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I. ADDITIONAL DETAILS OF MD SIMULATIONS AND CALCULATIONS

A. State predictive information bottleneck

The state predictive information bottleneck (SPIB) is a deep learning method to extract

RCs from MD simulations using a variational autoencoder. The principle, implementation,

and application of SPIB are discussed in previous papers [S1–S4]. The encoder type is either

linear or nonlinear. When using a linear encoder, SPIB learns a linear combination of input

OPs as the reaction corrdinates because it has reproduced the committor [S5, S6]. Such

RC can also be used in enhanced sampling simulations such as well-tempered metadynamics

(WTmetaD). A nonlinear encoder has a higher capability to distinguish metastable states,

such as liquid, solid, and other states. Therefore, it is used to analyze the final production

run of the simulations.

B. Protocol to run enhanced sampling using SPIB

The protocol to run metadynamics using SPIB has been discussed in previous papers.[S3]

Here, a summary of the procedure is listed:

1. Run WTMetaD simulations by biasing a simple, human-based trial RC, a linear com-

bination of N and UE, marked as SPIB0.

2. Repeat the following two steps twice:

• Collect the trajectories of OPs obtained from simulations from the last step. Run

SPIB with standardized selected OPs using a linear encoder to generate RCs as a

linear combination of OPs, denoted as SPIBx, where x is how many times SPIB

has been used.

• Run MetaD simulation using the RC SPIB1 and SPIB2. Simulations using RC

SPIB2 are based on WTMetaD and they are used for final analysis, such as OP

importance evaluation and free energy calculation.

These OPs are selected in metadynamics: q4, q6, UE, N, µ2
N , N2+, N3+, N4+, N5+, NW and

NW1−. The OP N5+ is not included in simulations for d = 0.8 nm because ions under

such confinement are in a single layer and can only pair with 4 counterions (Fig. S1 and
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S2). In this work, we use SPIB to learn 2d RCs since it is difficult to sample along 3 or even

higher-dimensional RCs.

To run enhanced sampling MD simulations, in most simulations, WTMetaD was applied

except the SPIB1 in simulations for d = 1.9 and 3.9 nm, in which transition-tempered

metadynamics (TTMetaD) was applied to reduce the simulation time. The principle and

application of TTMetaD have been discussed in previous papers [S7, S8].

FIG. S1. Scaled standardized coefficients of SPIB0, which is the same for all four thickness (d =

0.8, 1.2, 1.9 and 3.9 nm). For clarity, the highest weight on these OPs is set as 1 in the figure.

C. Simulation settings of single ion pairing

To calculate the free energy surface (FES) of a single ion pairing, we modify the simulation

settings for nucleation. We only keep one NaCl molecule and replace other NaCl with waters.

The distance between the two ions (r) is biased for WTMetaD using PLUMED [S9]. Bias

potential, 1 kJ/mol with a σ of 0.02 nm, is added every 4 ps. The bias factor is 30. The upper

limit of r is set as 1.6 nm. We also run simulations with additional thickness: d = 0.9, 1.0,

and 1.1 nm. Their settings are listed below (Table S1).

TABLE S1. Other parameters of additional simulations d = 0.9 to 1.1 nm. The unit of thickness

is nm.

Thickness (d) Water

0.90 (d=0.9) 448

1.00 (d=1.0) 598

1.12 (d=1.1) 698

3



FIG. S2. Scaled standardized coefficients of all simulations in this work, in which the weight of the

highest OP is set as 1. SPIB1 and SPIB2 represent how many times the RCs are learned from

SPIB as discussed above. “z1” (blue) and “z2” (yellow) are the two components in the RCs.
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D. Free energy calculation and reweighted histogram

To calculate the free energy surface and relative stability of phase states or single ion

pairing from WTMetaD simulations, the reweighted histogram method, which has been

discussed in a previous paper[S10], is applied. In principle, In biased MD simulations, the

weight of every configuration sampled is calculated by:

w(t) = eβ(V (s,t)−c(t)) (S1)

where w(t) is the weight of the configuration at time t; s is the RC; V is the bias potential

added and c(t) is the reweighting factor calculated by:

eβc(t) =

∫
ds[eγV (s,t+∆t)/kB∆T − eγV (s,t)/kB∆T ], (S2)

where β = 1/kBT , γ is the bias factor, and the free energy surface F (s) is calculated by:

