ELECTRONIC SUPPLEMENTARY INFORMATION

Reactivity of Metal Hydrides with CO₂: Going Beyond Formate with a High-Valent Cationic Pentahydride Mo(VI) Complex

Nicolas Queyriaux,* Jorge J. Cabrera-Trujillo, Nina Durvin, Laure Vendier, Karinne Miqueu* and Antoine Simonneau*

Table of Content

I. G	eneral Information	3
I.1.	Experimental	3
I.2.	Nuclear Magnetic Resonance	3
I.3.	Crystallographic data collection and refinement	3
1.4.	Miscellaneous	3
II. S	yntheses, Characterization Data and Spectra for the New Compounds	4
II.1.	$[Mo(depe)_2H_5][B(C_6H_5)_4]$ (1.BPh ₄)	4
II.2.	[Mo(depe) ₂ (HCOO)H ₂][B(C ₆ H ₅) ₄] (3.BPh ₄)	9
II.3.	[Mo(depe) ₂ (CO) ₂ H][B(C ₆ H ₅) ₄] (4.BPh ₄)	1
II.4.	[Mo(depe) ₂ (CH ₂ S ₂)H] (6.BPh ₄)	8
II.5.	[Mo(depe) ₂ (ⁱ PrNCHN ⁱ Pr)H ₂] (7.BPh ₄)	3
III. C	computational Details3	9
III.1	. General Information	9
111.2	. Detailed Results	9
III.3	. Cartesian Coordinates and E+ZPE and free energies (G) of optimized structures 4	4
IV. C	rystallographic data6	4
IV.1	. [Mo(depe) ₂ H ₅][B(C ₆ H ₅) ₄] (1.BPh ₄) – Molecular structure6	4
IV.2	. [Mo(depe) ₂ (CO) ₂ H][B(C ₆ H ₅) ₄] (4.BPh ₄) – Molecular structure6	4
IV.3	. [Mo(depe) ₂ H ₅][B(C ₆ H ₅) ₄] (1.BPh ₄) – Tables	5
IV.4	. [Mo(depe) ₂ (HCOO)H ₂][B(C ₆ H ₅) ₄] (3.BPh ₄) – Tables	6
IV.5	. [Mo(depe) ₂ (CO) ₂ H][B(C ₆ H ₅) ₄] (4.BPh ₄) – Tables6	7
IV.6	. [Mo(depe) ₂ (ⁱ PrNCHN ⁱ Pr)H ₂] (7.BPh ₄) – Tables 6	8
V.S	upplementary references6	9

I. General Information

I.1. Experimental

All reactions were performed in oven-dried glassware with rigorous exclusion of air and moisture, using a nitrogen-filled *Jacomex* glove box ($O_2 < 1$ ppm, $H_2O < 1$ ppm) or an argon-filled MBraun glove box ($O_2 < 1$ ppm, $H_2O < 1$ ppm), both equipped with vacuum line. Solvents used were pre-dried (tetrahydrofuran and *n*-pentane by passing through a Puresolv MD 7 solvent purification machine; benzene and 1,2-dichlorobenzene by distillation over CaH₂), degassed by freeze-pump-thaw cycles, dried over molecular sieves and stored in the glove box. THF-d₈ (purchased from *Eurisotop*) and *o*-C₆D₄Cl₂ (purchased from *Deutero*) were degassed by freeze-pump-thaw cycles, dried over molecular sieves and stored in the glove box.

 $[MoH_4(depe)_2]$,^[1] $[MoH_5(depe)_2][HB(C_6F_5)_3]^{[2]}$ and $[NEt_3H][B(C_6H_5)_4]^{[3]}$ were synthesized according to reported procedures and stored in the glove box.

I.2. Nuclear Magnetic Resonance

¹H, ¹¹B, ¹⁹F and ³¹P NMR spectra were recorded in THF-*d*₈ by using Wilmad quick pressure valve NMR tubes or J. Young high-vacuum valve NMR tubes on a *Bruker* Avance III 400 spectrometer. Chemical shifts are in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual solvent resonances as the internal standard (C₆HD₃Cl₂: δ reported = 7.17 ppm, 6.90 ppm; C₄HD₇O₂: δ reported = 3.58, 1.72 for ¹H NMR). ¹¹B, ¹⁹F and ³¹P NMR spectra were calibrated according to the IUPAC recommendation using a unified chemical shift scale based on the proton resonance of tetramethylsilane as primary reference.^[4,5] Data are reported as follows: chemical shift, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sext = sextet; m = multiplet), coupling constant (Hz), and integration.

I.3. Crystallographic data collection and refinement

Data for compounds (**1.BPh**₄), (**3.BPh**₄), (**4.BPh**₄) and (**7.BPh**₄) were collected at low temperature (100 K) either on a Bruker Kappa Apex II diffractometer using a Mo-Kα radiation (I = 0.71073Å) micro-source or on a XtaLAB Synergy, Dualflex, HyPix diffractometer using micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray source. The structures have been solved using the new dual-space algorithm program SHELXT^[6] and refined by means of least-squares procedures using the SHELXL-2018,^[7] program included in the software package WinGX version 1.63^[8] or with the aid of the software package Crystal^[9]. The Atomic Scattering Factors were taken from International tables for X-Ray Crystallography^[10]. Hydrogen atoms were placed geometrically and refined using a riding model. All non-hydrogens atoms were anisotropically refined. Drawing of molecules in the following figures were performed with the program Mercury^[11] with 30% probability displacement ellipsoids for non-hydrogen atoms. The crystal structures have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC **2365476**, **2365477**, **2365478** and **2365557**.

I.4. Miscellaneous

Infrared (IR) spectra were recorded in a nitrogen filled *Jacomex* glove box ($O_2 < 1$ ppm, $H_2O < 1$ ppm) on an *Agilent* Cary 630 FT-IR spectrophotometer equipped with a transmission module and are reported in wavenumbers (cm⁻¹).

II. Syntheses, Characterization Data and Spectra for the New Compounds

II.1. [Mo(depe)₂H₅][B(C₆H₅)₄] (1.BPh₄)

II.1.1. Experimental procedure

[MoH₄(depe)₂] (60.0 mg, 117 µmol, 1.00 equiv.) was dissolved in THF (1 mL). A solution of [HNEt₃][B(C₆H₅)₄] (50.0 mg, 117 µmol, 1.00 equiv.) in THF (1 mL) was added. The reaction mixture was left at room temperature for 30 min, under continuous stirring. The resulting pale-yellow solution was then dropwise transferred in a large volume (ca. 10 mL) of precooled pentane (-40°C), triggering immediate precipitation of an off-white solid. The solution was then dried under an Ar atmosphere at room temperature yielding the desired compound (85.0 mg, 87%). Single crystals suitable for X-ray diffraction were obtained by storing at -40°C a concentrated THF solution of the complex layered by pentane over a few days.

¹**H-NMR** (400 MHz, THF-d_θ) δ 7.28 (br. m, 8H, *meta*-C₆H₅), 6.85 (t, ${}^{3}J_{(H-H)} = 7.4$ Hz, 8H, *ortho*-C₆H₅), 6.71 (t, ${}^{3}J_{(H-H)} = 7.2$ Hz, 4H, *para*-C₆H₅), 1.85 – 1.58 (m, 24H, -CH₂-CH₃ & -CH₂-CH₂-), 1.11 (m, 24H, -CH₂-CH₃), -5.00 (quin, ${}^{2}J_{(P-H)} = 30.8$ Hz, 5H, Mo-H).

¹¹**B-NMR** (128 MHz, THF-d₈) δ -6.8.

¹³C{¹H}-NMR (101 MHz, THF-d₈) δ 164.0 (q, ²J_(B-C) = 50.1 Hz, *ipso*-C₆H₅), 135.9 (br. s, *meta*-C₆H₅), 124.4 (m, *ortho*-C₆H₅), 120.5 (s, *para*-C₆H₅), 25.7 (m, -CH₂-), 25.1 (m, -CH₂-), 7.7 (s, -CH₃).

³¹P{¹H}-NMR (162 MHz, THF-d₈) δ 73.7 (s). ³¹P{¹H}_{sel}-NMR (162 MHz, THF-d₈) δ 73.7 (sext, ²J_(P-H) = 30.8 Hz).

II.1.2. ¹H-NMR spectrum (400 MHz, THF-d8)

II.1.7. ¹H-¹H COSY NMR spectrum

II.1.10. ³¹P-¹H HMQC NMR spectrum

II.2. [Mo(depe)₂(HCOO)H₂][B(C₆H₅)₄] (3.BPh₄)

II.2.1. Experimental procedure

In an Wilmad pressure NMR tube, $[Mo(depe)_2H_5][BPh_4]$ (20.0 mg, 24.0 µmol, 1.00 equiv.) was dissolved in THF (1 mL). The tube was placed at 0°C, evacuated and finally pressurized with carbon dioxide (3 bar). The reaction mixture was left at room temperature for 24h. After pressure was carefully released, the solution was slowly poured in cold pentane (ca. 5 mL), triggering immediate precipitation of a pink solid. The solution was decanted off and the solid washed twice with cold pentane (2 x 5 mL). The solid was then dried under an argon flux at room temperature to yield the desired compound (15.5 mg, 74%). Single crystals suitable for X-ray diffraction were obtained by storing at -40°C a concentrated THF solution of the complex **5.BPh**₄, layered by pentane over a few days.

¹**H-NMR** (400 MHz, *THF-d8*) δ 8.15 (s, 1H, *H*COO), 7.27 (br. m, 8H, *meta*-C₆*H*₅), 6.85 (t, ${}^{3}J_{(H-H)} = 7.4$ Hz, 8H, *ortho*-C₆*H*₅), 6.69 (t, ${}^{3}J_{(H-H)} = 7.2$ Hz, 4H, *para*-C₆*H*₅), 2.21-1.52 (m, 24H, CH₂ and CH₃ from depe), 1.22-0.94 (m, 24H, CH₂ and CH₃ from depe), -7.66 (pseudo-quintet, ${}^{2}J_{(P-H),app} = 42.6$ Hz, 2H). ¹¹**B-NMR** (128 MHz, *THF-d8*) δ -6.87

¹³C{¹H}-NMR (101 MHz, *THF-d8*) δ 176.9 (m, HCOO), 163.9 (q, ${}^{2}J_{(B-C)} = 50.3$ Hz, *ipso*-C₆H₅), 135.9 (br. s, *meta*-C₆H₅), 124.3 (m, *ortho*-C₆H₅), 120.4 (s, *para*-C₆H₅), 22.85, 20.43, 17.11, 13.41, 7.48, 7.06. ³¹P{¹H}-NMR (162 MHz, *THF-d8*) δ 78.3 (s, 2P), 44.0 (s, 2P). ³¹P{¹H}_{sel}-NMR (162 MHz, THF-d₈) δ 78.3 (t, ${}^{2}J_{(P-H)} = 42.6$ Hz), 48.3 (t, ${}^{2}J_{(P-H)} = 36.7$ Hz).

II.2.2. ¹H-NMR spectrum (400 MHz, THF-d8)

II.2.3. ¹¹B{¹H}-NMR spectrum (128 MHz, THF-d8)

----6.87

II.2.5. ¹³C-DEPT NMR spectrum (101 MHz, THF-d8)

II.2.9. ¹³C-¹H HSQC NMR spectrum

II.2.10. ¹³C-¹H HMBC NMR spectrum

II.2.11. FT-IR spectrum (ATR)

II.2.12. ESI-HRMS spectrum

II.2.13. CO2 pressure effect on reaction kinetics

II.2.14. Thermal Stability in $C_6D_4Cl_2$ (100°C, CO_2) – case of the BPh₄⁻ counter-anion

Further reactivity with CO₂ was investigated at 100°C, in two different solvents (thf-d8 or C₆D₄Cl₂). In a typical experiment 30 µmol of **3.BPh₄** was dissolved in the desired solvent (ca. 700 µL). The tube was placed at 0°C, evacuated, pressurized with carbon dioxide (1 bar) and finally placed at 100°C. Evolution of the reaction medium was monitored by NMR spectroscopies.

(A) ¹H-NMR spectrum of a solution of **3.BPh₄** in $C_6D_4CI_2$, before heating at 100°C for 24h.

(B) ¹H-NMR spectrum of a solution of **3.BPh₄** in C₆D₄Cl₂, after heating at 100°C for 24h. * indicates the location of signals associated with paramagnetic species (see authentic sample ¹H-NMR spectrum on **II.2.12.C**). # indicates the location of paramagnetism-affected signals associated with biphenyl (see authentic sample ¹H-NMR spectrum on **II.2.12.D**). Insert boxes display the formation of the characteristic hydride signal of 4.**BPh₄** at -7.2 ppm and the formation of new aromatic signals assigned to oxidative degradation of BPh₄⁻ anion.

(C) ¹H-NMR spectrum of a solution of **[Mo(depe)₂Cl₂]** in C₆D₄Cl₂. This complex is paramagnetic and the large, poorly-resolved signals displayed properly match those of the paramagnetic products formed in the thermal decomposition of **3.BPh**₄ under CO₂.

(D) ¹H-NMR spectrum of a solution of **[Mo(depe)₂Cl₂]** in C₆D₄Cl₂. This complex is paramagnetic and the large, poorly-resolved signals displayed properly match those of the paramagnetic products formed in the thermal decomposition of **3.BPh**₄ under CO₂.

II.2.15. Thermal Stability in $C_6D_4Cl_2$ (100°C, CO_2) – case of the HB(C_6F_5)₃⁻ counter-anion (A) ¹H-NMR spectrum of a solution of **3.HB**(C_6F_5)₃ in $C_6D_4Cl_2$, before heating at 100°C for 36h.

65 60 55 Chemical Shift (in ppm) (D) ${}^{31}P{}^{1}H$ -NMR spectrum of a solution of **3.HB(C₆F₅)** in C₆D₄Cl₂, after heating at 100°C for 36h. Of particular interest are the diagnostic signal of $4.HB(C_6F_5)_3$ at 74.8 and 48.3 ppm. To better assess the relative proportion of $4.HB(C_6F_5)_3$ and $5.HB(C_6F_5)_3$ by the end of the reaction, undecoupled ³¹P integrations were used (insert).

II.2.16. HRMS analysis of the thermal decomposition of $3.HB(C_6F_5)_3$

ESI-HRMS analysis of the thermal decomposition of $3.HB(C_6F_5)_3$: experimental spectrum and enlargement of the main feature (red traces), theoretical isotopic pattern calculated for 5^+ , [MoO(depe)₂(HCOO)]⁺ (black traces) and theoretical isotopic pattern calculated for 4^+ , [Mo(CO)₂(depe)₂H]⁺ (purple traces)

II.3. [Mo(depe)₂(CO)₂H][B(C₆H₅)₄] (4.BPh₄)

II.3.1. Experimental procedure

In an Wilmad pressure NMR tube, [Mo(depe)₂H₅][B(C₆H₅)₄] (20.0 mg, 24.0 µmol, 1.00 equiv.) was dissolved in THF (1 mL). The tube was placed at 0°C, evacuated and finally pressurized with carbon monoxide (3 bar). The reaction mixture was left at room temperature for 24h. After pressure was carefully released, the paleyellow solution was poured in cold pentane (ca. 5 mL), triggering immediate precipitation of an off-white solid. The solution was decanted off and the solid washed twice with cold pentane (2 x 5 mL). The solid was then dried under high vacuum at room temperature to yield the desired compound (15.9 mg, 75%). Single crystals suitable for X-ray diffraction were obtained by storing at -40°C a concentrated THF solution of the complex layered by pentane over a few days.

