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S1 Experimental settings

S1.1 General considerations

All manipulations were, unless stated otherwise, performed under inert atmosphere in a

nitrogen-filled glovebox. Chemicals, pre-catalysts, and anhydrous solvents were purchased

from Sigma-Aldrich, STREM, Solvias, abcr, Santa Cruz Biotechnology, Ambeed, Kanto,

Fisher Scientific, TCI, Sinocompound, and BLDpharm, and were used as received. Air-

and/or moisture sensitive materials were stored inside the glovebox.

S1.2 Experimental details

S1.2.1 Catalyst library preparation

Inside the glovebox, 50 µmol (∼20-50 mg) chiral ligand was weighed into a 1 ml glass shell

(8x30 mm, Analytical Sales and Services or V&P Scientific). This was repeated for all 192

chiral ligands. Two equivalents (100 µmol) were added for monodentate phosphines and

phosphoramidites. Up to 10% overdosage was accepted, i.e., actual dosing was between

50-55 µmol.

A PTFE-coated magnetic stirring bar and 500 µl 1,2-dichloroethane (DCE) were added to

each well. Plates were tumble stirred at room temperature, solubility was recorded (Y/N),

and DCE was removed by parallel evaporation (Genevac EZ-2 Elite). For DCE-insoluble

ligands this procedure was repeated with THF.

For complexation, a PTFE-coated stirring bar was added to each well and the

metal precursor was (slurry) dispensed using a multichannel pipette (50 µl DCE well−1):

[Rh(NBD)2]BF4: 3.70 mg/9.90 µmol well−1. Chiral ligands were dissolved/suspended in 500

µl DCE or THF. 100 µl ligand solution was dispensed to the metal precursor solution using

a multichannel pipette. Reactor blocks (Para-dox, Analytical Sales and Services) were then

closed and stirred overnight at room temperature (∼35 °C on tumble stirrer inside glove-

box). Afterwards, solvent was removed by parallel evaporation. Plates were stored inside
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the glovebox and were used throughout the experimental campaign.

S1.2.2 Catalyst kit preparation

Catalysts were dissolved/suspended in 250 µl DCE (or the appropriate volume for 0.2 µmol/5

µl). A Parylene-C-coated stirring bar was added to each well (8x30 mm glass shells) and 5

µl of each catalyst solution was dispensed using a multichannel pipette (0.2 µmol catalyst

per well). Care was taken to dispense to the bottom of each well. Solvent was removed from

the source plates and kits by parallel evaporation. Kits were used immediately or stored

inside the glovebox.

S1.2.3 Reaction execution

Pre-dispensed catalyst kits were used for all experiments. To each well a stock solution of

150 µl was added that contained the starting material (e.g., 4.4 mg well-1 of SM1 in 150 µl

methanol or DCE to screen at 1 mol% Rh). The reactor block was closed with a pre-slitted

PFA mat and Para-dox lid (Analytical Sales and Services). The reactor block was transferred

to the parallel reactor system.

Experiments were performed in a custom-made parallel reactor system (Integrated Lab

Solutions, Berlin, Germany, Figure S1). This reactor system was designed to fit four SBS-

sized well plates and offers individual control over gas composition (N2, H2, specialty, pressure

(up to 100 bar), and reaction temperature (sub-ambient to 150 °C). Stirring is performed by

tumble stirring.

Upon transfer of the reactor block to the reactor, the reactor was pre-heated to 25 °C,

and the reactor headspace was flushed with N2 (≥2 min at 5 l min−1) while the reactor lid

was closed. The headspace was then flushed with H2 (≥30 s) and pressurized to the desired

pressure. Tumble stirring was then engaged to start the reaction.

At the end of the reaction test, the reactor was cooled down and vented to ambient pres-

sure. Reaction mixtures were diluted with 200 µl methanol using an Eppendorf EpMotion
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96XL semi-automated pipettor. An aliquot of the reaction mixture was removed (∼50 µl, to

target concentration of ∼1 mg ml−1), diluted into 500 µl methanol in a polypropylene deep

well plate, and analyzed as described.