F (s) = − 1

β
log

∫∫
w(t)δ(s′ − s)dtds′. (S3)

The free energy for phase transition is calculated by:

∆AL−S = µS − µL = − 1

β
log(PS/PL), (S4)

PL and PS are the Boltzmann probabilities of liquid and solid states calculated by reweighting

simulations using Eq. S1. The states are identified using Nonlinear SPIB, which is discussed

in section Free energy surfaces using SPIB RCs

E. OP relevance evaluation

Similar to previous paper, the Thermodynamically Explainable Representations (TERP)

is applied to measure the significance of OPs as discussed in the main text [S2, S11, S12].

The details of the principle and implementation of TERP have been discussed in other

papers [S12]. TERP analysis does not rely on time series data and we pick configurations

near the transition state of liquid-solid phase transition to reduce the errors caused by OPs

that correlate but not drive the phase transition. In addition, TERP adds a penalty to the

number of selected features to exclude insignificant OPs. The procedure to carry out TERP

calculation is listed below:
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1. Run SPIB calculation using nonlinear encoders to trajectories obtained from WT-

MetaD simulations using the RC SPIB2.

2. Identify the points at the transition state. If the probability of solid and liquid pre-

dicted by SPIB are both higher than 0.49, 5000 points are randomly selected as the

transition state for TERP calculation. If there are not enough points, the cutoff of

probability is reduced to 0.48, and 500 points are selected.

3. Perform TERP using the points selected in the previous step and SPIB nonlinear

model in step 1.

II. ADDITIONAL RESULTS AND DISCUSSIONS

A. Water layering and ion pairing from unbiased simulations

The structure and dynamics of waters and ions should not be ignored when investigating

chemical and physical processes near aqueous interfaces [S13]. We carried out unbiased MD

simulations from the same initial configurations for WTMetaD. Except for d = 0.8 nm, we

hardly observe any phase transitions and ions stay in the liquid state. Near the graphene

surfaces, there is a pronounced water layer, whose water density is several times higher than

that of bulk water at room temperature (about 33 nm−1). In simulations with pure waters

without ions, these water layers have high ϵ∥ [S14]. Interestingly, the concentration of ions at

the interfaces also differs from the bulk: ions tend to stay away from the graphene interfaces.

It is consistent with previous observation that small ions, whose polarization is rather weak,

do not adsorb to hydrophobic interfaces [S15, S16]. Although the high density water layers

remove ions from the high dielectric constant regions, between each water layer, the local

concentration of ions are even higher than that of the bulk. For d = 3.9 nm, with the thickest

water slab in this work, the density of water and ions shows no peak and recovers to the

bulk-like structures at the center of the water slab with a size of 1 nm. The bulk number

density of ions is about 5 nm−3 (Fig. S3d). For d < 2 nm, water slabs are too thin for nano-

confined water and ions to recover the bulk-like behavior. Ion density also shows layering-like

and the local densities in those peaks (about 10 nm−3) are higher than that of the bulk.

We believe that such water ion alternating layers promote the nucleation of NaCl for two
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reasons: first, higher ion concentration prefers to be the solid phase; and, high ion density

further decreases ϵ of the water slab [S17], strengthening the electric interactions between

ions to form the solid phase. The ion-water radial distribution function g(r) (Fig. S4) shows

that the positions of peaks and basins of g(r) do not change at different thicknesses d. The

positions of the first basin of Na-O and Cl-O are 0.321 and 0.402 nm, respectively. Based on

the result, these numbers are used as the cutoff value for ion-water coordination to calculate

ion-water OPs. Other thermodynamics properties of the nanoconfined liquid, such as the

pressure tensor, may also be different from that in the bulk.

