910570000
H 8.296976000 0.38823500 22.472249000 C 8.51951900 1.946634000 1.778898000 C 7.701081000 2.422501000 22.833794000 C 7.48202000 2.902561000 11.778898000 H 7.75858300 3.533546000 C 6.4820100 2.02561000 11.40678000 H 7.19850800 4.52227000 22.86187000 H 6.187113000 4.02558200 13.19206500 C 7.27334000 3.57357000 20.854576000 C 7.52747700 2.78020800 14.291480000 C 7.46812700 2.65268200 20.354551000 C 8.1131000 14.39148000 C 6.36765200 3.5735000 17.89284000 C 8.814100 0.51633800 18.3807200 C 6.36658000 5.57532800 14.90100000 H 8.8214100 0.26827900 18.3837200 C 5.3735500 5.4532800 14.3751000 C 7.8675000 1.38744000 2.28649002 2.28649002 2.28649002 <th< td=""><td></td><td>7.988079000</td><td>1.330730000</td><td>22.033051000</td><td></td><td>9.840076000</td><td>0.616682000</td><td>12.820927000</td></th<>		7.988079000	1.330730000	22.033051000		9.840076000	0.616682000	12.820927000
H 7.758583000 2.335446000 23.915192000 C 7.482026000 2.902561000 11.893149000 C 7.375152000 3.448662000 22.244810000 C 6.982246000 3.29925000 13.140678000 H 7.198508000 4.52227000 2.36187000 C 6.38774700 2.3028000 14.29148000 C 7.248165000 2.6528200 0.01282000 C 7.27517000 2.864499000 15.713138000 C 6.40960000 3.56735000 17.88154000 C 8.02696000 1.67355000 17.772287000 C 6.397652003 3.70412000 16.458117000 C 8.442841000 0.516338000 18.85072000 C 5.73519000 15.00734000 C 7.873106000 0.322772000 19.83149000 C 5.3252800 14.901000000 H 8.57456800 0.328772000 17.81319000 C 5.32528000 5.37135000 14.376510000 C 7.86759000 3.38874000 2.24515000 C <		8.296976000	0.388235000	22.472249000	С	8.519519000	1.946634000	11.778898000
C 7.375152000 3.648662000 22.24810000 C 6.982246000 3.29925000 13.140678000 H 7.19850800 4.52227000 22.861870000 C 7.327471000 2.730208000 14.291480000 C 7.27234000 3.57357000 2.012820000 C 7.272617000 2.864499000 15.73138000 C 7.46817000 2.86449000 15.53151000 C 8.113619000 1.531414000 16.351814000 C 6.40696000 3.56735000 17.892846000 C 8.42841000 0.516338000 18.385072000 C 6.0826300 5.76519000 15.000734000 C 8.42841000 0.516338000 18.385072000 C 5.276649000 6.650678000 14.90100000 H 8.5755000 1.378740000 C 7.86759000 1.308740000 2.24813000 C 3.38739000 7.3726200 1.40250200 H 8.16757000 3.239899000 2.2477300 R 3.238469000 5.571756200 1.539102100 C	С	7.701081000	2.422501000	22.835794000	Н	8.879554000	1.666512000	10.797337000
H 7.198508000 4.52227000 22.861870000 H 6.18713300 4.02582000 13.192065000 C 7.272304000 3.757367000 20.854576000 C 7.527477000 2.730208000 14.291480000 C 7.278165000 3.65652000 3.05735000 17.89234000 C 8.113619000 1.93440000 15.71313800 C 6.397652000 3.70412000 16.45811700 C 8.4284100 0.516338000 18.385072000 C 6.397652000 3.70412000 15.786163000 H 8.88214100 0.238729000 17.813199000 C 6.082638000 5.70519000 15.80734000 C 8.42841000 0.32277200 19.80296400 H 5.73258000 4.901000000 H 8.87456000 3.23774000 2.2615007 C 5.75758000 5.37651000 13.78754000 C 7.92064300 1.28864000 2.2485143000 C 3.25849000 5.57155000 15.3875000 C 7.497126000 3.392429000 C 3.31619000 5.57153000 15.917386000 H 7.35652000		7.758583000	2.335446000	23.915192000	С	7.482026000	2.902561000	11.893149000
C 7.272304000 3.757367000 20.854576000 C 7.527477000 2.730208000 14.291480000 C 7.468127000 2.652682000 20.012820000 C 7.2716517000 2.864499000 15.713138000 C 7.28165500 2.681452000 18.55451000 C 8.113619000 16.351814000 C 6.406960000 3.56735000 17.892846000 C 8.113619000 16.351814000 C 5.521761000 4.68292000 15.786163000 H 8.882141000 0.286729000 17.813109000 C 5.527649000 6.50678000 14.376510000 C 7.86758000 0.322772000 9.802564000 H 5.732255000 7.439037000 13.78754000 C 7.86758000 0.3237400 2.248514000 H 3.258469000 5.51764000 15.39123000 H 8.16757700 0.32937400 2.248514000 C 3.31619900 5.51762000 15.391238000 C 7.4681200 2.30688000 2.244238000 C <td>С</td> <td>7.375152000</td> <td>3.648662000</td> <td>22.244810000</td> <td>С</td> <td>6.982246000</td> <td>3.296925000</td> <td>13.140678000</td>	С	7.375152000	3.648662000	22.244810000	С	6.982246000	3.296925000	13.140678000
C 7.468127000 2.652682000 20.012820000 C 7.276517000 2.864499000 15.713138000 C 7.281665000 3.567305000 17.892846000 C 8.113619000 1.637355000 17.772287000 C 6.397652000 3.704612000 16.458117000 C 8.42264000 -0.286729000 17.83139000 C 6.039652000 5.70532800 14.90100000 H 8.882141000 -0.286729000 17.81329000 C 6.05263800 5.70532800 14.901000000 H 8.57456800 -0.61621100 20.25150000 C 5.276649000 6.650678000 14.376510000 C 7.897590000 1.38874000 2.248133000 H 5.7325800 7.439307000 14.512892000 H 8.16777000 0.329374000 2.2481738000 C 3.316199000 5.577135000 15.27858700 H 7.745558000 2.30688500 2.326429000 C 4.1216100 4.63769000 15.91738000 C 7.4912600 3.636751000	Н	7.198508000	4.522270000	22.861870000	Н	6.187133000	4.025582000	13.192065000
C 7.281665000 2.681452000 18.554551000 C 8.113619000 1.93440400 16.351814000 C 6.406960000 3.567305000 17.892846000 C 8.026996000 1.677355000 17.772287000 C 6.397652000 3.704612000 16.458117000 C 8.442841000 0.516338000 18.385072000 C 5.52176100 4.68292000 15.786163000 C 8.273116600 0.232772000 19.802964000 H 7.16020300 5.76532000 14.901000000 H 8.574568000 -0.61621100 20.25157000 H 5.732258000 7.439037000 13.78754000 C 7.920643000 12.8874400 20.626714000 C 3.887399000 5.97146000 14.512892000 H 8.167577000 0.329374000 22.845143000 C 3.316109000 5.571735000 15.28857000 H 7.74555000 3.298899000 22.845143000 C 4.2166100 4.53749000 15.39138600 H 7.74555000 3.6675100 22.26477000 C 3.316109000 5.77735000 15.3704290	С	7.272304000	3.757367000	20.854576000	С	7.527477000	2.730208000	14.291480000
C 6.40696000 3.567305000 17.892846000 C 8.026696000 1.677355000 17.772287000 C 6.397652000 3.704612000 16.458117000 C 8.442841000 0.516338000 18.385072000 C 5.521761000 4.682292000 15.786163000 H 8.882141000 0.236729000 17.81219000 C 6.08638000 5.705190000 16.300734000 C 8.273166000 0.322772000 18.807000 H 7.16020300 5.76532000 1.4376510000 C 7.86759000 1.238874000 20.425714000 H 5.73225800 7.43930700 13.78754000 C 7.86759000 1.238874000 22.485143000 C 3.38739900 6.59164400 1.425820200 H 8.16757700 0.329374000 2.485143000 C 3.38739900 5.51766200 15.91738600 H 7.74558000 2.306887000 2.284723800 C 3.3161000 C 7.44212600 3.63643000 2.85589900 2.0258473000	С	7.468127000	2.652682000	20.012820000	С	7.276517000	2.864499000	15.713138000
C 6.397652000 3.704612000 16.458117000 C 8.442841000 0.516338000 18.385072000 C 5.521761000 4.682292000 15.786163000 H 8.882141000 -0.286729000 17.813109000 C 6.082638000 5.705190000 15.00734000 C 8.273106000 0.322772000 19.802964000 H 7.160203000 6.57632800 14.30510000 C 7.86759000 1.38874000 0.226155000 C 5.276649000 6.550678000 14.376510000 C 7.86759000 1.38874000 2.24321000 C 3.387309000 6.55164000 14.02500200 C 7.677126000 2.39899000 2.84513000 C 3.316109000 5.5713500 15.28385700 H 7.7455800 2.30688500 2.39242000 C 5.370493000 5.7474900 18.6124800 C 7.44113000 2.63667000 2.256477000 C 4.428309000 5.74749000 18.6124800 C 7.442116000 3.636751000 2.0258	С	7.281665000	2.681452000	18.554551000	С	8.113619000	1.934404000	16.351814000
C 5.521761000 4.682292000 15.786163000 H 8.882141000 -0.286729000 17.813109000 C 6.082638000 5.705190000 15.000734000 C 8.273106000 0.322772000 19.802964000 H 7.160203000 5.765328000 14.901000000 H 8.574568000 -0.616211000 20.251550000 C 5.276649000 6.50678000 14.376510000 C 7.867590000 1.288744000 20.262714000 H 5.73228000 7.439037000 14.512892000 H 8.167577000 0.329374000 2.485143000 C 3.28469000 7.32762200 15.28385700 H 7.7455800 2.306885000 2.2.26477000 C 4.12166100 4.63676900 15.91738600 H 7.7455800 3.363751000 2.2.26477000 C 5.370493000 5.7474900 18.614248000 C 7.44113000 2.63664000 10.22859500 C 3.40925400 5.7731800 10.3284000 C 7.48011300 2.668266000	С	6.406960000	3.567305000	17.892846000	С	8.026696000	1.677355000	17.772287000
C 6.082638000 5.705190000 15.00734000 C 8.273106000 0.322772000 19.802964000 H 7.160203000 5.765328000 14.901000000 H 8.574568000 -0.616211000 20.251550000 C 5.276649000 6.650678000 1.3787540000 C 7.867590000 1.388744000 20.262714000 H 5.732258000 7.439037000 13.787540000 C 7.920643000 1.28866400 22.043321000 C 3.887399000 6.591644000 14.512892000 H 8.167577000 0.329374000 22.485143000 C 3.316109000 5.577135000 15.91021000 C 7.442126000 3.636751000 22.26477000 C 4.31661000 4.55241000 15.917386000 H 7.306962000 4.520462000 22.86887000 C 5.370493000 5.747749000 18.61248000 C 7.341835000 3.74610000 2.85884000 C 3.42641000 9.321801000 C 7.480113000 2.6664000 10.26266000	С	6.397652000	3.704612000	16.458117000	С	8.442841000	0.516338000	18.385072000
H 7.160203000 5.765328000 14.901000000 H 8.574568000 -0.616211000 20.251550000 C 5.276649000 6.650678000 14.376510000 C 7.867590000 1.388744000 20.626714000 H 5.732258000 7.439037000 13.787540000 C 7.920643000 1.288664000 2.2043321000 C 3.887309000 6.591644000 14.512892000 H 8.167577000 0.329374000 2.2485143000 C 3.316199000 5.571735000 15.283857000 H 7.74555800 2.39899900 22.84738000 C 3.316199000 5.571662000 15.391021000 C 7.442126000 3.636751000 22.2647700 C 4.121661000 4.655241000 15.391738000 C 7.341835000 3.747461000 28.8587000 C 5.370493000 5.747749000 18.612428000 C 7.48113000 2.6666400 2.026384000 1.94583000 2.026384000 1.94163000 C 3.490254000 5.73718000 2.016914000 C 7.480113000 2.6682666000 18.554092000 1.646532200<	С	5.521761000	4.682292000	15.786163000	Н	8.882141000	-0.286729000	17.813109000
C 5.276649000 6.650678000 14.376510000 C 7.867590000 1.388744000 2.0.626714000 H 5.732258000 7.439037000 13.787540000 C 7.920643000 1.288664000 2.2.04321100 C 3.887309000 6.591644000 14.512892000 H 8.167577000 0.329374000 2.2.487138000 H 3.258469000 7.32762200 14.025002000 C 7.697126000 2.398999000 2.2.847238000 C 3.316109000 5.577135000 15.917386000 H 7.430596200 4.520462000 2.2.8687000 C 5.370493000 5.747749000 18.614248000 C 7.438135000 3.74461000 2.0.8594300 C 4.424309000 7.53887800 19.32180100 C 7.480113000 2.6666400 8.554092000 C 3.49025400 5.773918000 2.0.130284000 C 6.418126000 3.55589000 15.91136000 C 3.55403000 4.37673000 2.0.167912000 C 5.461513000 4.60982400 </td <td>С</td> <td>6.082638000</td> <td>5.705190000</td> <td>15.000734000</td> <td>С</td> <td>8.273106000</td> <td>0.322772000</td> <td>19.802964000</td>	С	6.082638000	5.705190000	15.000734000	С	8.273106000	0.322772000	19.802964000