¹H-NMR (400 MHz, THF-d₈) δ 7.33 (br. m, 8H, *meta*-C₆H₅), 6.90 (t, ³J_(H-H) = 7.3 Hz, 8H, *ortho*-C₆H₅), 6.75 (t, ³J_(H-H) = 7.3 Hz, 4H, *para*-C₆H₅), 2.10 (m, 8H, -CH₂- CH₂-), 2.02 – 1.79 (m, 16H, -CH₂- CH₃), 1.18 (m, 24H, -CH₂- CH₃), -6.85 (tt, ²J_(P-H) = 69.8, 9.1 Hz, 1H, Mo-H).

¹¹**B-NMR** (128 MHz, THF-d₈) δ -6.8.

¹³C{¹H}-NMR (101 MHz, THF-d₈) δ 209.8 (s; Mo-CO), 163.9 (q, ²J_(B-C) = 50.3 Hz, *ipso*-C₆H₅), 135.9 (br. s, meta-C₆H₅), 124.4 (m, ortho-C₆H₅), 120.5 (s, para-C₆H₅), 23.3 (m, -CH₂-), 21.6 (m, -CH₂-), 7.5 (br. s, -CH₃), 7.3 (br. s, -CH₃).

 $^{31}P{^{1}H}-NMR$ (162 MHz, THF-d₈) δ 74.9 (m), 48.3 (m). $^{31}P{^{1}H}_{sel}-NMR$ (162 MHz, THF-d₈) δ 74.9 (d, $^{2}J_{(P-H)} = 10^{-10}$ 68.9 Hz), 48.3 (br. s).

---6.85

-1.19 ß $\int \int r$

II.3.2. ¹H-NMR spectrum (400 MHz, THF-d8)

II.3.10. ¹³C-¹H HMBC NMR spectrum

II.3.12. FT-IR spectrum (¹³CO vs ¹²CO) – liquid phase

Gray boxes correspond to solvent strong absorption area.

II.3.13. ESI-HRMS spectrum

II.4. [Mo(depe)2(CH2S2)H] (6.BPh4)

II.4.1. Experimental procedure

In a Fisher-Porter flask, $[Mo(depe)_2H_4]$ (20.0 mg, 39.0 µmol, 1.00 equiv.) was dissolved in THF (1 mL). A solution of $[HNEt_3][B(C_6H_5)_4]$ (16.4 mg, 39.0 µmol, 1.00 equiv.) and CS_2 (3.0 mg, 39.0 µmol, 1.00 equiv.) in THF (1 mL) was added. The solution immediately turns brown. The reaction mixture was left at room temperature for 24h, under continuous stirring. Pentane (ca. 5 mL) was added to the solution, triggering immediate precipitation of a brown solid. The solution was decanted off and the resulting solid was washed twice with cold pentane (2 x 5 mL). The brown powder was then dried under high vacuum at room temperature to yield the title compound with a purity of *ca.* 92%, based on ³¹P-NMR spectroscopy (27.5 mg, 78%).

¹**H-NMR** (400 MHz, THF-d₈) δ 7.28 (br. m, 8H, *meta*-C₆H₅), 6.86 (t, ${}^{3}J_{(H-H)} = 7.3$ Hz, 8H, *ortho*-C₆H₅), 6.71 (t, ${}^{3}J_{(H-H)} = 7.3$ Hz, 4H, *para*-C₆H₅), 5.98 (s, 2H, -CH₂S₂-), 2.35-1.85 (m, 18H), 1.50 – 0.79 (m, 30H), -5.99 (quintet, {}^{2}J_{(P-H)} = 43.1 Hz, 1H, Mo-H).

¹¹**B-NMR** (128 MHz, THF-d₈) δ -6.8.

¹³C{¹H}-NMR (101 MHz, THF-d₈) δ 163.9 (q, ${}^{2}J_{(B-C)} = 50.3$ Hz, *ipso*-C₆H₅), 135.9 (br. s, *meta*-C₆H₅), 124.4 (m, *ortho*-C₆H₅), 120.5 (s, *para*-C₆H₅), 61.5 (s, -S-CH₂-S-), 21.1 (m, -CH₂-), 8.6 (s, -CH₃), 7.9 (s, -CH₃). ³¹P{¹H}-NMR (162 MHz, THF-d₈) δ 69.0 (s). ³¹P{¹H}_{sel}-NMR (162 MHz, THF-d₈) δ 69.0 (d, ${}^{2}J_{(P-H)} = 43.1$ Hz).

II.4.7. ³¹P{¹H} sel (δ = 1.5 ppm)-NMR spectrum (162 MHz, THF-d₈)

II.4.10. ESI-HRMS spectrum

II.5. [Mo(depe)₂(ⁱPrNCHNⁱPr)H₂] (7.BPh₄)

II.5.1. Experimental procedure

In a Fisher-Porter flask, $[Mo(depe)_2H_4]$ (20.0 mg, 39.0 µmol, 1.00 equiv.) was dissolved in THF (1 mL). A solution of $[HNEt_3][B(C_6H_5)_4]$ (16.4 mg, 39.0 µmol, 1.00 equiv.) and PrNCNPr (4.9 mg, 39.0 µmol, 1.00 equiv.) in THF (1 mL) was added. The reaction mixture was left at room temperature for 24h, under continuous stirring. Pentane (ca. 10 mL) was added to the orange solution, triggering immediate phase separation of a dark orange oil. The solution was decanted off and the oil triturated twice with cold pentane (2 x 5 mL). The solid was then dried under high vacuum at room temperature to yield the desired compound (12.7 mg, 34%). Single crystals suitable for X-ray diffraction were obtained by storing at -40°C a concentrated THF solution of the complex layered by pentane over a few days.

¹**H-NMR** (400 MHz, THF-d_{*b*}, 293K) δ 7.95 (m, 1H, ^{*i*}PrNC*H*N^{*i*}Pr), 7.27 (br. m, 8H, *meta*-C₆*H*₅), 6.84 (t, ³J_(H-H) = 7.4 Hz, 8H, *ortho*-C₆*H*₅), 6.69 (t, ³J_(H-H) = 7.2 Hz, 4H, *para*-C₆*H*₅), 3.06 (hept., 2H, -C*H*(CH₃)₂), 2.33-1.76 (m, 16H, -C*H*₂-CH₃), 1.11 (m, 44H, -C*H*₂-C*H*₂-C*H*₂-C*H*₃), -7.97 (m, 2H).

¹¹**B-NMR** (128 MHz, THF-d₈) δ -6.5.

¹³C{¹H}-NMR (101 MHz, THF-d₈) δ 164.3 (q, ${}^{2}J_{(B-C)}$ = 49.5 Hz, *ipso*-C₆H₅), 159.4 (m, *i*PrNCHN/Pr), 136.2 (br. s, *meta*-C₆H₅), 124.6 (m, *ortho*-C₆H₅), 120.7 (s, *para*-C₆H₅), 49.8 (-CH(CH₃)₂), 27.0 (-CH₂-), 26.1 (-CH₂-), 21.9 (-CH₃), 20.8 (-CH₂-), 13.6 (-CH₂-), 8.5 (-CH₃), 7.8 (-CH₃), 7.5 (-CH₃).

³¹P{¹H}-NMR (162 MHz, THF-d₈) δ 71.0 (m), 41.5 (m). ³¹P{¹H}_{sel}-NMR (162 MHz, THF-d₈) δ 71.0 (t,²J_(P-H) = 50.8 Hz), 48.3 (t,²J_(P-H) = 43.5 Hz).

II.5.3. ¹¹B{¹H}-NMR spectrum (128 MHz, THF-d₈)

80 75 70 65 60 55 50 45 40 35 30 Chemical Shift (in ppm)

II.5.12. FT-IR spectrum (ATR)

III. Computational Details

III.1. General Information

All geometry optimizations and frequency calculations were carried out without symmetry constraints with the Gaussian16 Revision B.01 suite of programs^[12] using the B3LYP^[13–15] functional in conjunction with the Grimme D3(BJ) dispersion correction.^[16,17] The Molybdenum atom was modelled using the relativistic effective core potential SDD^[18–20] basis set, augmented with an f-type polarization function having an exponent of 1.043.^[21] The 6-31G(d,p)^[22,23] basis set was used for other atoms (H, C, O, P). Therefore, the level of theory of the optimizations can be described as B3LYP-D3(BJ)/SDD+f(Mo), 6-31G^{**} (other atoms). Further energy refinement single-point calculations were performed at the higher M06-L^[24]-D3/def2-TZVPP^[25,26] level of theory considering solvents (tetrahydrofuran: THF) effects by means of the Polarizable Continuum Model (PCM)^[27–29] method. Frequency calculations were performed on minima (reactants, intermediates and products) resulting in positive definite Hessian matrices. Transition states (TS) were identified by a single negative eigenvalue in their diagonalized force constant matrices. To confirm the TSs nature, the eigenvectors associated with the negative eigenvalue were confirmed to correspond to the motion along the reaction coordinate employing the Intrinsic Reaction Coordinate (IRC) method.^[30] Molecular structure images were generated utilizing Cylview software.^[31] For the thermal evolution of compound **3**⁺ into **4**⁺ and **5**⁺, the GoodVibes package^[32] was employed to correct free energy at 373.15 K.

III.2. Detailed Results

Table S1. Comparison of the X-ray diffraction structure of naked cationic **3**⁺ *versus* the DFT-computed structure. Distances and bond angles are given in angstroms and °, respectively. The image shows the DFT-optimized geometry at B3LYP-D3(BJ)/SDD+f(Mo), 6-31G^{**} (other atoms) level of theory. Hydrogen atoms in the diphosphine ligands have been omitted for clarity.

	X-ray value	DFT value	Difference	Relative error (%)
Mo-01	2.254	2.282	0.028	1.2
Мо-О2	2.274	2.284	0.010	0.4
Mo-P1	2.463	2.499	0.036	1.5
Mo-P2	2.414	2.441	0.027	1.1
Mo-P3	2.485	2.487	0.002	0.1
Mo-P4	2.425	2.441	0.016	0.7
P1-Mo-P2	81.5	81.9	0.4	0.5
P3-Mo-P4	82.2	82.1	-0.1	-0.1

Figure S1. Energy scan of the H₂ release from **INT1**, leading to **INT1**' + H₂. The Mo···H distance has been increased from 1.785 to 4.285 Å by step of 0.100 Å. Energy (ΔE in kcal·mol⁻¹) and distances in angstroms. All data have been computed at the B3LYP-D3(BJ)/SDD+f(Mo), 6-31G** (other atoms) level of theory. Hydrogen atoms in the diphosphine ligands have been omitted for clarity.

This scan shows that the release of H_2 from **INT1** affording **INT1**' + H_2 is barrierless.

Figure S2. Pathway I: Energy profile for the thermal evolution of complex **3**⁺ into complex **5**⁺. All data have been computed at the PCM(o-dichlorobenzene)-M06-L-D3/def2-TZVPP//B3LYP-D3(BJ)/SDD+f(Mo), 6-31G^{**} (other atoms) level of theory. Free energies (Δ G) have been corrected at 373.15 K. All activation barriers are referred to **3**⁺. Distances and energies are given in Å and kcal·mol⁻¹, respectively.

Scheme S1. Competitive pathways (outer or inner-sphere mechanisms) for the hydride transfer from the Molybdenum hydride intermediate **INT1**' to the CO₂ molecule. Distances are given in Å. Structures of the TS and Gibbs free energy (ΔG in kcal·mol⁻¹ from initial reactants) have been computed at the PCM(o-dichlorobenzene)-M06-L-D3/def2-TZVPP//B3LYP-D3(BJ)/SDD+f(Mo), 6-31G** (other atoms) level of theory. Hydrogen atoms in the diphosphine ligands have been omitted for clarity.

Figure S3. Computed profile for the thermal evolution of complex 3^+ and its reactivity with carbon monoxide, affording complex 4^+ . All data have been computed at the PCM(*o*-dichlorobenzene)-M06-L-D3/def2-TZVPP//B3LYP-D3(BJ)/SDD+f(Mo), 6-31G^{**} (other atoms) level of theory. Free energies have been corrected at 373.15 K. All activation barriers are referred to 3^+ . Distances and energies are given in Å and kcal·mol⁻¹, respectively.

We investigated two processes forming complex 4^+ : (i) the direct reaction of complex 1^+ with CO at room temperature (25°C) and (ii) the thermal evolution of complex 3⁺, when heated at 100 °C. Note that these two processes involve the same intermediate INT1' and share the subsequent steps. In the first process, no transition state associated to the direct addition of CO was found on the potential energy surface due to the high coordination number of 1^+ . As a result, the initial step involves the release of H₂ forming **INT1**'. This step has been omitted in this profile for clarity and has been described in the Fig. 2 of the manuscript. The second process, associated to the thermal evolution, starts by the formation of **INT2** which has been previously described in the main text in Fig. 3 and has been omitted in this profile for clarity, as well. The transition state from INT2 to INT1', associated to release of CO2 (TS2), was computed in Fig. 2 but at 25°C. In this new profile, we corrected the energies at 373.15 K using GoodVives software. It lies at 25.1 kcal·mol⁻¹ from **3**⁺. It is important to mention that this release of CO₂ is crucial for the last step of the profile computed for the thermal evolution of 3⁺ into 5⁺ (see Fig.3 in the main text). Once INT1' is formed, the rest of the profile is shared between the two processes. The subsequent addition of CO occurs through TS2B, which lies at 12.7 kcal·mol⁻¹ from **INT1'** ($\Delta G^{\#}$: 24.5 kcal·mol⁻¹ from the free complex **3**⁺). Remarkably, this addition is highly exergonic, ΔG : -25.0 kcal·mol⁻¹, affording **INT2B**, where CO is coordinated to the metal centre by the carbon atom. Afterwards, in order to add the second molecule of CO in trans to the first one, the release of a second molecule of H_2 is required by a new reductive elimination process, giving the Mo(II) intermediate **INT3B**[']. This H₂ release is even energetically easier than the first one (**TS3B** with $\Delta G^{\#}$: 3.0 kcal·mol⁻¹). Then, the coordination of the second molecule of CO was found to be barrierless according to an energy scan where the CO was located at 4.0 Å and gradually approached to the Mo centre until forming the final product 4+ (Figure S4). In line with experimental observations, the formation of 4⁺ (see Table S2 for geometrical features) from 3^+ after successive releases of H₂ and additions of CO is strongly exergonic, with an overall ΔG value of up to -46.6 kcal·mol⁻¹ (-49.8 kcal·mol⁻¹ from complex 1^+). The rate-determining step corresponds to CO₂ release with an activation barrier of 25.1 kcal·mol⁻¹, further confirming the feasibility of the reaction.

Table S2. Comparison of the X-ray diffraction structure of naked cationic **4**⁺ *versus* the DFT-computed structure. Distances and bond angles are given in angstroms and °, respectively. The image shows the DFT-optimized geometry at B3LYP-D3(BJ)/SDD+f(Mo), 6-31G^{**} (other atoms) level of theory. Hydrogen atoms in the diphosphine ligands have been omitted for clarity.