Figure S1: Parallel reactor system used in this work (Integrated Lab Solutions, Berlin,
Germany).

S1.2.4 Analytical details

Measurements were performed on a Waters UPC2 SFC system equipped with PDA and MS

detectors. Method details are described below. A representative chromatogram is shown

in Figure S2. Chromatographic data were processed with Virscidian Analytical Studio Pro-
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fessional. Product identity and absolute configuration were determined using the retention

time of analytically pure reference materials. Conversion and yield were calculated using

relative response factors.

Figure S2: Representative chromatogram for SM1.

SM1: Chiralpak OZ-3 column (50x3 mm, 3 µm particle size) at 30 °C. Samples were eluted

at 2.8 ml min−1 using CO2 (mobile phase A) and methanol (mobile phase B). Method details

(gradient reported as A/B v/v): start at 97/3, ramp to 45/55 in 1.0 min, hold 45/55 for 0.5

min, ramp to 97/3 in 0.1 min (total runtime 1.4 min). MS make-up consistent of 0.450 ml

min−1 10 mM NH4OAc in H2O/MeOH (5/95 v/v). Chromatograms were analyzed at 204

nm. Retention times: 0.540 min ((S)-product), 0.599 min ((R)-product), 0.706 min (SM).

SM2: Chiralpak IG-3 column (150x3 mm, 3 µm particle size) at 30 °C. Samples were

eluted at 1.7 ml min−1 using CO2 (mobile phase A) and methanol (mobile phase B). Method

details (gradient reported as A/B v/v): start at 97/3, ramp to 50/50 in 3.0 min, hold 50/50

for 0.5 min, ramp to 97/3 in 0.1 min, hold 97/3 for 0.4 min (total runtime 4.0 min). MS make-

up consistent of 0.450 ml min−1 10 mMNH4OAc in H2O/MeOH (5/95 v/v). Chromatograms

were analyzed at 203 nm. Retention times: 1.258 min (SM), 1.435 min ((R)-product), 1.924

min ((S)-product).

SM3: Chiralpak IG-3 column (50x3 mm, 3 µm particle size) at 30 °C. Samples were eluted

at 2.8 ml min−1 using CO2 (mobile phase A) and methanol (mobile phase B). Method details
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(gradient reported as A/B v/v): start at 97/3, ramp to 45/55 in 1.0 min, hold 45/55 for 0.5

min, ramp to 97/3 in 0.1 min (total runtime 1.4 min). MS make-up consistent of 0.450 ml

min−1 10 mM NH4OAc in H2O/MeOH (5/95 v/v). Chromatograms were analyzed at 210

nm. Retention times: 0.617 min ((R)-product), 0.651 min ((S)-product), 0.877 min (SM).

SM4: Chiralpak AD-3 column (150x3 mm, 3 µm particle size) at 30 °C. Samples were

eluted at 1.2 ml min−1 using CO2 (mobile phase A) and methanol with 0.2% trifluoroacetic

acid (mobile phase B). Method details (gradient reported as A/B v/v): start at 97/3, ramp

to 50/50 in 3.0 min, hold 50/50 for 0.5 min, ramp to 97/3 in 0.1 min, hold 97/3 for 0.4

min (total runtime 4.0 min). MS make-up consistent of 0.450 ml min−1 10 mM NH4OAc

in H2O/MeOH (5/95 v/v). Chromatograms were analyzed at 210 nm. Retention times:

1.424 min ((S)-product), 1.451 min ((R)-product, partial overlap with (S)-product), 1.805

min (SM).