H 5.732258000 7.439037000 13.787540000 C 7.920643000 1.288664000 2.2043321000 C 3.887309000 6.591644000 14.512892000 H 8.167577000 0.329374000 2.2485143000 H 3.258469000 7.327622000 14.025002000 C 7.697126000 2.398999000 2.2487238000 C 3.316109000 5.577135000 15.283857000 H 7.745558000 2.306885000 2.3926429000 C 4.121661000 4.636769000 15.917386000 H 7.306962000 4.520462000 2.256477000 C 5.370493000 5.747749000 18.614248000 C 7.448113000 2.636664000 2.025384000 C 4.42309000 7.53887800 19.321801000 C 7.480113000 2.686681000 1.59493000 H 2.75091000 6.325889000 20.698402000 C 6.418126000 3.660831000 16.465322000 C 3.494541000 20.767912000 C 5.461513000 4.60982400 15.97493000 C 3.56403000 4.378703000 20.167912000 <th< td=""><td>Н</td><td>7.160203000</td><td>5.765328000</td><td>14.901000000</td><td>Н</td><td>8.574568000</td><td>-0.616211000</td><td>20.251550000</td></th<>	Н	7.160203000	5.765328000	14.901000000	Н	8.574568000	-0.616211000	20.251550000
C3.8873090006.59164400014.512892000H8.1675770000.32937400022.485143000H3.2584690007.32762200014.025002000C7.6971260002.39899900022.847238000C3.3161090005.57713500015.283857000H7.7455580002.30688500023.926429000H2.2385950005.51766200015.391021000C7.4421260003.63675100022.256477000C4.1216610004.63676900015.917386000H7.3069620004.52046200022.868870000C5.3704930005.74774900018.614248000C7.3418350003.74461000020.855943000C4.4243970006.45524100019.353996000C7.4881130002.63666400020.026384000H4.4243090007.53887800019.321801000C7.2888060002.68206600018.55492000C3.4902540005.7739180020.130284000C6.4181260003.66083100016.46532200C3.555091006.3258900020.698402000C5.704530005.70316500015.080450000C3.554430004.3787300020.167912000C5.4615130004.6098240015.202691000C5.406908004.3475100016.59173000C5.1146990006.61051800015.022691000C5.406908004.3470520018.66277000C5.1146990006.43618700014.461087000C9.9733850000.65665050015.737223000H	С	5.276649000	6.650678000	14.376510000	С	7.867590000	1.388744000	20.626714000
H3.2584690007.3276220014.025002000C7.6971260002.398999002.2847238000C3.3161090005.5771350015.283857000H7.7455580002.3068850002.3926429000H2.2385950005.51766200015.391021000C7.4421260003.6367510002.256477000C4.1216610004.63676900015.917386000H7.3069620004.5204620002.286870000C5.3704930005.74774900018.614248000C7.3418350003.744610002.036584000C4.428970006.45524100019.353996000C7.4801130002.6366640002.026384000H4.4243090007.53887800019.321801000C7.2888060003.6580100016.465322000C3.4902540005.77391800020.10284000C6.4181260003.5558090017.911036000H2.750910006.3258890020.698402000C5.3615130004.60982400015.794930000C3.554030004.37870300020.167912000C5.704530005.70316500015.02691000C5.406908000.367171100019.446803000H7.0434220005.84636900015.022691000C5.406908000.36771400016.59173000C5.114699006.61051800014.461087000H10.4867980000.36771400016.59173000C3.7326670006.43618700014.4539899000H10.4877801002.5889400019.4113000H3.0653	Н	5.732258000	7.439037000	13.787540000	С	7.920643000	1.288664000	22.043321000
C 3.316109000 5.577135000 15.283857000 H 7.745558000 2.306885000 23.926429000 H 2.238595000 5.517662000 15.391021000 C 7.442126000 3.636751000 22.256477000 C 4.121661000 4.636769000 15.917386000 H 7.306962000 4.520462000 22.868870000 C 5.370493000 5.747749000 18.614248000 C 7.341835000 3.744610000 20.855943000 C 4.42897000 6.455241000 19.353996000 C 7.480113000 2.636664000 20.026384000 H 4.424309000 7.538878000 19.321801000 C 6.418126000 3.5580900 17.911036000 H 2.75091000 6.32588900 20.698402000 C 6.418126000 3.660831000 16.465322000 H 2.73297000 3.842641000 20.761244000 C 5.970453000 5.703165000 15.02691000 C 5.46698000 0.3671711000 19.446803000 H 7.043422000 5.846369000 15.022691000 C 5.406998000 0.367465000 <	С	3.887309000	6.591644000	14.512892000	Н	8.167577000	0.329374000	22.485143000
H2.2385950005.51766200015.391021000C7.4421260003.63675100022.256477000C4.1216610004.63676900015.917386000H7.3069620004.52046200022.868870000C5.3704930005.74774900018.614248000C7.3418350003.74461000020.855943000C4.4289700006.45524100019.353996000C7.4801130002.63666400020.026384000H4.4243090007.53887800019.321801000C7.2888060002.68206600018.554092000C3.4902540005.77391800020.130284000C6.4181260003.55580900017.911036000H2.750910006.3258890020.698402000C6.3794560003.66083100016.465322000C3.5054030004.3787030020.16791200C5.4615130004.60982400015.79930000C3.5054030004.3787030020.761244000C5.9704530005.70316500015.022691000C4.4613710003.6717110019.446803000H7.0434220005.84636900015.022691000C9.9733850000.63771400016.59173000C3.732667000C3.73266700014.53989900H10.4867980000.63771400016.59173000C3.2146150005.4461500014.53989900H10.4867980000.63771400016.59173000C3.2146150005.2401300014.53989900H10.672410000.4338700014.8495900C	Н	3.258469000	7.327622000	14.025002000	С	7.697126000	2.398999000	22.847238000
C4.1216610004.63676900015.917386000H7.3069620004.52046200022.868870000C5.3704930005.74774900018.614248000C7.3418350003.74461000020.855943000C4.4289700006.45524100019.353996000C7.4801130002.63666400020.026384000C3.4902540005.77391800020.130284000C6.4181260003.5558900017.911036000C3.4902540005.77391800020.130284000C6.4181260003.5558900017.911036000C3.5054030004.37870300020.167912000C5.4615130004.60982400015.794930000C3.5054030004.37870300020.167912000C5.4615130004.60982400015.794930000C3.5054030004.3787030020.167912000C5.9704530005.70316500015.08045000C4.4613710003.6717110019.446803000H7.043422005.8463690015.022691000C5.406908004.34705200118.662677000C5.1146990006.61051800014.461087000C9.973385000.36946500015.773223000H3.0653460007.1416630014.539899000H10.677241000.4433870014.844959000C3.2146150005.34917500015.245061000H4.478501002.5889440019.481088000H2.141916005.20401300015.390402000H4.609320006.2799560018.013406000C5	С	3.316109000	5.577135000	15.283857000	Н	7.745558000	2.306885000	23.926429000
C5.3704930005.74774900018.614248000C7.3418350003.7446100020.855943000C4.4289700006.45524100019.353996000C7.4801130002.63666400020.026384000H4.4243090007.53887800019.321801000C7.2888060002.68206600018.554092000C3.4902540005.77391800020.130284000C6.4181260003.55580900017.911036000H2.750910006.32588900020.698402000C6.3794560003.66083100016.465322000C3.5054030004.37870300020.167912000C5.4615130004.60982400015.794930000H2.7732970003.84264100020.761244000C5.9704530005.70316500015.080450000C4.4613710003.67171100019.446803000H7.0434220005.84636900015.022691000C5.4069080004.34705200018.662677000C5.1146990006.61051800014.461087000C9.9733850000.63771400016.591730000C3.7326670006.43618700014.53989900H10.6772410000.44338700014.84959000C3.2146150005.2401300015.870433000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.870433000H4.6969320006.27995600018.013406000C5.5105350005.79409500018.635080000H3.6684140003.85230500016.510238000 <td< td=""><td>Н</td><td>2.238595000</td><td>5.517662000</td><td>15.391021000</td><td>С</td><td>7.442126000</td><td>3.636751000</td><td>22.256477000</td></td<>	Н	2.238595000	5.517662000	15.391021000	С	7.442126000	3.636751000	22.256477000
C 4.428970000 6.455241000 19.353996000 C 7.480113000 2.636664000 20.026384000 H 4.424309000 7.538878000 19.321801000 C 7.288806000 2.682066000 18.554092000 C 3.490254000 5.773918000 20.130284000 C 6.418126000 3.555809000 17.911036000 H 2.75091000 6.325889000 20.698402000 C 6.379456000 3.660831000 16.465322000 C 3.505403000 4.37873000 20.167912000 C 5.461513000 4.609824000 15.794930000 C 4.461371000 3.671711000 19.446803000 H 7.043422000 5.84636900 15.022691000 C 5.406908000 4.347052000 18.662677000 C 5.114699000 6.610518000 14.461087000 C 9.973385000 0.637714000 16.591730000 C 3.732667000 6.436187000 14.53989900 H 10.677241000 0.443387000 14.844959000 C 3.214615000 5.349175000 15.245061000 H 4.0677241000 0.43387000	С	4.121661000	4.636769000	15.917386000	Н	7.306962000	4.520462000	22.868870000
H4.4243090007.53887800019.321801000C7.2888060002.68206600018.554092000C3.4902540005.77391800020.130284000C6.4181260003.55580900017.911036000H2.7500910006.3258890020.698402000C6.3794560003.66083100016.465322000C3.5054030004.37870300020.167912000C5.4615130004.60982400015.794930000H2.7732970003.84264100020.761244000C5.9704530005.70316500015.08045000C4.4613710003.67171100019.446803000H7.0434220005.84636900015.022691000C5.4069080004.34705200018.662677000C5.1146990006.61051800014.461087000C9.973385000.36946500015.671131000H5.5267960007.4550200013.919979000H10.4867980000.63771400016.591730000C3.7326670006.43618700014.539899000H9.605018000-0.65660500015.737223000H3.0653460007.14166300014.057900000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.245061000H4.699320006.27995600018.013406000C5.5105350005.74049500018.635008000H3.6684140003.85230500016.510238000C4.5886020006.561236900019.340976000R6.4163940003.844200009.737434000 <td< td=""><td>С</td><td>5.370493000</td><td>5.747749000</td><td>18.614248000</td><td>С</td><td>7.341835000</td><td>3.744610000</td><td>20.855943000</td></td<>	С	5.370493000	5.747749000	18.614248000	С	7.341835000	3.744610000	20.855943000
C 3.490254000 5.773918000 20.130284000 C 6.418126000 3.55580900 17.911036000 H 2.750091000 6.325889000 20.698402000 C 6.461513000 3.660831000 16.465322000 C 3.505403000 4.378703000 20.167912000 C 5.461513000 4.609824000 15.794930000 H 2.773297000 3.842641000 20.761244000 C 5.970453000 5.703165000 15.08045000 C 4.461371000 3.671711000 19.446803000 H 7.043422000 5.846369000 15.022691000 C 5.406908000 4.347052000 18.662677000 C 5.114699000 6.610518000 14.461087000 C 9.973385000 0.369465000 15.671131000 H 5.526796000 7.455020000 13.919979000 H 10.486798000 0.637714000 16.591730000 C 3.732667000 6.436187000 14.53989000 H 9.605018000 -0.656605000 15.737223000 H 3.065346000 7.141663000 14.05790000 H 4.478501000 2.58894400	С	4.428970000	6.455241000	19.353996000	С	7.480113000	2.636664000	20.026384000