	X-ray value	DFT value	Difference	Relative error (%)
Mo-CO1	2.015	2.017	0.002	0.1
Mo-CO2	2.009	2.006	-0.003	-0.1
Mo-P1	2.451	2.468	0.017	0.7
Mo-P2	2.531	2.555	0.024	0.9
Mo-P3	2.451	2.477	0.026	1.1
Mo-P4	2.526	2.551	0.025	1.0
P1-Mo-P2	77.2	77.5	0.3	0.4
P3-Mo-P4	77.5	78.0	0.5	0.6

Figure S4. Energy scan of the CO addition to **INT3B**[']. The Mo···C_{CO} distance has been decrease from 4.017 to 2.017 Å by step of 0.100 Å. Energy (ΔE) and distances are given in kcal·mol⁻¹ and angstroms. All data have been computed at the B3LYP-D3(BJ)/SDD+f(Mo), 6-31G^{**} (other atoms) level of theory. Hydrogen atoms in the diphosphine ligands have been omitted for clarity.

This scan shows that the addition of CO on Mo centre is barrierless.

III.3. Cartesian Coordinates and E+ZPE and free	e energies (G) of optimized structures
---	--

78			
T C	-3 217456	1 206178	0 857/17
н	-3 338445	0.631257	1 780648
н	-3 882919	2 071919	0.922112
C	-3.544541	0.337127	-0.358677
Ĥ	-3.499656	0.927059	-1.280209
Н	-4.552647	-0.081071	-0.290618
С	-2.557665	-1.639238	-2.239516
Н	-3.629815	-1.821148	-2.370923
н	-2.279944	-0.813241	-2.901606
С	-1.746438	-2.891329	-2.579625
Н	-0.676155	-2.697612	-2.477425
Н	-1.943207	-3.201368	-3.609370
Н	-2.006416	-3.730757	-1.927378
C	-2.927375	-2.360400	0.581168
н	-2.154790	-3.135189	0.592752
	-2.931017	-1.934391	1.009920
с ц	-4.290301	-2.955270	0.219435
н	-4 581544	-3 702450	0.961051
н	-4.272468	-3.447007	-0.755735
C	-1.518853	3.214247	-0.354383
Н	-0.488071	3.484304	-0.599739
н	-1.946800	2.822059	-1.283421
С	-2.289656	4.443872	0.131929
Н	-1.805654	4.910703	0.993395
Н	-3.317532	4.199671	0.415079
Н	-2.341023	5.193565	-0.662673
C	-1.140238	2.491575	2.457040
	-0.100300	3.029342	2.385094
С	-1.918855	3.236935 1 477474	2.040803
н	-0.895817	1.991585	4.547223
H	-0.303648	0.738374	3.437245
Н	-2.036841	0.940327	3.707997
С	3.509016	-0.522970	0.382185
Н	3.616177	0.110446	1.269294
Н	4.381836	-1.180820	0.340775
С	3.400318	0.332119	-0.882639
н	3.372388	-0.304499	-1.772239
п С	4.208293	2 760076	-0.987431
й	2.200200	3 292972	0.133103
н	4.241726	3.223234	-0.595529
Н	2.954693	4.251918	-1.236696
С	2.310631	-3.036281	-0.395059
Н	2.337353	-2.713985	-1.440529
Н	3.316492	-3.380689	-0.132438
С	1.295754	-4.166379	-0.211899
н	1.263691	-4.515824	0.824174
н	1.563196	-5.019416	-0.841352
Г	0.290496	-3.844102	-0.492890
ц	2.010700	-2.002937	2.300223
н	1.091610	-2 653110	2 526683
C	3.247769	-2.887457	2.768031
Н	3.197062	-3.141536	3.830392
Н	4.170946	-2.322560	2.609680
Н	3.325837	-3.824712	2.210644
Мо	-0.026324	-0.174754	0.004373
н	0.765797	0.506106	1.357972
н	-0.638942	0.611695	-1.385860
Н	-0.230567	-1.842/4/	0.039516
н	-0.700203 0 20072	-0.1 12010	1.409221
P	-1.443201	1.751938	0.789737
P	-2.287055	-1.019411	-0.522825
Р	1.955752	-1.519729	0.603655

Р	1.815904	1.301253	-0.864216
С	1.702674	1.999166	-2.572787
Н	0.919526	2.764722	-2.540233
Н	2.645108	2.512506	-2.789537
С	1.390715	0.969215	-3.660646
Н	2.166878	0.200841	-3.724438
Н	1.334656	1.461636	-4.635349
Н	0.440629	0.468470	-3.465834
Н	2.569674	2.327973	1.154341
С	3.306303	3.730628	-0.342887
Н	3.541063	4.489103	0.409230

Sum of electronic and zero-point Energies= -2227.173063 Sum of electronic and thermal Free Energies= -2227.242084

79 2†			
3	0 121105	0 160060	2 820062
ц	-0.131195	-0.109000	-2.029003
	-0.195128	-0.200000	-3.924933
L L	2.470070	-2.367693	-0.013001
	2.103095	-3.134330	-0.097004
	3.309101	-2.075021	0.200645
	1.000170	-2.904909	1.171307
	1.914/01	-2.405257	2.077411
П	1.032001	-3.980303	1.370073
L L	-1.200009	2.049799	2 170515
	-1.000077	2.370770	2.179313
	-1.219392	2.920404	0.160677
L L	-2.333603	2.006050	0.100077
Ц	-2.100400	2 853788	-0.739403
\hat{C}	3 1311/18	2.000700	2 177053
ц	4 037403	1 383880	2 161030
н	2 121161	-1.303009	-2.101039
Ċ	2.421104	0 645049	-2.040107
ц	2 537077	1 266250	2 682266
н	3 821574	0.607313	-3 707676
н	4 196118	1 135839	-2.069351
C	3 654188	0.035357	0 573865
н	3 599779	1 102370	0.334435
н	3 296863	-0.062059	1 604425
Ċ	5 093497	-0.002000	0 444511
н	5 180878	-1.526922	0 701143
н	5 748794	0.086087	1 122830
н	5 481427	-0.334676	-0 568594
C	-1.062288	-2.588689	2,418769
Ĥ	-2.126289	-2.448735	2.206134
Н	-0.922050	-3.646861	2.669306
С	-0.640783	-1.693865	3.584498
H	0.420674	-1.807613	3.823394
н	-1.208928	-1.950510	4,482696
Н	-0.820955	-0.641508	3.355144
С	-0.825086	-3.605495	-0.282068
Н	-0.269463	-3.530062	-1.219815
Н	-0.572304	-4.566194	0.181837
С	-2.325534	-3.515625	-0.561140
Н	-2.918862	-3.633258	0.350342
Н	-2.628244	-4.307099	-1.252266
Н	-2.577172	-2.559747	-1.020370
С	-3.579575	-0.037259	0.848831
Н	-3.572476	-1.109068	0.628956
Н	-3.140977	0.068856	1.847340
С	-5.008278	0.509335	0.816787
Н	-5.044162	1.578362	1.043922
Н	-5.624038	-0.001963	1.562260
Н	-5.479063	0.357348	-0.157757
С	-3.250886	0.829056	-1.934649
н	-4.113729	1.489676	-1.796282
Н	-2.569853	1.341125	-2.621784
С	-3.690473	-0.517703	-2.515034

Н	-2.835767	-1.173182	-2.693637
Н	-4.207759	-0.368091	-3.466888
Н	-4.382162	-1.038730	-1.846615
С	1.432348	2.509902	2.195185
Н	2.468912	2.402730	1.861172
Н	1.289720	3.563831	2.455714
С	1.171518	1.622527	3.412471
Н	0.139675	1.710425	3.765035
Н	1.827065	1.911592	4.238389
Н	1.354573	0.570988	3.181690
С	1.003655	3.332652	-0.557243
Н	2.025838	3.000360	-0.770514
Н	0.436279	3.135790	-1.469635
С	0.978360	4.821357	-0.199535
Н	-0.041305	5.185111	-0.046371
Н	1.411617	5.405532	-1.016358
Н	1.555497	5.041799	0.702333
0	-0.302202	-1.220355	-2.145050
0	0.111749	0.928106	-2.243331
Р	2.374781	-0.785979	-0.488394
Р	-0.167132	-2.280107	0.832636
Р	-2.353529	0.727261	-0.314127
Р	0.364737	2.158725	0.726955
Мо	0.010307	-0.073202	-0.195286
Н	0.905283	-0.211920	1.212548
Н	-0.788369	0.107410	1.265374

Sum of electronic and zero-point Energies=-2414.607735 Sum of electronic and thermal Free Energies= -2414.677985

78			
4 +			
С	-0.032575	0.242372	2.040087
С	0.206231	0.279767	-1.972385
С	-3.180046	1.153404	-1.066960
Н	-4.006943	1.868963	-1.101403
Н	-2.904509	0.907669	-2.097460
С	-3.572246	-0.102426	-0.291047
Н	-4.339180	-0.678267	-0.816610
Н	-3.992727	0.173225	0.681217
С	-2.332529	-2.571442	-1.176014
Н	-1.549338	-3.314920	-0.998244
Н	-3.284166	-3.058612	-0.942948
С	-2.322389	-2.114603	-2.637140
Н	-3.144891	-1.423855	-2.843820
Н	-2.446305	-2.973514	-3.302390
Н	-1.391826	-1.611518	-2.904641
С	-2.550837	-1.963535	1.669397
Н	-1.744546	-2.646243	1.946044
Н	-2.507100	-1.143654	2.394425
С	-1.242785	3.313202	-1.393457
н	-0.371234	3.798993	-0.943048
Н	-0.887789	2.854487	-2.322119
С	-2.351180	4.331001	-1.673729
н	-3.218669	3.867991	-2.151604
н	-1.982751	5.108200	-2.348923
Н	-2.690753	4.825421	-0.759559
С	-2.400809	2.711698	1.231239
н	-3.275427	3.291300	0.916690
Н	-2.765239	1.902431	1.872530
C	-1.419804	3.592114	2.007437
н	-0.588492	3.004346	2.399292
н	-1.924105	4.061494	2.856197
Н	-1.010586	4.391258	1.382484
C	3.572602	-0.582175	-0.278810
н	3.595376	-0.734443	-1.363360
Н	4.593085	-0.352356	0.040246
C	3.033027	-1.820753	0.4321/6
н	3.086680	-1.689387	1.516923
Н	3.610129	-2./16356	0.184339
C	1.351220	-2.823483	-1.706187

нноннно	0.330122	-2.882161	-2.090034
	1.847811	-2.066923	-2.322800
	2.052470	-4.177166	-1.841420
	3.067022	-4.160802	-1.433239
	2.132030	-4.450294	-2.897403
	1.499544	-4.974593	-1.338716
	0.772711	2.406279	1.081156
H	-0.242238	-3.797392	0.802344
H	1.424460	-4.339057	0.831728
C	0.856010	-3.195112	2.580868
H	1.888078	-3.022759	2.896743
H	0.479802	-4.045151	3.156763
н С н н с н	0.273936 2.948904 2.624730 2.332134 4.436081 4.767823	-2.314896 2.111272 1.713769 2.996484 2.473522 2.906332	2.858465 -1.198707 -2.165986 -1.014027 -1.226915 -0.279272
H H C H H C	4.627543	3.212048	-2.010211
	5.062655	1.602657	-1.438333
	3.113104	1.508508	1.662222
	2.851128	0.774366	2.430848
	4.205703	1.525014	1.590392
	2.581094	2.891145	2.044095
Н Н Н С Н Н	2.893830	3.653347	1.324661
	2.961431	3.185745	3.025600
	1.490977	2.898896	2.089368
	-3.904307	-2.676424	1.742363
	-4.096940	-3.004009	2.767781
	-3.933576	-3.564621	1.106297
H Mo O P P	-4.729784 0.060340 -0.081466 0.320518 -2.089672 -1.682463	-2.022784 0.187512 0.326434 0.388776 -1.193037 1.908875	1.447378 0.025991 3.198658 -3.127565 0.044352 -0.274731
P P H Sum	1.245229 2.445058 0.480407 of electronic ar	-2.071395 0.857405 1.832189 nd zero-point Er	-0.008893 0.062123 0.194658 hergies= -2451.553012 Energies= -2451.625804
78			Lifergies2+01.020004
5 C H C H H C :	0.305086 0.075691 1.250784 1.144352 1.984776 -0.091577	-0.410821 0.061906 -3.265513 -3.277960 -4.027065 -3.522461	-2.911757 -3.884446 -0.324971 -1.411294 -0.046890 0.364519
н н с н н с н	0.038671	-3.587968	1.449849
	-0.525908	-4.471961	0.036507
	0.051610	3.609586	0.009700
	-0.140307	3.818535	1.067220
	0.498672	4.511117	-0.420394
	-1.250973	3.243683	-0.707597
	-1.071172	3.086136	-1.776269
НСННСН:	-1.990558	4.044699	-0.620167
	3.437022	-1.460760	-0.931799
	3.916800	-2.444967	-0.895312
	3.097239	-1.311058	-1.958437
	4.423930	-0.375817	-0.498563
	3.977061	0.618951	-0.549180
г H С H H С H	5.294683	-0.376362	-1.159758
	4.785231	-0.529860	0.521926
	2.518421	-1.750235	1.839832
	2.936830	-0.775132	2.109584
	1.631248	-1.868758	2.468332
	3.531390	-2.868476	2.093259
	3.105500	-3.855879	1.895720
	2	0.000000	

н	3.849503	-2.854549	3,139651
н	1 127253	-2 760265	1 /750/6
\hat{c}	2 647955	2.100203	1.47.0040
	-2.047000	-2.400204	1.202017
н	-3.519188	-1.900756	0.955934
Н	-2.921430	-3.541962	1.161375
С	-2.277220	-2.158433	2.712377
Н	-1.421432	-2.747426	3.055020
Н	-3.117378	-2.387979	3.373334
н	-2 016929	-1 104773	2 829826
Ċ	-1 983570	-2 519605	-1 624003
ы	2 520274	1 627400	1.027000
н Ц	1 1 1 2 2 2 1 4	-1.027400	2 270200
	-1.113224	-2.011003	-2.279300
C .	-2.8/6296	-3.760175	-1.710257
н	-2.364842	-4.659069	-1.353988
Н	-3.161619	-3.939801	-2.750387
Н	-3.795576	-3.642860	-1.130631
С	-2.755518	2.071184	1.544685
Н	-3.230441	1.147531	1.892387
Н	-1.936920	2.259909	2.246515
С	-3.753716	3.230860	1.525298
H	-3,272388	4 175550	1,258218
н	-4 199093	3 360293	2 515539
н	-4 568740	3 057327	0.817088
\hat{c}	2 220000	1 251227	1 272272
Ц Ц	2 776917	2 221010	1 511061
	-3.770017	2.321910	-1.511901
П	-2.838828	0.989590	-2.181930
С 	-4.405019	0.3/11/1	-0.803351
н	-3.983228	-0.610812	-0.583414
н	-5.160165	0.238147	-1.582570
Н	-4.916534	0.726360	0.095204
С	2.545782	2.644467	1.178961
Н	3.397452	1.978693	1.011556
Н	2.886174	3.662319	0.961289
С	2.062148	2.530434	2.628519
Н	1.237855	3.219564	2.834826
Н	2.876028	2.782452	3.313585
н	1.713887	1.520947	2.855897
C	2 037680	2 388421	-1 733042
й	2 557395	1 452977	-1 955831
н	1 201592	2 436764	-2 436551
Ċ	2 973306	3 588168	-1.808012
С Ц	2.973300	4 522220	1 6/0102
	2.400137	4.552220	-1.040103
п	3.308464	3.059031	-2.930332
Н	3.863254	3.496903	-1.269997
0	0.966727	-1.443618	-2.863698
0	-0.194442	0.226857	-1.895898
Р	1.903264	-1.578162	0.093915
Р	-1.294213	-2.136822	0.048535
Р	-1.958211	1.645570	-0.068267
Р	1.256509	2.191278	-0.066220
Мо	-0.039036	0.050802	0.259591
0	-0.058787	0.102976	1.943430