FIG. S3. Density profile of ions and waters perpendicular to graphene sheets. Water is represented

using its oxygen atom. The 0 nm on the X axis is the center of two graphene sheets. Numbers

on the left (black) and right (red) Y axis are for ions and waters, respectively. Dot lines are the

positions of graphene sheets.
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FIG. S4. Ion-water radial distribution function g(r).

B. Crystal structures and relative stability under confinement

1. Free energy surfaces using SPIB RCs

The free energy surface (FES) calculated using the reweighted histogram method[S10] is

continuous for the 4 thicknesses in this work (Fig. S5 a-d). Combining with the metastable

states identified by SPIB (Fig. S5 e-h), there are small observable barriers for the transition

between liquid and solid, either less than 25 kJ/mol (d = 0.8 and 1.9 nm) or between 25 and

50 KJ/mol (d = 1.2 and 3.9 nm). However, unbiased simulations cannot overcome these

barriers, indicating the existence of hidden barriers [S11]. There is no observable barrier

for the liquid-hydrated-phase transition. As discussed above, we have built 2d RCs as a

compromise of complexity and sampling efficiency. The FES shows that RCs do not fully

take advantage of the two dimensions. For d = 0.8 nm, both z1 and z2 are sampled and SPIB

distinguishes metastable states based on z1, in other words, z1 may be enough to distinguish

liquid and solid. At other thicknesses, sampling is along the diagonal of the two components

of RCs. Further reducing to a 1d RC as a linear combination of z1 and z2 is possible, but

the width of the FES shows that there is still some information in the 2d RCs. Finally,
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although SPIB using nonlinear encoder has a larger capability of data compression and a

better metastable state identification is expected, states predicted generally follow the trend

of linear SPIB (Fig. S5). The boundary between states is either based on z1 (d = 0.8 nm)

or follows the diagonal (at other thicknesses).
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FIG. S5. Free energy surfaces (FES) and phase states identified by SPIB. a) - d) FES plotted using

SPIB learned RCs z1 and z2. Grids that with free energy higher than 200 kJ/mol are not shown.

The gradient of contour lines are 25 kJ/mol per line with an upper limit of 100 kJ/mol. e) - h)

States identified by SPIB. Red, blue, and green points represent solid, liquid, and hydrated states.
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2. Free energy surfaces using other possible RCs

The advantage of machine learning RCs is that they can be biased in WTMetaD sim-

ulations and they can distinguish those metastable states. However, the RCs are absurd

to connect to straightforward physical properties of simulations. In the case of nucleation,

the OP, numbers of ions belonging to the FCC solid, has been introduced and proven to

be efficient to describe nucleation processes [S18]. Since the nucleation of NaCl follows the

one-step mechanism, the number of FCC ions can be represented by number of ions within

the largest cluster (CM), which is much easier to compute [S19]. Otherwise, the existence

of large disordered clusters is evidence of the two-step mechanism.

As per the classical nucleation theory (CNT), the free energy with CM keeps increasing

before the critical nuclei size and then starts to decrease. However, there are several chal-

lenges in MD simulations to reproduce the trend. First, as in classical MD simulations, the

selection of force fields determines the properties of ions but they may not reproduce the

experimental saturated concentration cs. For d = 3.9 nm here and bulk solution in previous

paper [S11], simulations predict a free energy increase with the growth of the size of solid

phase and liquid is more stable than the solid phase, indicating that the force field in this

work predicts that 1.5cs may not be high enough to turn liquid NaCl solution to the solid.

In addition, due to the finite size effect, depletion during the growth of solid makes it diffi-

cult to observe a big crystal and estimate the size of critical nuclei. To solve the problem,

constant chemical potential MD (CµMD) that controls the concentration of the solution is

needed [S19].