H 2.75091000 6.325889000 20.698402000 C 6.379456000 3.660831000 16.465322000 C 3.505403000 4.378703000 20.167912000 C 5.461513000 4.609824000 15.794930000 H 2.773297000 3.842641000 20.761244000 C 5.970453000 5.703165000 15.080450000 C 4.461371000 3.671711000 19.446803000 H 7.043422000 5.846369000 15.022691000 C 5.406908000 4.347052000 18.662677000 C 5.114699000 6.610518000 14.461087000 C 9.973385000 0.369465000 15.671131000 H 5.526796000 7.45502000 13.919979000 H 10.486798000 0.637714000 16.591730000 C 3.732667000 6.436187000 14.53989900 H 9.605018000 0.637714000 14.844959000 C 3.214615000 5.349175000 15.245061000 H 4.478501000 2.588944000 19.481088000 H 2.141916000 5.204013000 15.37433000 H 4.609632000 6.279956000	Н	4.424309000	7.538878000	19.321801000	С	7.288806000	2.682066000	18.554092000
C 3.505403000 4.378703000 20.167912000 C 5.461513000 4.609824000 15.794930000 H 2.773297000 3.842641000 20.761244000 C 5.970453000 5.703165000 15.080450000 C 4.461371000 3.671711000 19.446803000 H 7.043422000 5.846369000 15.022691000 C 5.406908000 4.347052000 18.662677000 C 5.114699000 6.610518000 14.461087000 C 9.973385000 0.369465000 15.671131000 H 5.526796000 7.45502000 13.919979000 H 10.486798000 0.637714000 16.591730000 C 3.732667000 6.436187000 14.539899000 H 9.605018000 -0.65660500 15.737223000 H 3.065346000 7.141663000 14.05790000 H 10.677241000 0.443387000 14.844959000 C 3.214615000 5.349175000 15.30902000 H 4.478501000 2.588944000 19.41088000 H 2.141916000 5.204013000 15.30902000 H 6.096932000 6.279956001	С	3.490254000	5.773918000	20.130284000	С	6.418126000	3.555809000	17.911036000
H2.7732970003.84264100020.761244000C5.9704530005.70316500015.080450000C4.4613710003.67171100019.446803000H7.0434220005.84636900015.022691000C5.4069080004.34705200018.662677000C5.1146990006.61051800014.461087000C9.9733850000.36946500015.671131000H5.5267960007.4550200013.919979000H10.4867980000.63771400016.591730000C3.7326670006.43618700014.539899000H9.605018000-0.65660500015.737223000H3.0653460007.14166300014.5296790000H10.6772410000.44338700014.844959000C3.2146150005.20401300015.30902000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.870433000H3.6684140003.8523050016.510238000C4.0710350004.44666700015.870433000H3.6684140003.8523050016.510238000C4.5886020006.56236900019.340976000C6.4163940003.844200009.737434000H4.6529120007.64427300019.307868000N8.9040300001.29568900015.410150000C3.5109840006.54152100020.632701000N8.9040300001.29568900015.410150000C3.5109840004.5508970020.121309000	Н	2.750091000	6.325889000	20.698402000	С	6.379456000	3.660831000	16.465322000
C 4.461371000 3.671711000 19.446803000 H 7.043422000 5.846369000 15.022691000 C 5.406908000 4.347052000 18.662677000 C 5.114699000 6.610518000 14.461087000 C 9.973385000 0.369465000 15.671131000 H 5.526796000 7.45502000 13.919979000 H 10.486798000 0.637714000 16.591730000 C 3.732667000 6.436187000 14.539899000 H 9.605018000 -0.656605000 15.737223000 H 3.065346000 7.141663000 14.539899000 H 10.677241000 0.443387000 14.844959000 C 3.214615000 5.349175000 15.245061000 H 7.02572000 4.718527000 20.430067000 C 4.071035000 4.446667000 15.870433000 H 6.096932000 6.279956000 18.013406000 C 5.510535000 5.794095000 18.635088000 H 3.668414000 3.852305000 16.510238000 C 4.588602000 6.562369000 19.307868000 N 6.416394000 3.84200000	С	3.505403000	4.378703000	20.167912000	С	5.461513000	4.609824000	15.794930000
C5.4069080004.34705200018.662677000C5.1146990006.61051800014.461087000C9.9733850000.36946500015.671131000H5.5267960007.45502000013.919979000H10.4867980000.63771400016.591730000C3.7326670006.43618700014.539899000H9.605018000-0.65660500015.737223000H3.0653460007.14166300014.057900000H10.6772410000.44338700014.844959000C3.2146150005.20401300015.245061000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.30902000H7.0257200004.71852700020.430067000C4.0710350004.44666700015.870433000H6.0969320006.27995600018.013406000C5.5105350005.79409500018.635008000H3.6684140003.85230500010.701463000H4.6529120007.64427300019.307868000N6.4163940003.8442000009.737434000C3.5846420005.94350900020.086800000N8.9040300001.29568900015.410150000C3.5109840004.55089700020.121309000	Н	2.773297000	3.842641000	20.761244000	С	5.970453000	5.703165000	15.080450000
C9.9733850000.36946500015.671131000H5.5267960007.45502000013.919979000H10.4867980000.63771400016.591730000C3.7326670006.43618700014.539899000H9.605018000-0.65660500015.737223000H3.0653460007.14166300014.057900000H10.6772410000.44338700014.844959000C3.2146150005.34917500015.245061000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.30902000H7.0257200004.71852700020.430067000C4.0710350004.44666700015.870433000H3.6684140003.85230500016.510238000C4.5886020006.56236900019.340976000C6.4163940003.844200009.737434000C3.5846420005.9435090020.086800000N8.9040300001.2956890015.410150000C3.5109840004.5508970020.121309000	С	4.461371000	3.671711000	19.446803000	Н	7.043422000	5.846369000	15.022691000
H10.486798000.6377140016.591730000C3.7326670006.43618700014.539899000H9.605018000-0.65660500015.737223000H3.0653460007.14166300014.057900000H10.6772410000.44338700014.844959000C3.2146150005.34917500015.245061000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.309022000H7.0257200004.71852700020.430067000C4.0710350004.44666700015.870433000H6.0969320006.27995600018.013406000C5.5105350005.79409500018.635008000H3.6684140003.85230500016.510238000C4.5886020006.56236900019.340976000K6.4163940003.842200009.737434000C3.5846420005.9435090020.086800000N8.9040300001.29568900015.410150000C3.5109840004.55089700020.121309000	С	5.406908000	4.347052000	18.662677000	С	5.114699000	6.610518000	14.461087000
H9.605018000-0.65660500015.737223000H3.0653460007.14166300014.057900000H10.6772410000.44338700014.844959000C3.2146150005.34917500015.245061000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.309002000H7.0257200004.71852700020.430067000C4.0710350004.44666700015.870433000H6.0969320006.27995600018.013406000C5.5105350005.79409500018.635008000H3.6684140003.85230500016.510238000C4.5886020006.56236900019.340976000C6.8747340003.39689500010.701463000H4.6529120007.64427300019.307868000N6.4163940003.844200009.737434000C3.5846420005.94350900020.086800000N8.9040300001.29568900015.410150000C3.5109840004.55089700020.121309000	С	9.973385000	0.369465000	15.671131000	Н	5.526796000	7.455020000	13.919979000
H10.6772410000.44338700014.844959000C3.2146150005.34917500015.245061000H4.4785010002.58894400019.481088000H2.1419160005.20401300015.309002000H7.0257200004.71852700020.430067000C4.0710350004.44666700015.870433000H6.0969320006.27995600018.013406000C5.5105350005.79409500018.635008000H3.6684140003.85230500016.510238000C4.5886020006.56236900019.340976000C6.8747340003.39689500010.701463000H4.6529120007.64427300019.307868000N6.4163940003.8442000009.737434000C3.5846420005.94350900020.632701000N8.9040300001.29568900015.410150000C3.5109840004.55089700020.121309000	Н	10.486798000	0.637714000	16.591730000	С	3.732667000	6.436187000	14.539899000
H4.4785010002.58894400019.481088000H2.1419160005.20401300015.309002000H7.0257200004.71852700020.430067000C4.0710350004.44666700015.870433000H6.0969320006.27995600018.013406000C5.5105350005.79409500018.635008000H3.6684140003.85230500016.510238000C4.5886020006.56236900019.340976000C6.8747340003.39689500010.701463000H4.6529120007.64427300019.307868000N6.4163940003.844200009.737434000C3.5846420005.94350900020.086800000N8.9040300001.29568900015.410150000C3.5109840004.55089700020.121309000	Н	9.605018000	-0.656605000	15.737223000	Н	3.065346000	7.141663000	14.057900000
H7.0257200004.71852700020.430067000C4.0710350004.44666700015.870433000H6.0969320006.27995600018.013406000C5.5105350005.79409500018.635008000H3.6684140003.85230500016.510238000C4.5886020006.56236900019.340976000C6.8747340003.39689500010.701463000H4.6529120007.64427300019.307868000N6.4163940003.8442000009.737434000C3.5846420005.94350900020.086800000N8.9040300001.29568900015.410150000C3.5109840004.55089700020.121309000	Н	10.677241000	0.443387000	14.844959000	С	3.214615000	5.349175000	15.245061000
H 6.096932000 6.279956000 18.013406000 C 5.510535000 5.794095000 18.635008000 H 3.668414000 3.852305000 16.510238000 C 4.588602000 6.562369000 19.340976000 C 6.874734000 3.396895000 10.701463000 H 4.652912000 7.644273000 19.307868000 N 6.416394000 3.844200000 9.737434000 C 3.584642000 5.943509000 20.086800000 NC5 (T1) Image: Comparison of the transform o	Н	4.478501000	2.588944000	19.481088000	Н	2.141916000	5.204013000	15.309002000
H3.6684140003.85230500016.510238000C4.5886020006.56236900019.340976000C6.8747340003.39689500010.701463000H4.6529120007.64427300019.307868000N6.4163940003.8442000009.737434000C3.5846420005.94350900020.086800000NC5 (T1)H2.8636500006.54152100020.632701000N8.9040300001.29568900015.410150000C3.5109840004.55089700020.121309000	Н	7.025720000	4.718527000	20.430067000	С	4.071035000	4.446667000	15.870433000
C 6.874734000 3.396895000 10.701463000 H 4.652912000 7.644273000 19.307868000 N 6.416394000 3.844200000 9.737434000 C 3.584642000 5.943509000 20.086800000 NC5 (T1) H 2.863650000 6.541521000 20.632701000 N 8.904030000 1.295689000 15.410150000 C 3.510984000 4.550897000 20.121309000	Н	6.096932000	6.279956000	18.013406000	С	5.510535000	5.794095000	18.635008000
N 6.416394000 3.84420000 9.737434000 C 3.584642000 5.943509000 20.086800000 NC5 (T1) H 2.863650000 6.541521000 20.632701000 N 8.904030000 1.295689000 15.410150000 C 3.510984000 4.550897000 20.121309000	Н	3.668414000	3.852305000	16.510238000	С	4.588602000	6.562369000	19.340976000
NC5 (T1) H 2.863650000 6.541521000 20.632701000 N 8.904030000 1.295689000 15.410150000 C 3.510984000 4.550897000 20.121309000	С	6.874734000	3.396895000	10.701463000	Н	4.652912000	7.644273000	19.307868000
N 8.904030000 1.295689000 15.410150000 C 3.510984000 4.550897000 20.121309000	Ν	6.416394000	3.844200000	9.737434000	С	3.584642000	5.943509000	20.086800000
N 8.904030000 1.293689000 15.410130000	NC	5 (T ₁)			Н	2.863650000	6.541521000	20.632701000
	Ν	8.904030000	1.295689000	15.410150000	С	3.510984000	4.550897000	20.121309000
					Н	2.729736000	4.061338000	20.692097000