Sum of electronic and zero-point Energies= -2488.709075 Sum of electronic and thermal Free Energies= -2488.783167

78 INT1

	•		
С	-3.406096	0.429692	0.790225
н	-3.449314	-0.170340	1.705529
н	-4.266315	1.104784	0.806778
С	-3.439209	-0.478951	-0.441860
н	-3.463988	0.119186	-1.359511
н	-4.331470	-1.111161	-0.446526
С	-1.955477	-2.176275	-2.252585
н	-2.967716	-2.552086	-2.436267
Н	-1.806343	-1.310988	-2.905964
С	-0.912668	-3.254920	-2.549748
Н	0.097569	-2.872688	-2.385224
Н	-0.991492	-3.580605	-3.590425
н	-1.050002	-4.136451	-1.916492

С	-2.291994	-2.983564	0.546798
Ū.	1 277520	2 502675	0 500595
п	-1.377550	-3.363075	0.590565
н	-2.439873	-2.584507	1.556622
C	-3 /8281/	-3 8/6667	0 123732
	-3.402014	-3.040007	0.120702
н	-4.412041	-3.272014	0.078807
н	-3 634861	-4 655092	0 844399
	-0.00+001	4.0055002	0.044000
н	-3.323019	-4.305598	-0.855304
С	-2.159567	2,825698	-0.264486
Ň	4.000005	0.004005	0.047404
н	-1.226995	3.391285	-0.347491
н	-2.334395	2.389557	-1.254277
C	2 205210	2 760251	0 101005
C	-3.305310	3.760351	0.131035
Н	-3.101920	4.272956	1.075250
ы	1 25/321	3 227340	0 235830
	-4.234321	5.227.540	0.233039
н	-3.446732	4.527785	-0.634598
С	-1 807864	2 130580	2 543891
Ň	1.007004	2.100000	2.040001
н	-1.043198	2.915333	2.532268
н	-2.773819	2.623018	2,695879
<u> </u>	4 507650	4 4 2 0 7 2 0	2.674440
C	-1.527050	1.130/39	3.074449
н	-1.569287	1.647778	4.641360
н	-0 537861	0 600714	3 56331/
	-0.007001	0.0307 14	0.000014
н	-2.266369	0.331258	3.697937
С	3 587676	0 236651	-0 020501
ŭ	0.001010	0.047004	0.020001
н	3.756299	0.917281	0.820785
н	4.538464	-0.259842	-0.234186
C	2 074404	1 004466	1 220020
C	3.074494	1.004400	-1.230030
Н	3.004172	0.340093	-2.105275
ы	3 7/6770	1 82/820	1 5073/2
	3.740770	1.024029	-1.307342
С	1.677394	3.151247	0.126272
н	0 706152	3 482494	0 504987
	0.700102	0.102101	0.004007
н	3.388619	3.998558	-0.946352
н	1.845159	4.768586	-1.334983
C	2 0212/1	2 5/02/7	0 262122
C	2.031241	-2.049047	-0.302133
н	2.707737	-2.334508	-1.428285
н	3 897743	-2 720652	-0 182662
	0.001140	-2.720002	-0.102002
С	2.011155	-3.778204	0.033940
н	2.146995	-4.028086	1.090641
	0.045004	4.040507	0 550400
н	2.315904	-4.648507	-0.553469
н	0.946972	-3.605079	-0.141800
C	2 787062	1 3/2750	2 206760
0	2.707002	-1.342733	2.230700
н	2.591905	-0.404952	2.826796
н	2 061359	-2 065970	2 683889
	4.040445	4.0000010	2.000000
C	4.218145	-1.829981	2.538401
н	4.400769	-1.942972	3.610670
ы	1 058011	1 12/037	2 152136
	4.930914	-1.124037	2.152150
н	4.401392	-2.801228	2.071303
Мо	0.039833	-0.146983	0.182230
Ц	0 740400	0 746141	1 102512
п	0.740100	0.740141	1.495542
н	-0.707102	0.331316	-1.270236
ы	0 002000	1 556020	1 276740
	0.002033	-1.000020	1.270740
н	-0.496561	-0.911374	1./11294
н	0.587658	-1.108336	-1.119378
D	1 004004	1 201512	0.050004
Р	-1.804881	1.381543	0.852094
Р	-1.898389	-1.520463	-0.527957
D	2 222827	1 012001	0 533450
Г 	2.323021	-1.012301	0.555450
Р	1.358610	1.643790	-0.912419
С	0.855375	2.323537	-2.559784
й.	0.065010	2 002116	2 205612
п	-0.000012	2.093110	-2.590012
Н	1.622044	3.037150	-2.877549
C	0 637⊿33	1 261735	-3 6300/5
Ň	4.55007400	0.747000	0.0000040
н	1.559379	0.717936	-3.864781
н	0.299407	1.732477	-4.567177
н	_0 112012	0 531370	3 328670
	-0.113012	0.001070	-0.020019
н	2.215712	2.778153	1.003903
С	2.427069	4.312694	-0.529986
н	2 632/8/	5 002613	0 208735
	2.002404	0.002010	0.200100

Sum of electronic and zero-point Energies= -2227.166127 Sum of electronic and thermal Free Energies= -2227.235301

76 INT1	•		
С	2.236371	-2.784650	-0.200479
н	1 931110	-3 333480	-1 099014
н	3 255073	-3 105563	0.030723
<u> </u>	1 202402	-0.100000	0.050723
	1.283402	-3.102001	0.958337
н	1.658829	-2.667650	1.890069
Н	1.196167	-4.183961	1.109874
С	-1.014843	3.099773	0.865048
н	-1.411344	2.775367	1.832509
Н	-0.794840	4.168533	0.945844
С	-2 032499	2 827853	-0 246146
й	_1 68/108	3 259074	_1 100754
и Ц	2 007005	2 200051	0.017015
	-2.997000	3.200034	-0.017915
C	2.820798	-1.005359	-2.405927
н	3.710147	-1.643457	-2.448291
н	2.044665	-1.502843	-2.998943
С	3.111613	0.384460	-2.976927
н	2.220276	1.015577	-2.932988
н	3.429181	0.310215	-4.020441
н	3 912459	0 886219	-2 425011
C	3 607420	-0.236058	0 308078
ŭ	2 571002	0.200000	0.120425
	3.57 1963	0.042950	0.129423
Н	3.341575	-0.377126	1.362060
С	5.005861	-0.782224	0.014923
н	5.069212	-1.860817	0.182949
Н	5.740620	-0.307413	0.671444
Н	5.310255	-0.584557	-1.016020
С	-1.360203	-2.779611	2.160055
H	-2,405249	-2.541769	1,940606
н	-1 296065	-3 863488	2 313341
Ċ	-0.003523	-2 010867	3 /08061
Ц	-0.303323	-2.013007	2 662920
	0.130223	-2.243033	3.003039
н	-1.520368	-2.298424	4.266639
н	-0.990111	-0.941248	3.257632
С	-1.081373	-3.477288	-0.673674
Н	-0.660510	-3.150903	-1.632927
Н	-0.693429	-4.486540	-0.493211
С	-2.611311	-3.493473	-0.745331
Н	-3.046208	-3.968165	0.137343
Н	-2.946135	-4.054971	-1.621650
Н	-3.017823	-2.482561	-0.822117
C	-3 673857	0 504215	0 501737
й	-3 730382	-0 587969	0 445559
÷.	2 265550	0 721202	1 500770
	-3.303339	4 426207	1.320770
	-5.029065	1.130287	0.178500
н	-4.988418	2.229146	0.204212
Н	-5.779352	0.821157	0.909232
Н	-5.388532	0.838112	-0.810055
С	-2.890184	0.985090	-2.291070
Н	-3.772100	1.631961	-2.343679
н	-2.109850	1.446557	-2.904239
C	-3 213774	-0 417171	-2 811150
ŭ	2 33/310	1 060520	2.011100
	-2.334319	-1.009529	-2.114012
н	-3.550938	-0.375548	-3.850377
н	-4.006773	-0.892406	-2.226542
С	1.454399	2.353792	2.186858
Н	2.493130	2.058529	2.003266
н	1.463730	3.426529	2.405533
С	0.885429	1.576300	3.374240
н	-0.161418	1.832127	3.563677
Н	1,450644	1.809226	4,280965
н	0 938017	0 400705	3 203172
Ċ	1 500074	2 100051	0.200110
С Ц	1.0229/1	3.102231	-0.393080
	2.303000	2.000302	-0.902590
Н	0.893112	3.267334	-1.486795
С	1.969611	4.559759	-0.099794
Н	1.127546	5.165120	0.248303
Н	2.450804	5.110407	-0.913187
Н	2.691265	4.485360	0.717447
Р	2.200796	-0.965861	-0.658892

Р	-0.395639	-2.350899	0.644758
Р	-2.233125	0.998183	-0.557625
Р	0.552548	2.129186	0.585489
Мо	-0.056304	-0.073247	-0.209677
Н	0.847043	-0.265052	1.196154
Н	-0.877491	0.232981	1.233658
Н	0.234378	0.925203	-1.605757

Sum of electronic and zero-point Energies= -2225.967024 Sum of electronic and thermal Free Energies= -2226.036119

78			
INT	2B		
С	0.210457	0.989834	-2.145953
Н	0.388170	-1.220893	-1.707377
С	2.282915	-2.763636	-0.250438
н	1.986179	-3.184626	-1.216846
н	3.270185	-3.100435	-0.011908
ц	1.201309	-3.122437	1 708268
н	1 162386	-4 207046	0.942368
C	-1.061019	2.588310	1.586917
Ĥ	-1.168709	1.910804	2.438868
Н	-0.942497	3.600253	1.985743
С	-2.268652	2.480192	0.663775
Н	-2.200868	3.220035	-0.141190
Н	-3.199807	2.680318	1.200483
С	3.272901	-0.733836	-2.069483
н	4.111238	-1.438333	-2.077870
	2.3767833	-1.045259	-2.000470
н	2 947084	1 413297	-2.320030
н	4.223223	0.763433	-3.317825
Н	4.523014	0.996103	-1.595863
С	3.619225	-0.394706	0.783259
Н	3.747636	0.682419	0.648692
Н	3.166566	-0.528923	1.769312
С	4.985391	-1.084427	0.719548
н	4.914186	-2.158240	0.909213
н	5.650266	-0.664729	1.479994
	3.400401 1 351775	-0.945165	-0.250656
н	-2 411366	-2.734414	1 764092
н	-1.215287	-3.801321	2.204142
С	-0.956423	-1.891829	3.202730
Н	0.094891	-2.032007	3.470653
Н	-1.557728	-2.173177	4.071753
Н	-1.105923	-0.826686	3.010320
С	-1.097251	-3.669930	-0.714311
н	-0.453387	-3.665389	-1.599278
н С	-0.981899	-4.645399	-0.227473
н	-2.000110	-3.447295	-0.266200
н	-2.869915	-4.220284	-1.830926
Н	-2.679741	-2.478366	-1.611885
С	-3.542963	-0.154230	0.867417
Н	-3.563763	-1.159464	0.437240
Н	-3.092306	-0.253063	1.860592
С	-4.963090	0.408810	0.966039
н	-4.978415	1.421220	1.379037
н	-5.571308	-0.219005	1.623506
С	-3.455491	0.430745	-0.009020
н	-4 129269	1 835144	-1 383415
н	-2.610807	1.879138	-2.272227
C	-3.723919	0.041460	-2.535276
H	-2.869235	-0.530971	-2.904202
Н	-4.289169	0.393655	-3.402404
Н	-4.372059	-0.636787	-1.972175
С	1.738809	2.210377	2.061894
Н	2.727259	2.087476	1.614884

Н	1.689035	3.240530	2.428005	
С	1.539175	1.238034	3.226328	
Н	0.625859	1.463008	3.783332	
Н	2.376010	1.314466	3.925993	
Н	1.467884	0.204373	2.883148	
С	0.893122	3.523846	-0.391360	
Н	1.793273	3.239961	-0.947678	
Н	0.090559	3.574616	-1.133837	
С	1.083469	4.886058	0.280830	
Н	0.202947	5.187732	0.854984	
Н	1.252842	5.652353	-0.480612	
Н	1.946166	4.896855	0.951084	
0	0.331427	1.585354	-3.130498	
Р	2.352639	-0.918494	-0.473027	
Р	-0.403519	-2.389436	0.433746	
Р	-2.321735	0.801640	-0.151012	
Р	0.488168	2.077821	0.700989	
Мо	-0.034336	-0.121849	-0.474577	
Н	0.071569	-0.224536	1.253118	
Н	-1.250310	-0.743983	-1.465550	

Sum of electronic and zero-point Energies= -2339.349168 Sum of electronic and thermal Free Energies= -2339.418681

79

IN 12			
С	-0.359712	-0.023570	3.444373
Н	-0.479267	-1.527610	1.335858
С	-2.021858	-2.797453	-0.840524
Н	-1.951052	-3.494021	0.001242
Н	-2.911163	-3.077397	-1.410569
С	-0.760655	-2.871263	-1.704190
Н	-0.868399	-2.232837	-2.586353
Н	-0.575722	-3.892975	-2.052078
С	0.748474	3.315503	-0.328588
Н	1.190235	3.354665	-1.329200
Н	0.385084	4.321714	-0.102889
С	1.782503	2.841746	0.689240
Н	1.378005	2.894551	1.706329
Н	2.681838	3.463559	0.662984
С	-3.376255	-1.437452	1.303130
Н	-4.202445	-2.059845	0.944018
Н	-2.803873	-2.043436	2.013033
С	-3.909692	-0.176052	1.986154
Н	-3.093427	0.458611	2.342041
Н	-4.534269	-0.435757	2.845204
Н	-4.524413	0.421132	1.305228
С	-3.332098	-0.242259	-1.340033
Н	-3.483249	0.774533	-0.965953
Н	-2.744745	-0.148340	-2.259441
С	-4.690166	-0.887460	-1.629138
Н	-4.590474	-1.905778	-2.013234
Н	-5.228682	-0.307430	-2.384319
Н	-5.318949	-0.926107	-0.736014
С	2.090334	-2.335044	-1.954342
Н	2.985771	-1.985906	-1.430552
Н	2.253926	-3.394737	-2.182190
С	1.872162	-1.544628	-3.246116
Н	1.074736	-1.984639	-3.850937
Н	2.781777	-1.545531	-3.853239
Н	1.603081	-0.507001	-3.039755
С	1.035588	-3.736051	0.324233
Н	0.141382	-3.882720	0.937356
Н	1.111744	-4.594042	-0.354449
С	2.267893	-3.658306	1.222120
Н	3.184638	-3.523553	0.640294
Н	2.377563	-4.582928	1.795798
Н	2.181654	-2.830916	1.930248
С	3.150184	1.153132	-1.221320
Н	3.499396	0.137693	-1.425784
Н	2.422553	1.374679	-2.007471