SM5: (S,S) Whelk-O 1 column (150x3 mm, 3 µm particle size) at 30 °C. Samples were

eluted at 1.2 ml min−1 using CO2 (mobile phase A) and methanol (mobile phase B). Method

details (gradient reported as A/B v/v): start at 97/3, hold 97/3 for 3.0 min, ramp to

50/50 in 0.5 min, ramp to 97/3 in 0.1 min, hold 97/3 for 0.4 min (total runtime 4.0 min).

MS make-up consistent of 0.450 ml min−1 10 mM NH4OAc in H2O/MeOH (5/95 v/v).

Chromatograms were analyzed at 210 nm. Retention times: 1.363 min ((R)-product), 1.470

min ((S)-product), 1.529 min (SM).
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S2 Additional information on internal data analysis

Three independent runs were performed with SM1 to assess the reproducibility of the ap-

proach. Results are reported in figure S4.

Figure S3: Comparison of conversion and enantiomeric excess across three runs (#1,#2 and
#3) for SM1, 16h, Methanol. Discrepancies are labelled and illustrated more in detail in the
categorical scatter plots.
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Validation of the parallel pressure reactor was performed by testing the same catalyst in

all the wells across the 96-wells reactor block. Standard deviation for conversion: < 0.5%;

ee = 1.5%.

Figure S4: Validation of the utilized parallel pressure reactor (top) resulting in a standard
deviation (bottom) for conversion of < 0.5% and a standard deviation of 1.5% for ee.

S3 Density Functional Theory calculations

DFT calculations were performed using Gaussian 16 C.01 and C.02.1 The calculations were

executed at the PBE0-D3(BJ)/def2-SV(P) level in gas phase.2–4 This combination of func-

tional and basis set were chosen in an effort to balance computational cost and accuracy.

These methods have previously been established to generate reasonable energies and struc-

tures for similar TM-based complexes.5–8 The nature of each stationary point was confirmed

via frequency analysis. Thermochemical parameters (e.g. ZPE, finite temperature cor-

rections and entropy contributions to Gibbs free energies) were computed from analytical

frequencies (Hessian) at 298.15K and 1 atm. Single point calculations on free ligands ex-

tracted from the optimized metal-ligand complexes were done at the same level of theory to
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obtain ligand descriptors. A Natural Population Analysis (NPA) was performed using the

NBO program version 3.1 as implemented in Gaussian 16.

S4 Details of featurization

The in-house developed Python package Open Bidentate Ligand eXplorer (OBeLiX) was

used for the automated extraction and calculation of descriptors.9 An installation and us-

age guide can be found in its Github repository (https://github.com/EPiCs-group/obelix).

Model homogeneous catalyst structure were constructed, featuring a rhodium (Rh) metal

center. The metal center was coordinated with a biphosphine bidentate ligand. Additionally,

a norbornadiene (NBD) moiety was coordinated as a model substrate representative of the

experimental protocol for pre-catalyst generation (Figure S5). In short, the workflow uses

a graph method to find and enumerate the metal center and bidentate ligand donor atoms

in these model structures. This enumeration was necessary for the calculation of local de-

scriptors and orientation of descriptors such as quadrant/octant contributions of the buried

volume. The enumeration of ligand donor atoms is based on a GFN2-xTB single-point calcu-

lation as implemented in Morfeus.10,11 For the bidentate ligands, the two coordinating atoms

were distinguished based on their charge with the label ‘min’/’max’ denoting the least/most

positively charged atom respectively.

Most calculated descriptors are self-explanatory and readily extracted using the default

settings of Morfeus11 or cclib.12 A detailed overview of all descriptors can be found in the

’C=C AH dataset.xlsx’ Excel file. A more detailed explanation for the definition of the

calculated dihedral angles and oriented buried volume are given in the text below.
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Figure S5: A selection of calculated descriptors. The precatalyst model structure is shown
on the top. Examples of descriptors in various categories, such as geometric, global/local
steric and electronic are also displayed.
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S4.1 Buried volumes

The buried volume parameters were obtained utilizing the Morfeus package. This involved

centering spheres of varying radii (ranging from 3.0 to 7.0 Å) on the Rh metal center and

subsequently reporting the percentage of the sphere’s volume occupied by the ligand. Ad-

ditionally, the buried volume with a radius of 3.5 Å was calculated locally on both ligand

donor atoms, referred to as buried volume donor max and -donor min.