С	4.439017000	3.784285000	19.420902000	С	6.111583000	5.824361000	15.318637000
С	5.451847000	4.396488000	18.675119000	Н	7.166797000	6.031574000	15.455956000
С	10.007416000	0.374623000	15.656422000	С	5.307271000	6.727729000	14.627186000
Н	10.504238000	0.640397000	16.587083000	Н	5.739666000	7.639177000	14.229667000
Н	9.656255000	-0.658370000	15.709062000	С	3.950097000	6.460180000	14.446816000
Н	10.727070000	0.464930000	14.844839000	Н	3.323157000	7.162332000	13.908835000
Н	4.381654000	2.702267000	19.449745000	С	3.403557000	5.284927000	14.962111000
Н	7.136065000	4.714790000	20.429138000	Н	2.349697000	5.069491000	14.825115000
Н	6.288435000	6.279349000	18.058197000	С	4.209422000	4.383577000	15.655942000
Н	3.663268000	3.607934000	16.421693000	С	5.621486000	5.870121000	18.702116000
С	6.930800000	3.476928000	10.712798000	С	4.676336000	6.665048000	19.347133000
Ν	6.484782000	3.943050000	9.751314000	Н	4.798723000	7.742421000	19.359712000
NC	5 (S ₀)			С	3.577275000	6.078341000	19.974531000
Ν	8.607260000	0.992443000	15.492843000	Н	2.840735000	6.696364000	20.475553000
С	8.264322000	1.475576000	14.230075000	С	3.429720000	4.691180000	19.949245000
С	8.684563000	1.022322000	12.979295000	Н	2.574933000	4.226394000	20.428054000
Н	9.371297000	0.190818000	12.884820000	С	4.376895000	3.898850000	19.305134000
С	8.180726000	1.671710000	11.857018000	С	5.486433000	4.478091000	18.679717000
Н	8.483805000	1.337958000	10.871084000	Н	4.259924000	2.821226000	19.287111000
С	7.285166000	2.747799000	11.979778000	Н	6.783666000	4.600054000	20.550347000
Н	6.903484000	3.228465000	11.086365000	Н	6.476788000	6.329855000	18.222351000
С	6.885185000	3.207481000	13.229797000	Н	3.783035000	3.471956000	16.058290000
Н	6.201712000	4.041328000	13.308584000	С	9.679499000	0.066880000	15.687579000
С	7.384497000	2.577964000	14.379490000	С	9.492779000	-1.278537000	15.378437000
С	7.221037000	2.775279000	15.807163000	С	10.907835000	0.524523000	16.163133000
С	7.972934000	1.779009000	16.458314000	С	10.543455000	-2.176555000	15.558574000
С	7.959652000	1.635613000	17.867955000	С	11.949960000	-0.379402000	16.352437000
С	8.530149000	0.494983000	18.522196000	С	11.769607000	-1.729975000	16.050654000
Н	8.955918000	-0.297130000	17.926314000	Н	8.529506000	-1.613738000	15.013435000
С	8.499749000	0.366481000	19.872258000	Н	11.033732000	1.575962000	16.392251000
Н	8.896547000	-0.522352000	20.350181000	Н	10.400376000	-3.224618000	15.322408000
С	7.999623000	1.421341000	20.693665000	Н	12.903303000	-0.028443000	16.730143000
С	8.118605000	1.332269000	22.099829000	Η	12.582821000	-2.431457000	16.197031000
Н	8.530682000	0.422787000	22.523804000	NC	6 (S1)		
С	7.752331000	2.382165000	22.913147000	Ν	8.685813000	1.072848000	15.452758000
Н	7.854826000	2.307283000	23.989710000	С	8.339588000	1.513014000	14.162628000
С	7.278324000	3.567281000	22.325024000	С	8.798400000	1.049293000	12.939342000
Н	7.036631000	4.421875000	22.946896000	Н	9.534972000	0.259630000	12.873197000
С	7.125233000	3.663306000	20.955547000	С	8.260799000	1.634241000	11.787486000
С	7.435090000	2.585468000	20.089034000	Н	8.590015000	1.291632000	10.813863000
С	7.274604000	2.633250000	18.633794000	С	7.300018000	2.646599000	11.884224000
С	6.460895000	3.606080000	17.955599000	Н	6.885566000	3.076685000	10.979652000
С	6.439569000	3.672058000	16.563084000	С	6.867298000	3.124198000	13.124052000
С	5.569172000	4.647191000	15.842262000	Н	6.135019000	3.916642000	13.168016000