С	4.317718	2.141467	-1.262298
H	3.981733	3.175419	-1.145420
Н	4.836023	2.074239	-2.223282
Н	5.052437	1.937931	-0.478676
С	3.486072	0.739877	1.643408
Н	4.115205	1.632958	1.719356
Н	2.957917	0.635051	2.596794
С	4.343207	-0.496823	1.369369
Н	3.723836	-1.386184	1.248016
Н	5.029418	-0.677636	2.201063
Н	4.947023	-0.374056	0.465734
С	-1.354840	2.491422	-2.103405
Н	-2.406026	2.198484	-2.131273
Н	-1.327958	3.578870	-2.229087
С	-0.580222	1.805978	-3.229610
Н	0.476417	2.091267	-3.226446
Н	-0.993880	2.091908	-4.200586
Н	-0.625472	0.718760	-3.137057
С	-1.946270	2.928841	0.727845
Н	-2.774046	2.220537	0.819918
Н	-1.474043	2.967411	1.714432
С	-2.467577	4.309697	0.319192
Н	-1.662117	5.040349	0.204581
Н	-3.145303	4.692097	1.087593
Н	-3.023719	4.271444	-0.620705
0	-0.245935	-0.804790	4.293727
0	-0.492056	0.809831	2.619231
Р	-2.222857	-1.090876	-0.108589
Р	0.698864	-2.242699	-0.733079
Р	2.183394	1.051677	0.363349
Р	-0.700464	2.139446	-0.402752
Мо	0.041346	-0.218237	0.372088
н	0.201054	-0.194293	-1.315068
н	1.182852	-0.877598	1.442617

Sum of electronic and zero-point Energies= -2414.556736 Sum of electronic and thermal Free Energies= -2414.630036

78 INT3B

С	0.527487	1.387887	-1.828442
Н	0.569450	-0.884835	-1.896841
С	3.163888	-1.025540	1.352745
Н	3.638727	-1.951773	1.017603
Н	3.933951	-0.456039	1.880529
С	1.990636	-1.345523	2.293811
Н	1.752642	-0.476889	2.911801
Н	2.255692	-2.168059	2.966912
С	-2.772251	1.620074	0.950434
Н	-2.848598	0.893164	1.764380
Н	-3.326810	2.512416	1.254095
С	-3.314866	1.033951	-0.353217
Н	-3.326255	1.795041	-1.139881
Н	-4.341237	0.675578	-0.239077
С	3.570531	-0.989714	-1.519250
Н	4.615954	-1.088619	-1.207732
Н	3.153568	-2.002619	-1.551021
С	3.474093	-0.331449	-2.897644
Н	2.439110	-0.267578	-3.243175
Н	4.038984	-0.909318	-3.633948
Н	3.878711	0.684231	-2.890741
С	3.545202	1.539619	-0.064789
Н	3.179824	2.153049	-0.894353
Н	3.166476	2.007650	0.850459
С	5.073824	1.477418	-0.061635
Н	5.458728	0.835067	0.736222
Н	5.488818	2.476974	0.094671
Н	5.466229	1.105415	-1.011342
С	-0.693713	-2.478912	2.611687
Н	-1.446527	-3.048211	2.058352
Н	-0.120072	-3.206236	3.197972

С	-1.376060	-1.467856	3.528040	
Н	-0.656618	-0.951092	4.166500	
Н	-2.098207	-1.968041	4.179298	
н	-1.911029	-0.710634	2.948638	
С	1.032084	-3.380478	0.560983	
н	1.903689	-3.141152	-0.054967	
H	1.387304	-4.026020	1.372783	
С	-0.000143	-4.124279	-0.288101	
H	-0.869428	-4,430121	0.300603	
H	0.439816	-5.030988	-0.712492	
н	-0.354022	-3.511366	-1.123101	
C	-3.020761	-1.845288	-0.164598	
Ĥ	-2.355159	-2.690672	-0.353409	
н	-2.982037	-1.663764	0.914871	
C	-4.446948	-2.180923	-0.608367	
Ĥ	-5.137704	-1.348568	-0.447603	
н	-4.827568	-3.032992	-0.037783	
н	-4.487969	-2.450533	-1.666604	
C	-2.670135	-0.486091	-2.731531	
Ĥ	-3.762256	-0.495877	-2.811462	
н	-2.317535	0.438583	-3,199903	
C	-2.070015	-1.703411	-3.440328	
Ĥ	-0.977679	-1 661421	-3 453056	
н	-2 407990	-1 741777	-4 479074	
н	-2 368646	-2 641456	-2.962174	
C	-0 414070	2 772860	2 286053	
н	0 562879	3 215254	2 059264	
н	-1 092867	3 599237	2 516210	
c	-0.308079	1 832243	3 480846	
н	-1 285736	1 444228	3 775232	
н	0 112279	2 357904	4 342683	
н	0.338362	0.983013	3 253229	
Ċ	-1 039611	3 513730	-0.397314	
н	0.002208	3 810618	-0.554766	
н	-1 395637	3 173287	-1 372895	
c	-1 871559	4 704651	0.085832	
й	-2 921884	4 440250	0.237710	
н	-1 843694	5 498115	-0.666408	
н	-1 490519	5 128470	1 017795	
$\overline{0}$	0 796191	2 104699	-2 713501	
P	2 653115	-0.078128	-0 186920	
P	0 454812	-1 775655	1.327508	
P	-2 220265	-0.356308	-0 939303	
P	-0.975319	2 009191	0.696159	
Mo	0 203103	0 102977	-0.386385	
Н	1 030510	0 915762	0.857585	
н	0 277581	-1 473596	-1 368372	
	0.211001	1.470000	1.000072	

Sum of electronic and zero-point Energies= -2339.343802 Sum of electronic and thermal Free Energies= -2339.413615

76			
INT:	3B'		
С	0.388203	1.012635	-1.951492
С	3.172245	-0.967034	1.418729
Н	3.750647	-1.846655	1.123530
Н	3.871474	-0.296962	1.926298
С	2.039643	-1.379272	2.379775
Н	1.820953	-0.568176	3.078791
Н	2.341254	-2.247368	2.975468
С	-2.662867	1.763778	0.904488
Н	-2.742739	1.122232	1.787660
Н	-3.162195	2.708467	1.139665
С	-3.288452	1.086049	-0.314033
Н	-3.289952	1.768349	-1.170133
Н	-4.327631	0.800180	-0.129729
С	3.484300	-1.149420	-1.452595
Н	4.544218	-1.179789	-1.177989
Н	3.110382	-2.174370	-1.364094
С	3.304034	-0.637095	-2.882873
Н	2.255142	-0.655107	-3.187014

Н	3.871504	-1.257592	-3.581823
н	3 656000	0 302337	-2 002065
	3.030099	0.392337	-2.992000
С	3.487005	1.487062	-0.209681
н	3 089174	2 028708	-1 073768
	0.000111	2.020100	0.676600
п	3.13/359	2.027643	0.070028
С	5.014852	1.428649	-0.252519
н	5 427663	0.846020	0 576727
	5.427005	0.040023	0.010121
н	5.430159	2.437788	-0.182103
н	5 377549	0 990554	-1 185633
<u> </u>	0.645550	2 521010	2 742404
C	-0.040008	-2.521910	2.742194
Н	-1.414109	-3.060701	2.177431
ы	0.063373	3 27/325	3 286670
	-0.003373	-0.274020	5.200075
С	-1.297134	-1.528854	3.704097
н	-0.554252	-1.011222	4.316413
	1 005100	0.040540	4 200045
п	-1.900120	-2.042040	4.300043
Н	-1.861792	-0.769496	3.155069
C	0 924415	-3 191416	0 389873
Ň	0.024410	-0.101410	0.000070
н	2.014767	-3.269813	0.379623
н	0.549267	-4.131426	0.806332
C	0 202704	2 076794	1 022076
C	0.392704	-2.9/0/04	-1.033076
н	-0.689468	-3.086490	-1.080076
н	0 828000	-3 681887	-1 748119
	0.020000	4.075500	1.140110
н	0.654363	-1.975520	-1.437589
С	-3.175900	-1.807884	0.034371
ц	2 550/33	2 608385	0.085010
	-2.000400	-2.090303	-0.003013
н	-3.140483	-1.559450	1.101475
С	-4 608876	-2 103779	-0 414323
ŭ	T.0000070	4.004000	0.004704
н	-5.254722	-1.224966	-0.331794
Н	-5.046766	-2.889795	0.207488
н	-4 642020	-2 447560	_1 //51271
	-4.042020	-2.447300	-1.401271
С	-2.737703	-0.578852	-2.605199
н	-3.828468	-0.606059	-2.696194
L I	2 202262	0.245079	2 070120
п	-2.393203	0.345976	-3.079129
С	-2.102534	-1.786578	-3.297622
н	-1 011030	-1 722665	-3 278038
	2 411560	1 000606	4 245210
п	-2.411509	-1.828030	-4.345210
Н	-2.400644	-2.729972	-2.829389
C	-0 2/8313	2 803104	2 15/70/
Ň	0.240010	2.000104	2.104704
н	0.746066	3.204429	1.927383
Н	-0.893749	3.657378	2.379862
C	0 182301	1 850201	3 351056
	-0.102301	1.009291	3.331930
н	-1.1/4452	1.502086	3.638506
н	0.248410	2.368834	4.218376
ы	0 425165	0 000070	2 126167
п	0.435105	0.900272	3.120107
С	-0.831235	3.488655	-0.572656
н	0 224898	3 665438	-0 802161
	4.076400	0.000100	1 500500
п	-1.2/0102	3.130330	-1.506522
С	-1.508882	4.778452	-0.102754
н	-2 563033	1 623810	0 1/15202
	-2.303033	4.023043	0.140202
н	-1.470232	5.526692	-0.899525
Н	-1.015385	5.208822	0.771845
\cap	0 560086	1 572056	-2 068555
2	0.000000	1.573050	-2.900000
Р	2.594450	-0.134944	-0.172092
Р	0.452783	-1.737926	1,469664
D	2 20/652	0 406220	0 815000
<u> </u>	-2.294000	-0.400320	-0.015000
Р	-0.850613	2.035200	0.582422
Mo	0.148301	0.012394	-0.300701
ц	1 032240	0.066424	0 767000
п	1.033349	0.900434	0.101203

Sum of electronic and zero-point Energies= -2338.161755 Sum of electronic and thermal Free Energies= -2338.231654

79 INT3			
С	2.422683	-2.656297	0.034435
Н	2.133783	-3.211771	-0.864430
Н	3.442941	-2.961594	0.282095
С	1.457176	-2.965130	1.183725
Н	1.791801	-2.479940	2.106059
Н	1.404408	-4.041648	1.376839
С	-1.293147	2.858150	1.298853

Н	-1.561287	2.381215	2.247238
Н	-1.227258	3.934531	1.482673
C L	-2.336979	2.544106	0.223631
	-2.1152/5	3.108153	-0.089382
п С	-3.333043	0.850827	0.040303
н	3 986237	-1 506235	-2.120170
н	2 366669	-1 314820	-2 785362
С	3 481169	0.545803	-2 638045
Ĥ	2.615635	1.212047	-2.667893
н	3.873275	0.481592	-3.656071
Н	4.251115	1.011594	-2.016094
С	3.676057	-0.063843	0.629547
Н	3.639702	1.006931	0.401632
Н	3.325722	-0.165060	1.662329
С	5.103381	-0.594810	0.479556
Н	5.171487	-1.658124	0.724641
Н	5.776712	-0.061547	1.156526
Н	5.483219	-0.459505	-0.536188
С	-1.216862	-2.670638	2.308877
н	-2.264423	-2.4/3/15	2.065064
Н	-1.129413	-3.745666	2.505914
	-0.802015	-1.856553	3.536263
п	0.238151	-2.044077	3.817733
п	-1.420759	-2.121701	4.393203
п С	-0.911104	-0.765554	-0 454874
н	-0.042100	-3 322298	-0.454674
н	-0.511732	-4 532556	-0.116055
c	-2.354535	-3.528297	-0.682605
Ĥ	-2.905438	-3.813341	0.217892
H	-2.622479	-4.237635	-1.470123
Н	-2.692610	-2.541965	-1.000866
С	-3.591883	-0.043759	0.841716
Н	-3.579259	-1.111558	0.603727
Н	-3.179634	0.046734	1.852975
С	-5.020320	0.500944	0.778186
Н	-5.065299	1.566843	1.017933
Н	-5.654303	-0.021351	1.500301
Н	-5.463226	0.359607	-0.210808
С	-3.185570	0.862689	-1.925749
н	-4.067932	1.499383	-1.798010
Н	-2.499616	1.401713	-2.587148
С Ц	-3.308003	-0.480120	-2.332020
п	-2.003111	-1.090072	-2.724001
н	-4.050500	-0.310239	-1 920747
Ċ	1 421616	2 477267	2 292572
н	2 459077	2 351094	1 966688
H	1.297958	3.529589	2.568126
С	1.125128	1.575189	3.491672
Н	0.092276	1.683944	3.835306
Н	1.779292	1.835612	4.327947
Н	1.284794	0.523364	3.244945
С	1.008801	3.369948	-0.456298
Н	1.963655	2.958829	-0.801209
Н	0.329746	3.311572	-1.313976
С	1.175030	4.823482	-0.003312
н	0.232512	5.253443	0.346431
н	1.520396	5.433946	-0.842138
Н	1.911216	4.919696	0.798352
P	2.373398	-0.849817	-0.429035
г D	-U.2300U/	-2.30/800	0.700019
г D	-2.3403/4 0 363400	0.741059	-U.219255 0 800726
Ma	0.000400	2.1/0/// _0.0/0076	0.009/30 _0 107000
H	0.033394	-0.049070	-0.121330 1 262515
н	-0 743842	0 136733	1 349470
н	0.344010	1.036158	-1.676227
C	0.010409	0.286652	-2.577685
0	0.008037	0.834532	-3.653520