Further analysis was conducted on the quadrant and octant contributions to the buried

volume. These were defined using a buried volume radius of 7 Å. The donor min and

donor max were oriented in the negative and positive x directions respectively, with the y-

axis positioned perpendicular to the plane formed by donor min, donor max, and Rh. The

quadrant buried volumes were defined by quadrants in the x,y plane, extending in both the

positive and negative z directions. This approach ensures a thorough analysis of the buried

volume parameters. An example of the steric maps are shown in Figure S6 for ligand L16,

where the ligand structure and the oriented buried volume are shown next to each other. In

this case, the P atom with index 22 (Figure S6a) is the max donor and thus points towards

the positive x-axis. In the steric plot (Figure S6b), the t-butyl groups can be identified on

the right, while the phenyl groups and their respective orientation are visible on the left.

S4.2 Dihedral angles

The NBD moiety comprised a central carbon atom, which was connected to two hydrogen

atoms. To assess the spatial arrangement of the hydrogen atoms with respect to the metal

center and the diagonally opposite phosphorus atom, the dihedral angles between each hydro-

gen atom, the metal center, and the corresponding phosphorus atom were calculated (Figure

S7). The dihedral angles provide insights into the spatial orientation of the substrate and

potential steric interactions between the metal center and ligand in the catalyst structure.
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Figure S6: (a) Visualization of the 3D structure of L16, a Josiphos ligand. (b) Oriented map
of the buried volume occupied by the bidentate ligand.

The figures below are of the DFT optimized structure of ligand complex L3, a Josiphos

ligand, the H-C nbd-Rh-P dihedral angle is selected in white (Figure S7a). The top view

and view through the NBD molecule (Figure S7b) are shown.
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Figure S7: (a) Side view of the dihedral angle comprised of the H-C nbd-Rh-P atoms. (b)
Front view of the same dihedral angle.

S5 Literature comparison of 3D DFT-based descrip-

tors

In this section more details are given on the comparison of the descriptor library

for overlapping ligands (111 out of 192) published by Sigman’s group in collaboration

with Genentech.8 The full analysis as described in this section can be found in the

’dft nbd model literature comparison.zip’ in the SI which contains a Jupyter Notebook. Var-

ious aspects in the workflow to create the published descriptor library were observed to be

slightly different from our study, such as the nature of the placeholder substrate and metal

center (Rh(L)(NBD) in our case and Pd(L)(Cl)2 in the published study), structure genera-

tion, geometry optimization, and descriptor calculation methods. Initially, we attempted to

reconstruct the descriptor library via our methods to mitigate any difference in the descrip-

tor calculation method. This was done by applying our OBeLiX workflow to the published

xyz structures of catalysts. The comparison was done by extracting the subset of struc-

tures that are exactly the same, also in axial symmetry and orientation of stereocenters,
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and using our own OBeLiX package to calculate descriptors on them. The xyz files of the

Pd(L)(Cl)2 structures were extracted, and a DFT SP calculation was performed on these

structures to derive the DFT-based descriptors (vide supra). It is crucial to emphasize that

no supplementary geometry optimization was conducted; therefore, the comparison is based

on the structures as originally published by Dotson et al.8 The comparative study focused

on a curated selection of descriptors chosen to comprehensively represent various catalytic

properties. This encompassed the calculation of descriptors both on the complex and the

free ligand, providing a holistic view. Three types of comparisons were conducted:

1. Global descriptors, capturing the overall electronic structure of the ligand.

2. Local descriptors, characterizing the environment around the metal center and ligand

donor atoms.