Our results show that the free energy keeps increasing as CM increases. For d = 0.8

nm, the free energy grows evenly from CM = 20 to 100. What is more, the free energy

for CM = 100 is still less than 200 kJ/mol, indicating that configurations that all ions are

connected have been observed. At this time, the concentration of the solution is 0 and

completely depleted. We believe that the strong capability of the solid phase at d = 0.8

nm to resist depletion is consistent with the conclusion that nano-confined environment

stabilizes the solid phase. Connected to dielectric behaviors discussed in the main text, we

hypothesize that under strong nano-confinement, ion-ion electric interaction is enhanced to

stabilize the solid phase. Using CM as the OP, the free energy surfaces are similar for d = 1.2

and 1.9 nm. Depletion prevents the formation of a large cluster [S11, S19]. However for
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d = 1.2 nm, the quick rise of free energy due to depletion starts when CM = 150, higher

than 120 for d = 3.9 nm and the total number of simulations in d = 3.9 is larger than that

in d = 1.2 nm, indicating a strong capacity for small d to resist depletion. For d = 1.9

nm, the FES shows a flat region until CM = 300, consistent with the fact that liquid and

solid phases have a similar stability and relative free energy, as discussed in the main text

(Fig. 3a). In summary, all free energy plots with CM demonstrate increased stability of

large clusters and capability to resist depletion in solutions under nano-confinement. Based

on the assumption of the one-step mechanism that large clusters belong to ordered solid,

nano-confined environments facilitate the solid structures.

FIG. S6. Free energy surfaces using the size of the largest cluster, CM . a) - d) represent simulations

of with different thicknesses (d = 0.8, 1.2, 1.9, and 3.9 nm), respectively. Only free energy less than

200 kJ/mol is shown. The total numbers of ions in each thickness are 100, 220, 412, and 312.

C. Additional results of single ion pairing

As discussed in the main text, the behavior of single-ion pairing can be used to estimate

the phase transition at different thicknesses. Its FES shows similar trends for d = 0.9 to 1.2
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nm but significant disparities for d = 0.8 nm (Fig. S7). We attribute such observations to

the effect of water layering. There are two water layers and one ion layer for d = 0.8 nm,

but 3 water layers and 2 ion layers for d = 1.2 nm (Fig. S3).

FIG. S7. FES of single ion dissociation for simulations with thickness d between 0.8 and 1.2 nm.

Two dot lines represent the boundary of contact pair (CP) and solvent separated ion pair (SSIP)

at r = 0.35 and 0.6 nm.

D. OP correlations

One challenge in machine learning techniques (both SPIB and TERP) in this work is the

correlation of OPs, especially the multicollinearity that may lead to errors when calculating

their coefficients using a linear model. Using the OPs collected from WTMetaD simulations,

we calculated the absolute value of pair-wise correlations (Fig. S8) by:

rij =
|Cij|√
CiCj

, (S5)

where C is the covariance matrix. Low and high rij values represent nonlinear and linear

correlations between OP i and j. Results show that UE and CN based OPs are highly

correlated except µ2
N . Fortunately, such high correlation has been observed in bulk solutions
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but SPIB and TERP can still work, demonstrating the robustness of the machine learning

method used in this work [S11].

The category of electric force is different from other groups. The total forces |Fi| is to

some degree correlated with CN OPs, but its correlation coefficients with |Fii| or |FiW | is

much lower. At the same time, |Fii| and |FiW | are highly correlated. Probably they contain

different information, even though for each ion, Fi = Fii + FiW (note: F is the force vector

and |F | is the norm, the scalar value of the force).

FIG. S8. Correlation coefficients (defined in Eq. S5) in simulations of each thickness. X and Y

labels are the index of OPs and the associated OPs are described in Tabel S2.

TABLE S2. Indices for different OPs in Fig. S8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

d = 0.8 nm q4 q6 UE N µ2
N N2+ N3+ N4+ Nw Nw1− CM NNaO NClO |Fi| |Fii| |Fiw|

d > 1 nm q4 q6 UE N µ2
N N2+ N3+ N4+ N5+ Nw Nw1− CM NNaO NClO |Fi| |Fii| |Fiw|

We plotted several pairs of OPs to visualize their correlations, including N5+ vs. NW1−
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(Fig. S9), CM vs. N5+ (Fig. S10), |FiW | vs. CM (Fig. S11), and |FiW | vs. NW1− (Fig. S12).