			U
77			
INT4	- 0 0 -=	0.00	0.001
С	-0.057332	-0.025538	-3.061904
Н	-0.102308	-0.131378	-4.153137
C	2.670178	-2.359132	0.420973
н	2.510582	-3.112118	-0.357900
П	3.707990	-2.430437	0.748969
L L	1.090000	-2.572003	1.070090
н	1.940143	-3 608183	1 929408
C	-1 306389	2 508828	1.323400
Ĥ	-1.514753	1.905186	2.286703
н	-1.230593	3.547472	1.733031
С	-2.416719	2.340386	0.356894
Н	-2.219183	2.973228	-0.514714
Н	-3.386031	2.643404	0.763146
С	3.204703	-0.916105	-2.025718
н	4.169994	-1.411050	-1.8//965
П	2.300329	-1.000138	-2.392760
ц	3.300030 2.437230	0.405908	-2.700034
н	3 759789	0.225076	-3 790540
н	4.095434	1.064197	-2.277816
С	3.594694	0.394904	0.516842
Н	3.445348	1.408094	0.131303
Н	3.278622	0.409030	1.563031
С	5.075041	0.014746	0.419163
Н	5.267225	-0.993429	0.795341
н	5.677638	0.704189	1.017765
Н	5.442973	0.064276	-0.608081
ц	-1.000941	-2.334791	2.505562
н	-0.804681	-3 304823	2 943810
С	-0.950403	-1.222058	3.545722
Ĥ	0.056852	-1.163314	3.964944
Н	-1.644352	-1.391181	4.373812
Н	-1.180273	-0.247094	3.105424
С	-0.480127	-3.586281	-0.015168
н	0.251246	-3.652730	-0.826228
Н	-0.351359	-4.4/2/9/	0.616979
С Ц	2 656880	-3.330720	-0.602120
н	-2.030003	-4 440453	-1 183488
н	-2.012480	-2.679962	-1.268513
С	-3.669149	-0.260471	0.871463
Н	-3.645839	-1.318939	0.593305
Н	-3.228966	-0.202438	1.873186
С	-5.107594	0.262322	0.877914
н	-5.157656	1.324497	1.133684
н	-5.703210	-0.279682	1.61/85/
п С	-0.089332	0.127011	-0.093794
н	-4 305018	1 298092	-1.685802
н	-2.742522	1.368445	-2.505676
С	-3.664933	-0.597318	-2.545246
Н	-2.741187	-1.135183	-2.775741
Н	-4.202843	-0.441479	-3.484175
Н	-4.281901	-1.246059	-1.916377
С	1.452580	2.422774	2.156484
Н	2.472300	2.505066	1.774934
Н	1.158680	3.426065	2.481647
С Ц	1.390683	1.449483 1 110707	3.332/10
Н	0.40394 I 2 110202	1.440/0/ 17275/5	3.002240 1 090120
н	1.603599	0.425796	3.013940
c	0.781941	3.270092	-0.532913
-			

O -0.236617 -0.880527 -2.140460

Sum of electronic and zero-point Energies= -2414.572249 Sum of electronic and thermal Free Energies= -2414.643506

Н	1.795256	3.022464	-0.868476
Н	0.139295	3.088068	-1.396057
С	0.701428	4.727866	-0.073337
Н	-0.311113	5.002998	0.235575
Н	0.978130	5.389360	-0.899181
Н	1.378882	4.940437	0.757418
0	0.173060	-1.072769	-2.346373
0	-0.219783	1.074225	-2.489119
Р	2.379967	-0.693976	-0.379248
Р	-0.011461	-2.091787	0.997634
Р	-2.470298	0.588859	-0.263026
Р	0.355911	1.971312	0.723750
Мо	-0.055196	-0.174064	-0.440117

Sum of electronic and zero-point Energies= -2413.391949 Sum of electronic and thermal Free Energies= -2413.463052

77			
INT4			
С	0.429114	-0.897459	-2.289858
С	2.610181	-2.375531	-0.224403
Н	2.303712	-2.739499	-1.208880
Н	3.650257	-2.670901	-0.067873
С	1.699658	-2.908931	0.880612
Н	2.044241	-2.573240	1.864039
Н	1.676170	-4.002843	0.899915
С	-1.125093	2.721895	1.419688
Н	-0.966748	2.197791	2.366439
Н	-1.091918	3.796077	1.626986
C	-2.455320	2.315366	0.792346
н	-2.691416	2.973969	-0.049169
Н	-3.273156	2.417294	1.509907
	3.300034	-0.033778	-1.00/490
	4.374037	-0.403732	-1.412379
П С	3.214030	-0.027301	-2.519400
ц	2 571505	1.430909	-7.2761/1
н	4 247635	1 649219	-2.270141
н	3 898231	2 045587	-1 127196
Ċ	3 357524	-0 017492	1 263068
н	3 513582	1 060217	1 190434
н	2.668982	-0.169655	2.098687
С	4.694780	-0.713865	1.531465
Ĥ	4.565894	-1.777221	1.748104
Н	5.182367	-0.261380	2.399699
Н	5.383014	-0.623092	0.686864
С	-0.845231	-2.648665	2.237072
Н	-1.925265	-2.611218	2.080865
Н	-0.596372	-3.692122	2.464725
С	-0.440548	-1.736549	3.395977
Н	0.638668	-1.761026	3.574180
Н	-0.934179	-2.056637	4.317601
Н	-0.716811	-0.697942	3.198958
С	-0.708224	-3.589340	-0.506878
Н	-0.110350	-3.551589	-1.422727
Н	-0.498158	-4.549850	-0.021548
C	-2.193562	-3.462692	-0.838033
н	-2.818283	-3.544488	0.056671
н	-2.495544	-4.201014	-1.520426
	-2.402200	-2.312070	-1.320900
L L	-3.430001	-0.403396	1.29//00
п	2 883204	-1.431155	2 2/1211
C	-2.003204	0.068657	2.241311
ц	-4.075002	1 092826	1 805610
н	-5 374644	-0 572353	2 250482
н	-5.462799	0.025292	0.593560
c	-3.516397	0.800581	-1.372749
Ĥ	-4.350619	1.428841	-1.041377
Н	-2.937262	1.390013	-2.091264
С	-4.036980	-0.471173	-2.044835

н	-3.226079	-1.017149	-2.525936
Н	-4.767321	-0.206375	-2.814571
Н	-4.537914	-1.136195	-1.335368
С	1.720002	3.073192	1.135416
Н	2.620262	2.771633	0.596458
Н	1.603390	4.149046	0.968486
С	1.833774	2.789265	2.637871
Н	1.040530	3.293085	3.194936
Н	2.788571	3.159450	3.020152
Н	1.774681	1.721479	2.859076
С	0.038810	3.224809	-1.248064
Н	0.989725	3.172774	-1.786401
Н	-0.688893	2.682551	-1.862124
С	-0.395015	4.684218	-1.068393
Н	-1.374849	4.765405	-0.591109
Н	-0.462538	5.171062	-2.044970
Н	0.320186	5.252881	-0.468407
0	-0.827230	-0.556962	-2.255022
0	1.125763	-1.458540	-3.107711
Р	2.441914	-0.531140	-0.271812
Р	-0.031684	-2.276102	0.618657
Р	-2.409906	0.575445	0.103630
Р	0.286207	2.242911	0.316719
Мо	-0.003511	-0.075342	-0.416591
Н	0.220001	-0.018406	1.310875

Sum of electronic and zero-point Energies= -2413.389960 Sum of electronic and thermal Free Energies= -2413.459720

79 **INT4'**

С	-0.244140	1.462737	-2.077325
Н	-0.008133	-1.229503	-1.960341
С	2.224135	-2.825421	-0.211070
Н	1.931098	-3.269453	-1.168388
Н	3.188179	-3.260501	0.063610
С	1.168545	-3.092119	0.860384
Н	1.467735	-2.636417	1.809308
Н	1.034356	-4.163477	1.042886
С	-1.045321	2.658265	1.470045
Н	-1.293492	2.093383	2.374781
Н	-0.898002	3.699414	1.772252
С	-2.160734	2.534117	0.434504
Н	-1.931453	3.124717	-0.456902
Н	-3.112019	2.896693	0.832329
С	3.317357	-0.849839	-2.052112
Н	4.038443	-1.674178	-2.082161
Н	2.597419	-1.011932	-2.859091
С	4.027255	0.495176	-2.245210
Н	3.315646	1.321340	-2.220743
Н	4.525124	0.511582	-3.218442
Н	4.793920	0.664381	-1.484221
С	3.585034	-0.475211	0.822940
Н	3.749937	0.593647	0.656567
Н	3.084025	-0.561194	1.790936
С	4.924071	-1.218735	0.843445
Н	4.801808	-2.272486	1.106639
Н	5.587661	-0.773785	1.590343
Н	5.434680	-1.170014	-0.121417
С	-1.490871	-2.777691	1.869521
Н	-2.533339	-2.556658	1.638685
Н	-1.420596	-3.865701	1.985561
С	-1.070960	-2.079444	3.162893
Н	-0.063655	-2.368660	3.473721
Н	-1.753520	-2.350407	3.972830
Н	-1.084511	-0.993134	3.056381
С	-1.074425	-3.651643	-0.833523
Н	-0.448613	-3.571660	-1.727863
Н	-0.870092	-4.631024	-0.385903
С	-2.552766	-3.533688	-1.206920
Н	-3.201199	-3.675088	-0.337733

н	-2.818999	-4.298624	-1.941025
Н	-2.777782	-2.560597	-1.643791
С	-3.393827	-0.038523	1.115045
Н	-3.606223	-1.037102	0.720766
Н	-2.767263	-0.179962	1.999164
С	-4.704411	0.656195	1.494744
Н	-4.533305	1.644401	1.929102
Н	-5.238674	0.061186	2.241125
Н	-5.368578	0.774862	0.635453
С	-3.510916	1.032168	-1.577422
Н	-4.370039	1.581686	-1.179141
Н	-2.993857	1.693212	-2.273882
С	-3.967397	-0.240572	-2.286211
Н	-3.122254	-0.753613	-2.754558
Н	-4.675980	0.007121	-3.081138
Н	-4.466259	-0.941018	-1.609180
С	1.589956	1.927061	2.355513
Н	2.631914	1.821110	2.043822
Н	1.503101	2.915892	2.816788
С	1.218646	0.846885	3.370460
Н	0.198248	0.975791	3.742273
Н	1.888841	0.893148	4.233405
Н	1.285168	-0.153584	2.938609
С	1.303894	3.368965	-0.147178
Н	2.171700	2.950117	-0.666244
Н	0.584275	3.621016	-0.930927
С	1.692892	4.620246	0.645518
Н	0.848619	5.033902	1.204994
Н	2.036282	5.397368	-0.042711
Н	2.504071	4.425566	1.351284
0	-0.922530	2.307057	-2.620137
0	0.951485	1.058376	-2.145053
Р	2.360334	-0.995735	-0.471794
Р	-0.476143	-2.370137	0.372099
Р	-2.335087	0.785632	-0.168835
Р	0.554099	1.972634	0.818721
Мо	0.006435	-0.056862	-0.548487
Н	-0.108421	-0.190630	1.146582
Н	-0.802006	-0.885894	-1.967571

Sum of electronic and zero-point Energies= -2414.567755 Sum of electronic and thermal Free Energies= -2414.636727

80

INT	5-l		
С	0.121724	-0.089972	2.801932
н	0.167393	-0.099440	3.897976
С	-2.577378	-2.565744	0.496020
н	-2.215482	-2.966031	1.449579
Н	-3.621827	-2.873646	0.395230
С	-1.731998	-3.091175	-0.669463
н	-2.098870	-2.685774	-1.616292
Н	-1.782828	-4.182749	-0.736937
С	1.384961	2.961646	-0.959879
Н	1.602593	2.529249	-1.937985
н	1.410701	4.049442	-1.063793
С	2.416165	2.487589	0.066023
н	2.238029	2.966990	1.035251
н	3.426529	2.768771	-0.244079
С	-3.218860	-0.366349	2.257614
н	-4.153458	-0.934117	2.318321
н	-2.550672	-0.791471	3.014306
С	-3.462853	1.120957	2.525233
н	-2.525526	1.679700	2.498448
н	-3.914206	1.259858	3.511314
н	-4.146684	1.554066	1.789276
С	-3.659850	-0.069704	-0.627886
н	-3.636127	1.019781	-0.522012
н	-3.230677	-0.286424	-1.610050
С	-5.095407	-0.589066	-0.519573
Н	-5.151990	-1.669321	-0.676886

н	-5 721062	-0 117255	-1 282383
ü	5 520402	0.265222	0 454257
	-0.059402	-0.303322	0.454557
C	0.854216	-3.11/306	-2.069904
н	1.804768	-2.580611	-2.136164
Н	1.092053	-4.177519	-1.927636
С	0.055147	-2.937437	-3.365570
Н	-0.860906	-3.533804	-3.357734
н	0.660150	-3.279061	-4.209627
н	-0 209403	_1 895790	-3 546597
Ċ	0.710280	3 7/61/0	0 746247
iii ii	0.719209	-3.740149	1 717100
п	0.290518	-3.492050	1.717190
н	0.357560	-4.741984	0.464895
С	2.248035	-3.728293	0.819097
Н	2.703222	-4.058897	-0.118306
Н	2.598757	-4.396434	1.610194
Н	2.616659	-2.726759	1.042226
С	3,613747	-0.129485	-0.718551
н	3 575790	-1 201369	-0 495539
L L	2 210746	0.011527	1 720059
0	5.210740	-0.011327	-1.729930
L.	5.040058	0.397149	-0.609821
н	5.109283	1.462103	-0.850336
Н	5.687995	-0.130877	-1.321016
Н	5.470628	0.250872	0.387141
С	3.173126	0.638111	2.065903
Н	4.043177	1.298711	1.983603
Н	2.481419	1.132688	2.754226
С	3.597672	-0.728347	2.606552
H	2 740424	-1.388309	2 747700
н	4 097091	-0 609479	3 572339
н	4 303088	-1 225812	1 935372
Ċ	-1 /2/002	2 766753	_1 0108/0
ŭ	2 109200	1 010105	1 000925
	-2.100309	1.919190	-1.999020
	-2.017330	3.043132	-1.030012
C	-0.736529	3.001768	-3.268991
Н	-0.079000	3.874569	-3.241372
н	-1.494878	3.184414	-4.035366
Н	-0.148265	2.136188	-3.580296
С	-0.867413	3.552362	0.843671
Н	-1.932132	3.339267	0.988209
Н	-0.371256	3.259128	1.770327
С	-0.646358	5.037643	0.542272
H	0.416597	5,291530	0.526213
н	-1 115840	5 648108	1 318755
н	-1 078447	5 336757	-0 417239
\sim	0.204740	1 150051	2 12/200
0	0.294749	-1.150051	2.134320
D D	-0.101509	0.904347	2.170001
P	-2.449355	-0.713368	0.612660
Р	0.039602	-2.555623	-0.493988
Ρ	2.359902	0.647656	0.394461
Р	-0.313127	2.381754	-0.479501
Мо	-0.054549	-0.075731	0.176656
С	0.490493	0.023074	-1.841800
0	-0.780607	-0.204216	-1.806521
0	1.278619	0.197946	-2.748707

Sum of electronic and zero-point Energies= -2601.995038 Sum of electronic and thermal Free Energies= -2602.067630

77 INT5 С 0.429898 1.201062 -2.075318 С 2.095307 0.084440 -2.878275 Н 1.758120 -3.405454 -0.814247 -3.305248 Н 3.063016 0.362401 С 1.070768 -3.030252 1.211579 1.403906 Н -2.491645 2.105123 н 0.953226 -4.082324 1.492068 С -0.985500 2.714076 1.459367 Н -1.192733 2.047140 2.301060 Н -0.878691 3.725141 1.863472 С -2.117269 2.646565 0.432468