3. Spatial arrangement via the buried volume, quantifying differences in the ligand’s con-

figuration.

For global descriptors, we selected the HOMO (figure S8 A), LUMO (figure S8 B), dipole

moment (figure S8 C) and bite angle (figure S8 D). Interestingly, all descriptors exhibited

a Pearson correlation coefficient (R2) exceeding 0.75, except for the dipole moment. It is

noteworthy that the dipole moment is particularly susceptible to variations in the ligand’s

conformation, exerting a significant influence on the steric environment. This nuanced effect

remains unaccounted for in the bite angle, given its constrained measurement between three

points, such as P-M-P in the case of PP ligands.

To compare the local environment of the donor atoms, the NBO charge, mulliken charge

and buried volume on the donor atoms of the ligand were selected (Figure S9 A,B and

D). For the comparison, these descriptors were averaged over both donor atoms, implying

that only the average contribution is compared. This was necessary since in the descriptor

calculation, the donors are labeled based on their charge. To ease the comparison, we thus

averaged the descriptor over both donors. The metal center’s environment was compared
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Figure S8: The figure illustrates the correlation between four global descriptors—HOMO
(A), LUMO (B), dipole moment (C), and bite angle (D)—derived from ligand structures
analyzed in our study, compared to descriptors derived from the same ligand structures as
used in literature. The R2 values indicate strong correlations (> 0.75) for all descriptors
except dipole moment.
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using a buried volume at the metal center. The electronic descriptors on the donors showed

good correlations (R2 > 0.8), even after removal of two extreme cases (L17 (R)-BINAM-P

and L139 (R)-CTH-BINAM). The correlations for steric descriptors are significantly worse,

indicating a large difference in local steric environment, both around the metal center (Figure

S9C) and the donor atoms (Figure S9D).

Figure S9: The figure illustrates the correlation between four local descriptors—average
NBO charge of donors (A), average Mulliken charge of donors (B), buried volume at 4Å of
metal center (C), and average buried volume of donors at 3.5Å (D)—derived from ligand
structures analyzed in our study, compared to descriptors derived from the same ligand
structures as used in literature. The electronic descriptors on the donors showed good
correlations (R2 > 0.8), while the steric descriptors indicate a large difference in local steric
environment.
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Finally, the difference in the spatial arrangement of the ligand was compared through a

quadrant/octant analysis (Figure S10). To do this, the buried volume at the metal center

with a radius of 7Å was separated into quadrant and octant contributions. To compare oc-

tant contributions regardless of specific orientation, we chose to compare the the minimum,

maximum and average of octant contributions (Figure S10). This means that the minimum,

maximum and average over the eight octants were calculated for both structures and com-

pared. These comparisons show that although there is a trend, the correlation between the

minimal contributions (R2 = 0.402) and maximum contributions (R2 = 0.586) are rather

weak. However, the averaged octants show a reasonable correlation (R2 = 0.72). This shows

that although the extremes of the buried volume contributions might be different, the aver-

ages are similar. This also indicates that the local steric environment of the ligand is sensitive

to small changes, e.g. to the nature of the placeholder substrate used in the metal-ligand

complex (Rh(L)(NBD) in our case and Pd(L)(Cl)2 in the published study).

Figure S10: The figure illustrates the correlation between the octant contributions of the
buried volume at the metal center with a radius of 7Å. The minimum (A), maximum (B)
and average (C) over the eight octants were derived from ligand structures analyzed in
our study and compared to descriptors derived from the same ligand structures as used in
literature. The correlation between the averaged octants show a reasonable correlation, while
the extremes show a weak correlation.

An initial direct comparison of the published descriptor library by the Sigman group,

despite variations in structure generation, geometry optimization, and descriptor calculation

methods, yielded satisfactory and very similar correlations for the selected descriptors. The

details for this comparison can be found in the ’dft nbd model literature comparison.ipynb’
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Jupyter Notebook in the SI.