In these figures, the OPs are standardized as calculated in SPIB and TERP (marked as OP

name with prime and standardization does not affect their correlations). The correlation of

each pair justifies some assumptions we made in this work. For N5+ vs. NW1−, it shows

that the total CN or an ion does not change too many during nucleation. The growth of

nucleus requires the formation of ions with high CN with counterions by removing their last

coordinated water, which is highly possible that these ions are at the surface of the previous

nucleus. For CM vs. N5+, as the size of ion cluster increases, more ions become the core of

the solid phase. For |FiW | vs. both CM and NW1−, we found that the the average norm of

forces between ion and water are high in the liquid phase and low in solid phase. There may

be two possible reasons: first, the ion-water forces tend to drive the dissolution of ions. Ions

under a larger force are relatively unstable in the solid. The second reason is just because

ions inside the cluster are far away from water and therefore cannot feel the forces from

water. Last, it is worth mentioning that correlated OPs are not completely equivalent in the

roles of nucleation. For instance, enthalpy and N are correlated in the trajectory of NaCl

nucleation from the melt, however, enthalpy has been proven to drive the the nucleation but

N cannot do so [S11].

E. Discussions on electric force OPs

We further investigate the FES of simulations using the electric force OP |FiW | and N

(Fig. S13). N is the local density descriptor and has been used to estimate the size of

solid before [S11]. The shape of FES plots reproduces the same trend in plots of the last

section: high |FiW | (|FiW | > 100 kJ mol−1 nm−1) represents the liquid phase. As discussed

above, high ion-water interaction leads to the dissolution of solid and forms liquid. For

|FiW | < 60, at high thickness (d = 1.9 and 3.9 nm), it represents the solid phase with high

N . For d = 1.2 nm, low |FiW | is also observed when N < 1, the hydrated phase. Such

observation supports the hypothesis that electric force, to be specific, the ion-water electric

force, leads to the dissolution of the solid. Connected to the concept of dielectric constant

discussed in the main text, the role of solvent is to screen the ion-ion electric force, a reduced

dielectric constant for water slabs under confinement undermines the screening and leads to

the formation of solid and hydrated phases.
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FIG. S9. The correlation between OPs N5+ vs. NW1−, represented by the scatter plot.

F. Additional TERP results

TERP predicts a high score on Steinhardt OPs, especially q4, for d = 3.9 nm (Fig. 4 in the

main text), consistent with our previous results [S11]. In bulk water, the ordered assembly

of ions drives the nucleation because 1-step mechanism requires an ordered cluster [S11]. At

other thicknesses, it is less important because these OPs are designed for three-dimensional

space but not for the nano-confined water slab. Similar to q4 and q6, the number of ions

with CN > 5, N5+, represents the number of ions that belongs to the core of the solid

phase in 3d space. In a confined water slab, there are not enough layers of ions, leading to

a low score for d = 1.2 and 1.9 nm. For d = 0.8 nm, N4+ is the core for a completely 2d

solid and it has a high score, instead of N5+ at other thickness. The total coulomb energy

(UE) of ions does not play an important role as the enthalpy does in nucleation from the

melt. We speculate that interactions not included in this OP, such as the Lennard Jones and
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FIG. S10. The correlation between OPs CM vs. N5+, represented by the scatter plot.

ion-water interaction should not be overlooked and they may govern the nucleation process.

The local density descriptor N does not have a high score in all simulations, consistent with

our previous observations in bulk water [S11], though it can distinguish those crystal states

and is often used in simulations of nucleation [S4, S20]. µ2
N represents the density fluctuation

of the solution, making the homogeneous solution form high and low-density regions.
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FIG. S11. The correlation between OPs |FiW | vs. CM , represented by the scatter plot.
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FIG. S12. The correlation between OPs |FiW | vs. NW1−, represented by the scatter plot.
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FIG. S13. The FES using N and |FiW |. The dash lines of the contour plots represent a free energy

of 25 kJ/mol with a maxium of 100 kJ/mol. The unit for force is kJ mol−1 nm−1.
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