Н	-1.912579	3.314619	-0.411001	80	
Н	-3.066054	2.969961	0.869966	INT	6-I
С	3.154507	-1.231596	-2.046129	С	-0
Н	3.907276	-2.024592	-1.975853	С	3
н	2.386312	-1.567901	-2.749316	н	3
С	3.791319	0.076071	-2.524281	Н	4
Н	3.057964	0.882820	-2.588221	С	2
Н	4.217593	-0.058413	-3.521726	Н	3
Н	4.599920	0.400073	-1.862805	Н	3
С	3.582747	-0.426065	0.735490	С	-2
Н	3.737779	0.614123	0.433055	Н	-1
Н	3.134716	-0.396324	1.731838	Н	-2
С	4.918453	-1.175175	0.765070	С	-3
н	4.802271	-2.201542	1.121922	н	-3
н	5.613038	-0.671446	1.443057	Н	-3
Н	5.388090	-1.211826	-0.220942	С	3
C	-1.556484	-2.511888	2.2/11/3	н	4
н	-2.609141	-2.3/128/	2.011/51	Н	2
Н	-1.453604	-3.551/45	2.603153	C	2
C	-1.159703	-1.550590	3.394448	н	1
н	-0.123707	-1.701435	3.710644	н	3
н	-1.795811	-1.705089	4.270535	н	3
Н	-1.254119	-0.508739	3.078889	C	3
C	-1.251928	-3.667029	-0.376654	н	2
н	-0.618418	-3.683501	-1.267462	н	2
н	-1.139092	-4.626110	0.141652	C II	4
	-2.704301	-3.432375	-0.798035	п	5 5
п	-3.385185	-3.423029	0.008090		5 5
п	-3.039120	-4.227930	-1.409970	П	5
	-2.790001	-2.400907	-1.333030	L L	0
L L	-3.342402	0.103911	0.000437		-0
п	3 108078	-0.931203	1 810800	П С	1
п С	-3.100078	0.070152	0.830660	ц	2
ц	4.941230	1 760760	1 156207	ц	- 1
Ц	-4.924000	0 178309	1.130237	Ц	1
н	-5.416011	0.686953	-0 152809	C	0
C	-3 147288	1 232034	-1 876311	й	1
й	-4 035448	1 841896	-1 678161	н	1
н	-2 461979	1 841640	-2 473945	Ċ	-0
C	-3 510704	-0.049514	-2 629054	н	-0
н	-2.618901	-0.649651	-2.826774	н	-0
н	-3.977275	0.199068	-3.585890	н	-1
н	-4.223284	-0.658277	-2.064228	С	-2
C	1.767277	2.205996	2.177196	Ĥ	-2
H	2.781926	2.059986	1.796600	н	-2
н	1.728471	3.225324	2.573160	С	-4
С	1.457122	1.208070	3.293778	Н	-5
Н	0.487688	1.411116	3.756302	Н	-4
н	2.215830	1.279336	4.078357	Н	-4
Н	1.430564	0.181223	2.925569	С	-3
С	1.175580	3.645515	-0.271930	Н	-4
Н	2.085314	3.340506	-0.801680	Н	-3
Н	0.419356	3.790700	-1.050061	С	-3
С	1.413602	4.955346	0.485244	Н	-2
Н	0.532722	5.269851	1.052325	Н	-3
Н	1.645884	5.755326	-0.223291	Н	-3
Н	2.254117	4.880748	1.179065	С	0
0	-0.404713	-1.171752	-1.934339	Н	1
0	0.628292	1.881246	-2.984490	Н	-0
Ρ	2.298288	-1.101188	-0.412201	С	0
Р	-0.577534	-2.326091	0.704854	Н	-0
Р	-2.285429	0.936530	-0.266848	н	1
Р	0.625056	2.162350	0.713799	Н	1
Mo	-0.019697	-0.120695	-0.568459	C	-1
н	0.094732	-0.045672	1.196966	н	-1
				н	-2

Sum of electronic and	zero-point Energies= -24	413.391515
Sum of electronic and	thermal Free Energies=	-2413.463310

1001	80			
9966	INT	5-I	4 00 4707	4 004045
16129	C	-0.339334	1.384/3/	-1.991945
0000		3.383333	-1.242019	-0.779734
19310		3.102079	-1.021092	-1./02/00
2420 I 182221		4.470007	-1.122403	-0.713000
0221	с н	2.071740	-2.200172	1 202261
2805	н	3 377032	-3 1733/7	0.215004
5490	C	-2 217285	1 766313	1 705472
3055	н	-1 759477	1 235903	2 535918
1838	н	-2 749385	2 629173	2 116896
5070	C	-3.196983	0.833613	0.981858
1922	Ĥ	-3.853141	1.409561	0.321501
3057	H	-3.837271	0.338108	1.716118
20942	C	3.187154	1.347406	-2.108865
/1173	н	4.259805	1.153865	-2.216362
1751	Н	2.691895	0.916491	-2.985197
)3153	С	2.917054	2.853078	-2.016849
94448	Н	1.858809	3.063145	-1.839092
0644	Н	3.197511	3.345583	-2.951119
70535	Н	3.494655	3.315558	-1.211844
78889	С	3.313739	1.216008	0.826434
76654	Н	2.857506	2.207577	0.899110
67462	Н	2.948247	0.657008	1.690351
1652	С	4.841013	1.318504	0.817208
98635	Н	5.314709	0.333334	0.813063
58596	Н	5.184583	1.841298	1.714101
59970	Н	5.210573	1.873740	-0.049237
33830	C	0.583797	-3.487959	1.661567
16437	н	-0.417577	-3.181204	1.966558
07942	н	0.520253	-4.525597	1.318161
0890		1.000090	-3.401223	2.830342
0009		2.020007	-3.795850	2.014970
0297		1.141172	-3.909010	3.00/009
22000		0.027770	-2.370301	1 210057
76311	с ц	1 325361	3 168650	2 108045
78161	н	1.523301	-3.100030	-2.100045
73945	C	-0 489847	-4 166574	-0.374023
29054	н	-0.937561	-4 644960	-0 627106
26774	н	-0 477802	-4 906748	-2 308780
35890	н	-1.132781	-3.343396	-1.820079
64228	C	-2.968074	-2.108954	0.609423
7196	Ĥ	-2.459517	-2.880853	0.025604
6600	H	-2.554353	-2.141081	1.617728
3160	С	-4.481389	-2.341939	0.611198
3778	н	-5.016874	-1.557571	1.154235
6302	н	-4.706895	-3.290099	1.107222
8357	Н	-4.892679	-2.393892	-0.400061
5569	С	-3.375476	-0.309415	-1.653459
1930	Н	-4.438502	-0.324037	-1.388953
1680	Н	-3.157307	0.692186	-2.038389
50061	С	-3.067319	-1.366612	-2.714869
5244	Н	-2.010614	-1.355047	-2.992166
2325	Н	-3.657992	-1.177731	-3.615356
23291	Н	-3.318959	-2.371069	-2.362138
9065	С	0.185493	3.496494	1.588832
34339	н	1.021556	3.782277	0.940288
34490	Н	-0.398379	4.406439	1.759380
2201	C	0.697576	2.953014	2.924696
14854	н	-0.128328	2.683782	3.588772
00040	H	1.28/662	3.721454	3.431775
3199 69450	Н	1.321647	2.0/2016	2.184/24
00409		-1.//9405	3.300903	-0.526357
00600	Н	-1.013389	4.0010/1	-1.110897
-2/13 301515	н	-2.333920	2.91 1031	-1.240852
es= -2413.463310	с ц	-2.104910	4.009100 1 (172100	0.101030
	П	-3.107705	5 263007	-0 581150
	Н	-2.188945	5.166931	0.917677
		-Z. 100340	0.100301	0.31707

0	0.173358	-0.935051	-2.054714
0	-0.483090	2.075234	-2.901978
Р	2.557773	0.409025	-0.649691
Р	1.025831	-2.449819	0.172262
Р	-2.405868	-0.489043	-0.080285
Р	-0.876265	2.356578	0.575271
Мо	0.070517	-0.062675	-0.579182
С	0.017784	-0.388619	2.640216
0	-1.073817	-0.937643	2.750228
0	0.556028	0.071094	1.552385
Н	0.650308	-0.222053	3.531805

Sum of electronic and zero-point Energies= -2601.988271 Sum of electronic and thermal Free Energies= -2602.063346

75			
INT6			
С	2.509512	-2.584164	-0.285257
Н	2.240594	-2.976659	-1.271852
Н	3.522636	-2.931090	-0.065313
С	1.513567	-3.060215	0.775446
н	1.799242	-2.692371	1.765675
Н	1.475512	-4.153052	0.826927
С	-1.060546	2.593542	1.554619
Н	-0.847714	1.991930	2.442273
Н	-1.033585	3.646403	1.851489
С	-2.423251	2.213398	0.972605
Н	-2.760966	2.973150	0.261005
Н	-3.178105	2.159522	1.761380
С	3.337608	-0.357410	-1.979679
н	4.294651	-0.888765	-1.991651
Н	2.710800	-0.771409	-2.774957
C	3.533653	1.145705	-2.195237
н	2.567995	1.658205	-2.218451
н	4.034456	1.334268	-3.148327
н	4.146457	1.594409	-1.406575
	3.595276	-0.200302	0.947050
н	3.553202	0.887967	0.995961
н	3.144939	-0.559964	1.877343
	5.049721	-0.002000	0.819804
п	5.138394	-1./50/8/	0.779608
	5.625059	-0.321137	1.000100
	0.027 140 1 150205	-0.202409	-0.074100
L L	-1.109090	-2.000292	1.090020
	-2.210907	2.010040	2 060552
Ċ	-0.940709	-2.053760	2.009555
й	0.171021	-2.000700	3 116916
н	-1 487520	-2.122203	3 977830
н	-1.407020	-0.995938	2 981891
C	-0 752427	-3 619787	-0.885402
н	-0.107170	-3 471884	-1 757113
н	-0 552667	-4 624649	-0 494871
C	-2 218557	-3 480017	-1 294584
Ĥ	-2.894337	-3.672146	-0.455735
Н	-2.463355	-4.199597	-2.080491
H	-2.421527	-2.481598	-1.683258
С	-3.613602	-0.482590	0.894175
н	-3.576189	-1.452475	0.390071
Н	-3.241248	-0.644167	1.911386
С	-5.048676	0.051405	0.915617
Н	-5.113642	1.041454	1.375714
Н	-5.689621	-0.620171	1.493476
Н	-5.467510	0.119477	-0.091410
С	-3.150981	1.050410	-1.564275
Н	-4.100205	1.540946	-1.323457
Н	-2.499760	1.810845	-2.005145
С	-3.358049	-0.095602	-2.552095
Н	-2.401500	-0.544112	-2.830044
Н	-3.831948	0.279790	-3.463247
Н	-4.009515	-0.871942	-2.140233

С	1.794934	2.896128	1.243497
Н	2.661528	2.657383	0.620090
Н	1.707148	3.987573	1.246192
С	1.967749	2.377672	2.675008
Н	1.222498	2.816571	3.343055
Н	2.953803	2.648571	3.061943
Н	1.863479	1.291599	2.723121
С	0.095675	3.409315	-1.049517
Н	1.047072	3.393346	-1.592978
Н	-0.638885	2.967975	-1.728491
С	-0.296801	4.842842	-0.681713
Н	-1.282110	4.884079	-0.208895
Н	-0.338573	5.461812	-1.582168
Н	0.421585	5.306392	-0.000280
0	0.101206	-0.230814	-2.153045
Р	2.450290	-0.730098	-0.406240
Р	-0.183659	-2.399934	0.393564
Р	-2.354606	0.583604	0.049037
Р	0.314440	2.219527	0.364112
Мо	0.024550	-0.094841	-0.436903
Н	0.495156	-0.175795	1.373863

Sum of electronic and zero-point Energies= -2300.077126 Sum of electronic and thermal Free Energies= -2300.146722

78 TS1			
С	2.619179	2.003493	-1.136065
Н	2.768801	1.420105	-2.049602
н	3.004646	3.010135	-1.323155
С	3.332052	1.339820	0.041849
н	3.260839	1.964078	0.938736
н	4.395727	1.191925	-0.165119
С	3.142208	-0.609274	2.162751
H	4.226365	-0.453353	2.161340
н	2.700476	0.167640	2.794268
С	2.802998	-1.998806	2.707894
H	1.722759	-2.142314	2.791372
н	3.233279	-2.128519	3.704537
н	3.201638	-2.794166	2.071062
С	3.419910	-1.516334	-0.605702
н	2.874331	-2.458594	-0.495585
н	3.243599	-1.193772	-1.637384
С	4.912715	-1.706765	-0.329795
Н	5.470907	-0.770103	-0.418197
Н	5.340561	-2.408492	-1.051288
н	5.094183	-2.111975	0.668925
С	0.606138	3.511948	0.313701
н	-0.424965	3.499765	0.678782
Н	1.223190	3.267682	1.184836
С	0.962581	4.889745	-0.248727
Н	0.278101	5.192741	-1.045058
Н	1.979726	4.919380	-0.650022
Н	0.902823	5.644583	0.540433
С	0.101802	2.643253	-2.437792
Н	-0.950716	2.886504	-2.259184
Н	0.607733	3.578109	-2.699100
С	0.226322	1.631947	-3.579487
Н	-0.238611	2.029421	-4.485820
Н	-0.261011	0.688297	-3.324068
Н	1.272032	1.414604	-3.815156
С	-3.152336	-1.511022	-0.417473
Н	-3.414019	-0.923184	-1.304327
н	-3.796706	-2.394919	-0.410017
С	-3.345106	-0.678311	0.854027
Н	-3.155874	-1.291646	1.741149
Н	-4.370824	-0.306573	0.930753
С	-2.940097	2.016925	-0.143227
н	-2.229850	2.844289	-0.231118
н	-5.037740	1.739213	0.423459
н	-4.234906	3.067522	1.270318

-1.286479	-3.586882	0.364792
-1.474289	-3.321017	1.410432
-2.114886	-4.226453	0.043149
0.046415	-4.327666	0.231591
0.237272	-4.626055	-0.803361
0.041297	-5.233905	0.843090
0.881877	-3.703612	0.560382
-1.226984	-2.539643	-2.367229
-1.367541	-1.628057	-2.956914
-0.183365	-2.833741	-2.514121
-2.185536	-3.645063	-2.816200
-2.042640	-3.856348	-3.879568
-3.231949	-3.359317	-2.676350
-2.014516	-4.577917	-2.272160
0.081129	-0.144855	0.135730
-0.822821	0.159340	-1.278051
0.512245	0.826900	1.507803
0.552278	-1.565656	0.996971
0.857881	-0.819373	-1.233895
-0.210789	-1.074568	1.575411
0.787555	2.053556	-0.822562
2.524806	-0.285242	0.449215
-1.367983	-2.009333	-0.604496
-2.121089	0.723984	0.911739
-2.293938	1.385068	2.630577
-1.797928	2.362140	2.633135
-3.357515	1.562601	2.820382
-1.697681	0.488327	3.717399
-2.171683	-0.498005	3.733750
-1.848470	0.940282	4.701662
-0.626355	0.346336	3.561306
-3.006206	1.573706	-1.142997
-4.303249	2.541912	0.314682
-4.700611	3.247747	-0.420305
	-1.286479 -1.474289 -2.114886 0.046415 0.237272 0.041297 0.881877 -1.226984 -1.367541 -0.183365 -2.185536 -2.042640 -3.231949 -2.014516 0.081129 -0.822821 0.512245 0.552278 0.857881 -0.210789 0.787555 2.524806 -1.367983 -2.121089 -2.293938 -1.797928 -3.357515 -1.697681 -2.171683 -1.848470 -0.626355 -3.006206 -4.303249 -4.700611	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Sum of electronic and zero-point Energies= -2227.167198 Sum of electronic and thermal Free Energies= -2227.236354