S6 Principal Component Analysis

The first component explains 27% of the variance observed in the DFT NBD descriptors,

while 11% of the variance is explained by the second component. In the score plot, each

point is categorized by the family of ligands under investigation, such as bisphosphines,

phosphine-amines, etc. This plot reveals the degree of similarity among catalysts based on

their respective descriptors and three main clusters can be identified. Ligands belonging to

the phosphoramidite class are distinguished by their positive values on both principal com-

ponents, forming a distinct cluster in the upper right quadrant. Conversely, ligands classified

as phosphine-amines are characterized by negative values on the second principal component,

signifying a shared similarity in ligand properties within this category. Bisphosphine (PP)

ligands are dispersed around the central region of the plot, indicating that their character-

istics are representative of an average catalyst in this dataset. This observation aligns with

expectations, given that bisphosphines constitute the majority of the ligands tested.

Our DFT NBD descriptors were binned into three categories: steric, geometric and

electronic/thermodynamic. Correspondingly, the loading plot presented in figure SS11 is

color-coded to reflect these categories. Steric descriptors correspond to negative values of

the first principal component (PC1), whereas electronic descriptors are linked to extreme

variations in both PC1 and PC2. This pattern allows us to infer that electronic properties

are primarily responsible for differentiating the first two principal components in our analysis.
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Figure S11: (left) PCA score and loading plots obtained from DFT-based descriptors, colored
based on ligand families in the experimental screening set.

S7 Linear Regression

For in-domain approach we tested also Linear Regression for Conversion and DDG with up

to three DFT-based descriptors (brute-force approach) for a total of 7770 linear regression

models (with leave one out validation) for both regression tasks. Results are reported in

Figure S12.

Figure S12: R2 scores distribution for brute-force in-domain Linear Regression modelling
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S8 Details for Random Forest (RF)

Based on various tests with auto-ML and TPOT, the RF algorithm was suggested as a suit-

able non-linear model for our data. Subsequently, the RF model was implemented in our ML

pipeline which can be found on our Github page (https://github.com/epics-group/obelix-

ml-pipeline). The scikit-learn Python package was used for all functionalities included this

pipeline. Feature importances were calculated using the deault Gini importance as imple-

mented in SKlearn. An 80/20 train/test split was used for the out-of-domain approach,

while for in-domain the median for each substrate’s data was used. For each training, a

5-fold cross-validation method is applied. A grid search cross-validation method was used

for selecting hyperparameters. Within this grid search, the options for each hyperparameter

were:

• ’bootstrap’ = [False],

• ’max depth’ = [5, 50, 100, None], *None applied only to OHE-based models

• ’max features’ = [3, 5],

• ’min samples leaf’ = [1, 2, 5, 10],

• ’min samples split’ = [2, 5, 10],

• ’n estimators’ = [50, 100, 200],

S9 Extended partially out-of-domain approach

In our study, we expanded the partially out-of-domain methodology with DFT-based descrip-

tors for ligands to assess the impact of correlated substrates. Adopting a similar workflow, we

trained models using not only half of the target substrate samples but also included samples

from one of the other substrates, resulting in a total of 20 distinct models. The objective was

to evaluate whether a correlation exists between the Pearson correlation scores observed for
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experimental values (as reported in figureS13) and the balanced accuracies achieved when

training on one substrate and predicting on another, across all possible substrate pairs. This

approach serves as an empirical investigation into the impact of correlated substrates.

Figure S13: Balanced accuracy (BA) or R2 scores vs Pearson correlation coefficients for
the extended partially out of domain approach. The first substrate in label is the target
substrate while the second is the one used in the training set. Orange dots highlight pairs
containing SM4 and/or SM5 in label.