С	7.400410000	2.567464000	14.293044000
С	7.204562000	2.779462000	15.720424000
С	7.988627000	1.799437000	16.385243000
С	7.926844000	1.582218000	17.806026000
С	8.357842000	0.421213000	18.445784000
Н	8.780512000	-0.391970000	17.875635000
С	8.219622000	0.270182000	19.833820000
Н	8.517840000	-0.660116000	20.304409000
С	7.832630000	1.355136000	20.645483000
С	7.893002000	1.280166000	22.066782000
Н	8.145406000	0.328524000	22.522466000
С	7.678338000	2.400283000	22.849942000
Н	7.735436000	2.326296000	23.930696000
С	7.425732000	3.637292000	22.242687000
Н	7.307903000	4.530075000	22.845938000
С	7.318856000	3.724971000	20.850007000
С	7.441199000	2.597852000	20.028034000
С	7.240943000	2.613779000	18.567239000
С	6.405735000	3.532439000	17.900377000
С	6.374925000	3.640815000	16.460739000
С	5.524257000	4.639705000	15.786564000
С	6.106690000	5.628027000	14.973522000
Н	7.183276000	5.643989000	14.849462000
С	5.324961000	6.596161000	14.352564000
Н	5.798187000	7.357087000	13.741666000
С	3.937969000	6.595560000	14.520879000
Н	3.328114000	7.349791000	14.036708000
С	3.344767000	5.616275000	15.320354000
Н	2.268588000	5.602349000	15.453670000
С	4.126952000	4.653466000	15.949698000
С	5.513925000	5.785961000	18.590165000
С	4.625490000	6.565524000	19.323443000
Н	4.686159000	7.646505000	19.266872000
С	3.656195000	5.959719000	20.124279000
Н	2.957456000	6.567736000	20.687641000
С	3.587108000	4.567270000	20.191834000
Н	2.830735000	4.089320000	20.804147000
С	4.489973000	3.788116000	19.476354000
С	5.466398000	4.387084000	18.668711000
Н	4.440980000	2.707289000	19.533836000
Н	7.124664000	4.690887000	20.408787000
Н	6.263474000	6.260307000	17.969361000
Н	3.656530000	3.897669000	16.566083000
С	9.747715000	0.152331000	15.699915000
С	9.649150000	-1.157908000	15.235383000