S10 Naive out-of-domain approach

We analysed the generalisability of predictions of in-domain models in a naive out-of-domain

fashion. Basically we compared the predictions obtained from model trained on i-th substrate

with the corresponding experimental values for the j-th substrate as reported in the tables

below. Clearly diagonal values report the in-domain scores as showed in the following tables,

while off-diagonal values are scores obtained by the naive out-of-domain approach. We

confirmed results obtained in the extended out-of-domain approach since as expected we

observed higher scores for correlated substrates. Especially for reactivity prediction, BAs

greater than 0.6 can be observed for naive out-of-domain predictions of the most correlated

substrates: SM1,SM2 and SM3.
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Conversion Balanced Accuracy
dft nbd model predictions from model trained on:

SM1 SM2 SM3 SM4 SM5
SM1 0.722 0.642 0.718 0.564 0.643
SM2 0.650 0.652 0.673 0.570 0.554
SM3 0.771 0.607 0.801 0.574 0.643
SM4 0.516 0.484 0.490 0.779 0.622
SM5 0.572 0.510 0.552 0.733 0.666

Conversion Balanced Accuracy
ecfp predictions from model trained on:

SM1 SM2 SM3 SM4 SM5
SM1 0.643 0.535 0.692 0.571 0.570
SM2 0.589 0.663 0.657 0.424 0.494
SM3 0.696 0.558 0.713 0.569 0.578
SM4 0.485 0.374 0.543 0.626 0.629
SM5 0.492 0.451 0.541 0.652 0.689

Conversion Balanced Accuracy
random predictions from model trained on:

SM1 SM2 SM3 SM4 SM5
SM1 0.522 0.534 0.480 0.468 0.475
SM2 0.481 0.517 0.503 0.560 0.511
SM3 0.509 0.534 0.459 0.467 0.447
SM4 0.405 0.562 0.474 0.646 0.590
SM5 0.458 0.526 0.490 0.550 0.524

DDG R2 score
dft nbd model predictions from model trained on:

SM1 SM2 SM3 SM4 SM5
SM1 0.092 0.128 -0.028 -0.037 -0.047
SM2 0.121 0.143 0.060 0.010 -0.012
SM3 0.095 0.198 0.078 0.027 0.021
SM4 -0.575 -1.380 -0.637 0.031 -0.179
SM5 -0.937 -2.492 -1.004 -0.244 -0.083

DDG R2 score
ecfp predictions from model trained on:

SM1 SM2 SM3 SM4 SM5
SM1 -0.025 -0.139 -0.169 -0.073 -0.074
SM2 -0.002 -0.074 -0.078 0.003 -0.029
SM3 -0.017 -0.041 -0.036 0.013 -0.002
SM4 -0.053 -0.050 -0.184 -0.009 -0.049
SM5 -0.090 -0.153 -0.287 -0.054 -0.030
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DDG R2 score
random predictions from model trained on:

SM1 SM2 SM3 SM4 SM5
SM1 -0.032 -0.146 -0.157 -0.086 -0.095
SM2 -0.031 -0.057 -0.086 -0.023 -0.029
SM3 -0.028 -0.028 -0.066 -0.024 -0.028
4 -0.275 -0.524 -0.262 -0.040 -0.141
SM5 -0.407 -0.661 -0.443 -0.120 -0.107

S11 Monte Carlo in-domain approach

To evaluate if the best-performing models for enantioselectivity could emerge from smaller

subsets of related catalyst families, a Monte-Carlo data selection approach was utilized.

This method involved testing 1,000 random splits for each catalyst fraction, ranging from

90% to 10% of the entire catalyst set, in 10% decrements. Each subset was divided into

an 80:20 training-test ratio, and Random Forest (RF) models were trained using DFT-

based descriptors (see Figure S14). No clear pattern emerged that distinguished these high-

performing subsets from the rest, such as by ligand family or class. This suggests that the

high scores were likely due to chance correlations and test overfitting.
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Figure S14: Monte Carlo in-domain approach, red crosses = DFT-based descriptors, blue
dots= random descriptors, pink stars = ECFPs. Numbers reported refer to the fraction of
ligands selected.
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