	01/01010000	1117 1279000	1
Н	10.927297000	1.610205000	16.748207000
Н	10.614640000	-3.071845000	15.138554000
Н	12.776927000	0.013144000	17.206853000
Н	12.616437000	-2.329665000	16.404440000
NC	6 (T ₁)		
Ν	8.686105000	1.043859000	15.435669000
С	8.343563000	1.499105000	14.161235000
С	8.815219000	1.067618000	12.922675000
Н	9.557951000	0.284178000	12.845616000
С	8.284664000	1.670791000	11.786626000
Н	8.623880000	1.351528000	10.807916000
С	7.311701000	2.679230000	11.890774000
Н	6.904918000	3.121937000	10.988742000
С	6.865257000	3.123633000	13.130951000
Н	6.122500000	3.906205000	13.188940000
С	7.393028000	2.546615000	14.295625000
С	7.191681000	2.741886000	15.722503000
С	7.983019000	1.783054000	16.375380000
С	7.907626000	1.558075000	17.801207000
С	8.291560000	0.392633000	18.426962000
Н	8.703333000	-0.428588000	17.859443000
С	8.131397000	0.228844000	19.849353000
Н	8.402067000	-0.713178000	20.311223000
С	7.777879000	1.323014000	20.659044000
С	7.842868000	1.242860000	22.077138000
Н	8.054741000	0.280731000	22.530961000
С	7.677467000	2.373235000	22.865989000
Н	7.735840000	2.295480000	23.945889000
С	7.468605000	3.612394000	22.258894000
Н	7.380943000	4.510620000	22.858693000
С	7.354958000	3.702663000	20.858518000
С	7.435318000	2.577751000	20.043463000
С	7.230397000	2.609710000	18.572162000
С	6.404445000	3.520484000	17.920689000
С	6.353567000	3.601375000	16.471297000
С	5.480963000	4.590281000	15.798152000
С	6.040988000	5.638406000	15.054679000
Н	7.119283000	5.713603000	14.973497000
С	5.230246000	6.587324000	14.437059000

С

С

С

С

Н

10.871146000

10.688252000

11.901901000

11.811872000

8.761618000

0.584642000

-2.049640000

-0.315227000

-1.631766000

-1.474379000

16.405667000

15.490371000

16.658412000

16.204191000

14.701980000

Н	5.682499000	7.396289000	13.874091000
С	3.841952000	6.500609000	14.546011000
Н	3.209618000	7.238964000	14.065993000
С	3.272626000	5.458182000	15.278598000
Η	2.194541000	5.380582000	15.365937000
С	4.084714000	4.514695000	15.902559000
С	5.636999000	5.820252000	18.613396000
С	4.768986000	6.653483000	19.314058000
Η	4.896864000	7.728977000	19.261778000
С	3.737547000	6.107688000	20.079204000
Η	3.058638000	6.756395000	20.621171000
С	3.582241000	4.722589000	20.138238000
Н	2.779192000	4.289660000	20.724362000
С	4.456533000	3.890860000	19.443027000
С	5.496619000	4.429325000	18.678063000
Н	4.335756000	2.814757000	19.490943000
Н	7.186485000	4.674545000	20.419650000
Н	6.436356000	6.248934000	18.021265000
Н	3.637104000	3.711651000	16.475544000
С	9.766520000	0.146334000	15.687939000
С	9.690730000	-1.170374000	15.237275000
С	10.887438000	0.597932000	16.384506000
С	10.746850000	-2.043281000	15.490566000
С	11.933099000	-0.283620000	16.644718000
С	11.865590000	-1.604058000	16.198455000
Н	8.807020000	-1.505966000	14.708702000
Н	10.929043000	1.626302000	16.721822000
Н	10.689255000	-3.068453000	15.143786000
Н	12.802711000	0.062756000	17.191062000
Η	12.682155000	-2.287381000	16.400882000

References:

1. Melhuish, W. H. Quantum efficiencies of Fluorescence of Organic Substances: Effect of Solvent and Concentration of the Florescent solute. *J. Phys. Chem.* **1961**, *65*, 229–235.

[2] Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Plenum: New York, **1999**; 3rd edition.

[3] (a) Roth, H. G.; Romero, N. A.; Nicewicz, D. A. Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry. *Synlett* **2016**, *27*, 714–723. (b) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. *Chem. Rev.* **1996**, *96*, 877-910.

[4] Pavlishchuk, V. V.; Addision, A. W. Conversion Constants for Redox Potentials Measured versus Different Reference Electrodes in Acetonitrile Solutions at 25°C *Inorganic Chemica Acta* **2000**, *298*, 97–102.

[5] Buzzetti, L.; Crisenza, G. E. M.; Melchiorre, P. Mechanistic Studies in Photocatalysis. Angew. Chem., Int. Ed. **2019**, *58*, 3730–3747.

[6] (a) Kundu, S.; Banerjee, A.; Maji, M. S. Brønsted Acid-Catalyzed Tandem Pinacol-Type Rearrangement for the Synthesis of α -(3-Indolyl) Ketones by Using α -Hydroxy Aldehydes. *J. Org. Chem.* **2019**, *84*, 16003–16012. (b) Kundu, S.; Banerjee, A.; Pal, S. C.; Ghosh, M.; Maji, M. S. Cascade Annulative π -Extension for the Rapid Construction of Carbazole Based Polyaromatic Hydrocarbons. *Chem. Commun.* **2021**, *57*, 5762-5765.

[7] (a) Sun, K.; Xie, X.; Liu, Y.; Jiang, W.; Ban, X.; Huang, B.; Sun, Y. Thermally crosslinkable thermally activated delayed fluorescent materials for efficient blue solution-processed organic light-emitting diodes. *J. Mater. Chem. C*, **2016**, *4*, 8973–8979. (b) Yu, W.; Gu, S.; Fu, Y.; Xiong, S.; Pan, C.; Liu, Y.; Yu, G. Carbazole-decorated Covalent Triazine Frameworks: Novel Nonmetal Catalysts for Carbon dioxide Fixation and Oxygen Reduction Reaction. *J. Catal.* **2018**, *362*, 1–9.

[8] Jiang, w.; Duan, L.; Qiao, J.; Dong, G.; Zhang, D.; Wang, L.; Qiu, Y. High-triplet-energy Tri-carbazole Derivatives as Host Materials for Efficient Solution-processed Blue Phosphorescent Devices. *J. Mater. Chem.* **2011**, *21*, 4918–4926.

[9] (a) Wagner, D.; Hoffmann, S. T.; Heinemeyer, U.; Münster, I.; Köhler, A.; Strohriegl, P.; Triazine Based Bipolar Host Materials for Blue Phosphorescent OLEDs. *Chem. Mater.* **2013**, 25, 3758–3765. (b) Wan, J.-L.; Cui, J.-F.; Zhong, W.-Q.; Huang, J. -M. Iminyl-Radicals by Electrochemical Decarboxylation of α-Imino-oxy acids:C of Indole-Fused Polycyclics. *Chem. Commun.* **2021**, *57*, 10242–10245. (c) Bernard, R.; Barsu, C.; Baldeck, P. L.; Andraud, C.; Cornu, D.; Scharff, J.-P.; Miele, P. Synthesis, and Two Photon Absorption Properties of 7,7'- (iminundecahydro-*closo*-dodecaborate)-9,9'-(dihexyl)-2,2'-bifluorene. *Chem. Commun.* **2008**, 3765–3767.

[10] (a) Yang, P.; Zheng, C.; Nie, Y.-H.; You, S.-L. Palladium-Catalyzed Dearomative 1,4-Difunctionalization of Naphthalenes. *Chem. Sci.* **2020**, *11*, 6830–6835. (c) Abel-Snape, X.; Whyte, A.; Lautens, M. Synthesis of Aminated Phenanthridinones via Palladium/Norbornene Catalysis. *Org. Lett.* **2020**, *22*, 7920–7925. (b) Barraza, S. J.; Denmark, S. E. Unexpected

Rearrangement of 2-Bromoaniline under Biphasic Alkylation Conditions. *Synlett* **2017**, *28*, 2891–2895.

[11] Kundu, S.; Roy, L.; Maji, M. S. Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. *Org. Lett.* **2022**, *24*, 9001–9006.

[12] Kundu, S.; Maji, M. S. Solution-Phase Late-Stage Chemoselective Photocatalytic Removal of Sulfonyl and Phenacyl Groups in Peptides. *Chem.–Eur. J.* **2024**, 30, e2024000.

[13] (a) Zhang L.; Jiao, L. Visible-Light-Induced Organocatalytic Borylation of Aryl Chlorides. J. Am. Chem. Soc. 2019, 141, 9124-9128. (b) Tsukamoto, H.; Kondo, Y. Palladium (II)-Catalyzed Annulation of Alkynes withortho-Ester-ContainingPhenylboronic Acids. Org. Lett. 2007, 9, 4227–4230. (c) Diev, V. V.; Hanson, K.; Zimmerman, J. D.; Forrest, S. R.; Thompson, M. E. Fused Pyrene–Diporphyrins: Shifting Near-Infrared Absorption to 1.5 mm and Beyond. Angew. Chem., Int. Ed. 2010, 49, 5523-5526. (d) Zhao, J.-H.; Zhou, Z.-Z.; Zhang, Y.; Su, X.; Chen, X.-M.; Liang, Y.-M. Visible-light-mediated Borylation of Aryl and Alkyl Halides with a Palladium Complex. Org. Biomol. Chem. 2020, 18, 4390-4394. (g) Han, F. S.; Higuchi, M.; Kurth, D. G. Diverse Synthesis of Novel Bisterpyridines via Suzuki-Type Cross-Coupling. Org. Lett. 2007, 9, 559-562. (e) Wang, X.; Liu, W.-G.; Tung, C.-H.; Wu, L.-Z.; Cong, H. A Monophosphine Ligand Derived from Anthracene Photodimer: Synthetic Applications for Palladium-Catalyzed Coupling Reactions. Org. Lett. 2019, 21, 8158-8163 (f) Chua, M.-H.; Zhou, H.; Lin, T. T.; Wu, J.; Xu, J. W. Aggregation-Induced Emission Active 3,6-Bis(1,2,2-Triphenylvinyl) Carbazole and Bis(4-(1,2,2-Triphenylvinyl)Phenyl)Amine-Based Poly(Acrylates) for Explosive Detection. J. Polym. Sci., Part A: Polym Chem. 2017, 55, 672-681. (h) Taura, D.; Shimizu, K.; Yokota, C.; Ikeda, R.; Suzuki, Y.; Iida, H.; Ousaka, N.; Yashima, E. Fluorescent Molecular Spring that Visualizes the Extension and Contraction Motions of a Double-Stranded Helicate Bearing Terminal Pyrene Units Triggered by Release and Binding of Alkali Metal Ions. Chem. Commun. 2019, 55, 12084–12087. (i) Guo, X.; Zhang, Y.; Hu, Y.; Yang, J.; Li, Y.; Ni, Z.; Dong, H.; Hu, W. Molecular Weight Engineering in High-Performance Ambipolar Emissive Mesopolymers. Angew. Chem., Int. Ed. 2021, 60, 14902-14908.

[14] Zeng, H.; Dou, Q.; Li, C.-J. Photoinduced Transition-Metal-Free Cross-Coupling of Aryl Halides with H-Phosphonates. *Org. Lett.* **2019**, *21*, 1301–1305.

[15] (a) Manikandan, T. S.; Ramesh, R.; Semeril, D. The Tandem C–H/N–H Activation of *N*-Methyl Arylamide Catalyzed by Dinuclear Pd(II) Benzhydrazone Complex: A Concise Access to Phenanthridinone. *Organometallics* **2019**, *38*, 319–328. (b) Chen, Z.; Wang, X. A Pd-Catalyzed, Boron Ester-mediated, Reductive Cross-Coupling of Two Aryl Halides to Synthesize Tricyclic Biaryls. *Org. Biomol. Chem.* **2017**, *15*, 5790–5796. (c) Sharma, S.; Kumar, M.; Sharma, S.; Nayal, O. S.; Kumar, N.; Singh, B.; Sharma, U. Microwave Assisted Synthesis of Phenanthridinones and Dihydrophenanthridines by Vasicine/KO/Bu Promoted Intramolecular C–H Arylation. *Org. Biomol. Chem.* **2016**, *14*, 8536–8544. (d) Conde, N.; Churruca, F.; SanMartin, R.; Herrero, M. T.; Dominguez, E. A Further Decrease in the Catalyst Loading for the Palladium-Catalyzed Direct Intramolecular Arylation of Amides and Sulfonamides. *Adv. Synth. Catal.* **2015**, *357*, 1525–1531. (e) Chi, Z.; Gao, Y.; Yang, L.; Zhou,

C.; Zhang, M.; Cheng, P.; Li, G. Dearomative Spirocyclization *via* Visible-Light-Induced Reductive Hydroarylation of Non-activated Arenes. *Chinese Chemical Letters* **2022**, *33*, 225–228.

[16] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. *Gaussian 16* (Revision B.01): Gaussian, Inc.: Wallingford CT (**2016**).

[17] Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self–Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian–Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. *J. Chem. Phys.* **1972**, *56*, 2257–2261.

[18] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* **2009**, *113*, 6378.

¹H, ¹³C, ¹¹B, ³¹P and ¹⁹F NMR Spectra:

F (470 MHz) NMR of 4h in CDCl ₃	
nsm.dscsf2 nsm / ds / csf2 - F19	
F Br	
Ť	
20 10 0 -10 -20 -30 -40 -50 -60	-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 f1 (ppm)

F (471 MHz) NMR of 4i in CDCl ₃ Ism.ds166 Ism / ds / 166 - 19f - F19	
O N ⁻ Me	
N ^{-Me} CF ₃ Br	
10 0 -10 -20 -30 -40 -50 -60	-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -: f1 (ppm)

S127