78 **TS2B**

TS2	В		
С	2.319131	-2.710076	-0.073972
Н	1.975582	-3.271257	-0.950872
Н	3.342181	-3.039532	0.128421
С	1.404339	-2.989155	1.123323
Н	1.785411	-2.485540	2.017692
Н	1.360589	-4.060696	1.344810
С	-0.876655	3.162792	0.768368
Н	-1.226881	2.895272	1.770912
Н	-0.626226	4.227807	0.786187
С	-1.955186	2.863399	-0.269710
Н	-1.628868	3.191305	-1.262946
Н	-2.882467	3.396822	-0.043038
С	3.052711	-0.975771	-2.253524
Н	3.990179	-1.536902	-2.184502
Н	2.372878	-1.561384	-2.878216
С	3.281806	0.403408	-2.874335
Н	2.341614	0.955530	-2.952828
Н	3.705441	0.306268	-3.877568
Н	3.980977	1.001947	-2.281365
С	3.618939	-0.144804	0.478206
Н	3.604962	0.925781	0.251679
Н	3.274776	-0.238979	1.513730
С	5.038260	-0.694303	0.321260
Н	5.089969	-1.766439	0.529421
Н	5.714542	-0.194714	1.020850
Н	5.427960	-0.528163	-0.686222
С	-1.160659	-2.538698	2.440469
Н	-2.222033	-2.343806	2.258414
Н	-1.070265	-3.595038	2.721388
С	-0.653177	-1.633402	3.562021
Н	0.408715	-1.795007	3.769772

н	-1.201919	-1.834721	4.486187
H	-0.789954	-0.581559	3.304646
C	-1.073624	-3.704694	-0.180861
Ĥ	-0.571421	-3.730626	-1.152331
н	-0.826649	-4.643680	0.327945
С	-2.589256	-3.579283	-0.360855
Ĥ	-3.115014	-3.706962	0.588822
н	-2.956311	-4.348675	-1.045411
н	-2.865322	-2.605474	-0.770418
С	-3.522932	0.672208	0.903753
н	-3.784448	-0.384668	0.778941
Н	-2.976416	0.732982	1.850309
С	-4.778690	1.546142	0.945120
Н	-4.538729	2.586755	1.179236
Н	-5.461905	1.188516	1.720820
Н	-5.323148	1.534263	-0.002520
С	-3.283968	1.019365	-1.988795
Н	-3.868107	1.946428	-2.001013
Н	-2.569258	1.086475	-2.815298
С	-4.214802	-0.182195	-2.173996
Н	-3.670809	-1.127027	-2.167684
Н	-4.732127	-0.106970	-3.134557
Н	-4.978815	-0.226616	-1.393981
С	1.604407	2.450462	2.025498
Н	2.653285	2.214970	1.822667
Н	1.556884	3.527516	2.216293
С	1.116551	1.675676	3.247996
н	0.055134	1.852687	3.446368
н	1.674585	1.983100	4.136825
Н	1.251256	0.601049	3.114757
C	1.606912	3.166159	-0.776118
н	2.449429	2.545340	-1.093532
П	0.952256	3.240413	-1.000300
	2.009040	4.347979	-0.329444
п Ц	1.200007	5.177231	0.020404
 Ц	2.333433	1 483275	-1.171120
D	2.034332	-0.007/88	-0 568552
P	-0 311059	-2 326980	0.809403
P	-2 275184	1 034654	-0 422824
P	0.658337	2 153742	0.456971
Mo	-0.045844	-0.067311	-0.235820
Н	0.847341	-0.161274	1.176069
н	-0.873836	0.174767	1.197780
н	0.119465	1.032530	-1.571517
С	-0.175289	-1.203997	-2.411984
0	-1.298507	-1.423882	-2.477873

Sum of electronic and zero-point Energies= -2339.284475 Sum of electronic and thermal Free Energies= -2339.354456

79			
TS2			
С	-0.322875	0.975229	-3.099679
Н	0.450345	-1.429498	-1.553190
С	2.064386	-2.934107	0.376509
Н	1.960548	-3.512555	-0.547265
Н	2.964640	-3.296078	0.879016
С	0.827046	-3.104932	1.259420
Н	0.964405	-2.576674	2.207767
Н	0.643283	-4.159793	1.488999
С	-0.698616	3.244003	0.617788
Н	-1.066628	3.226391	1.648069
Н	-0.345219	4.260648	0.424969
С	-1.813450	2.837860	-0.344140
Н	-1.512558	3.000558	-1.385291
Н	-2.715707	3.433124	-0.177331
С	3.401634	-1.320217	-1.591040
Н	4.197044	-2.027379	-1.332351
Н	2.801103	-1.784170	-2.379774
С	3.995547	0.001354	-2.084521

н	3 211813	0 696427	-2 393190
ц	4 645612	0 172012	2 046528
ü	4.602456	0.172012	1 212101
	4.002400	0.400125	-1.515191
C	3.394443	-0.465899	1.184971
н	3.568324	0.580870	0.917828
н	2.808887	-0.454583	2.110191
С	4.736778	-1.169744	1.401798
н	4.611265	-2.213142	1.701637
н	5.299023	-0.669940	2.195995
н	5.354937	-1.151297	0.500680
С	-2.006534	-2.596941	1.662522
н	-2 904802	-2 138535	1 238538
н	-2 205215	-3 672044	1 726467
Ċ	1 708035	2 033372	3 05/083
Ц Ц	-1.700033	-2.033372	2 557561
	-0.929749	-2.012551	3.337301
	-2.602498	-2.072075	3.082109
Н	-1.3/56/2	-0.994368	3.004804
С	-1.035783	-3.707704	-0.809517
н	-0.168884	-3.765953	-1.474266
Н	-1.080986	-4.647505	-0.246258
С	-2.307452	-3.522128	-1.634501
Н	-3.200213	-3.514522	-1.002475
н	-2.419441	-4.344346	-2.346794
н	-2 274975	-2 587912	-2 200621
Ċ	-2 918521	0.972801	1 554800
ы	3 256300	0.055032	1 70/828
ü	2 100429	1 116456	2.265216
	-2.100420	1.110430	2.200210
C .	-4.059810	1.954785	1.828033
н	-3.726277	2.994857	1.776395
н	-4.464301	1.792547	2.831433
н	-4.883265	1.832536	1.119380
С	-3.614082	0.774874	-1.257124
н	-4.248977	1.663659	-1.179091
Н	-3.226787	0.743977	-2.278141
С	-4.424962	-0.486685	-0.954683
Н	-3.793818	-1.375807	-0.976496
н	-5.211344	-0.619741	-1.702477
Н	-4.908687	-0.432379	0.024609
C	1 473600	2 240401	2 222398
й	2 510274	1 030258	2.222000
Li Li	1 /73971	3 310524	2.173334
\hat{c}	0 720240	1 461171	2.434010
с Н	0.739240	1.401171	0.010400
	-0.300560	1.700700	3.413304
н	1.224309	1.619875	4.280559
Н	0.730358	0.390029	3.099543
C	1.965294	2.969440	-0.556384
н	2.771388	2.264188	-0.775479
Н	1.455416	3.143029	-1.508632
С	2.531238	4.279300	-0.000317
н	1.745135	4.995238	0.256070
Н	3.170659	4.753485	-0.750071
Н	3.138810	4.112789	0.892389
0	-1.275278	1,100749	-3,757749
õ	0.722803	0.951732	-2.544382
P	2 271/02	_1 151540	-0 130875
ı D	0 655206	2 260000	0.415016
D	2 15/666	1 015047	0.410010
г D	-2.104000	1.010047	-0.140900
۲ M	0.751249	2.004470	0.521030
IVIO	-0.004106	-0.212274	-0.456289
н	-0.13/701	-0.359656	1.228406
н	-1.164404	-0.720905	-1.589816

Sum of electronic and zero-point Energies= -2414.555902 Sum of electronic and thermal Free Energies= -2414.625505

79 TS2	-outer-sphere		
С	-3.395933	0.440045	-1.369843
Н	-3.153661	0.607892	-2.425208
Н	-4.415041	0.045837	-1.334752
С	-3.266687	1.738143	-0.578885

		4 000050	0 405004
н	-3.662900	1.620259	0.435061
Н	-3.814251	2.561584	-1.048738
С	2.360876	-1.009041	1.926054
Ĥ	2 433186	0.033606	2 249198
ü	2.400100	1 646650	2.240100
П	2.091000	-1.040030	2.751000
С	3.207864	-1.248987	0.671561
Н	3.375355	-2.318495	0.510381
н	4.190873	-0.780724	0.767052
C	-2 3/832/	_2 11606/	-2 057590
ŭ	2.040024	2.110304	2.007.000
п	-3.417935	-2.283405	-2.221494
Н	-1.948760	-1.668082	-2.973531
С	-1.636812	-3.436473	-1.762843
н	-0 564525	-3 279722	-1 623358
 	1 771400	1 124022	2 502100
п	-1.771490	-4.134022	-2.595100
н	-2.030109	-3.916140	-0.861532
С	-3.053957	-1.535108	0.725786
Н	-2.366584	-2.254281	1.178719
н	-3 134524	-0 710716	1 443074
<u> </u>	4 415020	0.1100110	0.494405
	-4.415950	-2.100230	0.461495
н	-5.136957	-1.489072	0.049707
Н	-4.836457	-2.544225	1.426405
н	-4.339332	-3.048898	-0.187909
C	1 519250	2 601159	0 660024
	-1.516550	3.091130	0.000034
н	-0.583494	4.226586	0.491590
Н	-2.341692	4.312111	0.286722
С	-1.693502	3.374088	2.147320
Ĥ	-2 539873	2 704473	2 332849
	1 070706	4 206297	2.002040
п	-1.8/8/00	4.290387	2.703814
н	-0.794568	2.910609	2.556588
С	-0.965415	2.760723	-2.116214
н	-1.756913	2,496706	-2.823912
н	-0.835120	3 8/5607	-2 1528/8
	-0.033120	0.000505	-2.132040
C	0.341153	2.028565	-2.454014
Н	1.161328	2.395280	-1.838540
Н	0.618467	2.134260	-3.507317
н	0 199027	0 921849	-2 341426
~	0.100027	0.021040	1 644000
0	3.022277	0.552205	-1.044090
н	4.459533	-0.103810	-1.912511
Н	3.190221	0.905940	-2.585538
С	4.117257	1.730391	-0.806609
Ĥ	3 343524	2 481916	-0.660106
	4 055260	2.401010	1 210746
	4.955260	2.210201	-1.319740
н	4.476619	1.413977	0.176935
С	2.465941	-2.014737	-2.040525
н	3.513295	-2.333068	-2.100300
н	1 002/26	-2 835138	_1 5870/1
0	1.002420	4 707694	-1.307041
C .	1.911113	-1./0/684	-3.433132
н	0.862170	-1.401061	-3.375308
Н	1.966474	-2.596278	-4.067487
Н	2.474923	-0.914366	-3.931117
C	-0 229638	-1 211968	3 217902
ň	1 106 100	1 700010	0.217002
п	-1.190428	-1.720810	3.139711
н	0.391506	-1.817347	3.885146
С	-0.406612	0.197935	3.784581
н	0.499082	0.799972	3.684288
н	-0 668248	0 141675	4 844864
	1 010557	0.726206	2 260000
	-1.210557	0.726206	3.200900
C	0.500132	-3.124903	1.18/504
Н	-0.550868	-3.365081	1.004888
Н	1.000784	-3.266503	0.226321
C	1.090163	-4.064913	2,242544
й	2 1/0700	-3 8/6100	2 1/1922
	4 004074	-0.040109	4 005405
н	1.031874	-5.100436	1.895105
Н	0.548996	-4.006636	3.189727
Р	-2.167800	-0.821307	-0.747394
Р	-1 478249	2 200066	-0 422990
ь П	2 27/600	0 502040	0.962066
г Г	2.3/4000	-0.003049	-0.003000
Р	0.567271	-1.301479	1.551390
Мо	0.004133	0.210198	-0.279827
Н	-0.841621	0.380164	1.162995
Н	1.135240	1.367582	0.574160

Н	-0.019193	-1.118429	-1.324725
С	1.611278	2.540361	1.177994
0	1.949129	2.224767	2.292249
0	1.532460	3.445522	0.377988

78

Sum of electronic and zero-point Energies= -2414.521606 Sum of electronic and thermal Free Energies= -2414.591660

TS3	В		
С	-0.320424	-1.939176	-1.492960
н	-0.581742	-0.141634	-2.019807
C	3 100024	0 612180	1 3618/0
S.	-3.199024	0.012109	1.301049
н	-3.784902	1.478593	1.043970
н	-3.880929	-0.034476	1.920741
С	-2.033408	1.057906	2.263809
н	-1 681753	0 215325	2 863545
ы	2 365020	1 844222	2 0/7708
	-2.303020	0.000000	2.947790
C	3.179102	-0.962022	0.817165
н	3.265487	-0.052556	1.421312
Н	3.920444	-1.673327	1.192384
С	3.394519	-0.648273	-0.665251
Ĥ	3,373990	-1.567296	-1.259904
н	4 365321	-0 176456	-0.837966
2	2 610100	0.520911	1 506400
L L	-3.010122	0.529011	-1.520420
п	-4.000050	0.583559	-1.212210
н	-3.245361	1.557106	-1.591205
С	-3.493178	-0.164177	-2.885041
н	-2.452791	-0.195617	-3.219950
н	-4.073502	0.372246	-3.640429
н	-3 863877	-1 192449	-2 850812
\hat{c}	2 126220	1 069071	0.026000
Ľ.	-3.430220	-1.900071	-0.030000
н	-3.051161	-2.569335	-0.866274
н	-3.016258	-2.405976	0.874923
С	-4.966015	-1.994582	-0.009499
Н	-5.375106	-1.371503	0.791651
н	-5.319577	-3.015731	0.157849
н	-5 394973	-1 650649	-0.954012
\hat{c}	0 642720	2 410770	0.004012
C .	0.043720	2.412//0	2.302720
н	1.407372	1.666498	2.583550
н	1.136545	3.181871	1.758078
С	0.096498	3.024058	3.655030
Н	-0.684586	3.764049	3.458476
н	0.896287	3.530772	4.202419
н	-0.323089	2 259821	4 314889
Ĉ	1 385065	3 156561	0.480032
ň	-1.303003	0.000440	0.400032
п	-2.314492	2.829449	0.008102
н	-1.668419	3.810756	1.312465
С	-0.547674	3.924169	-0.540137
Н	0.383816	4.300555	-0.107708
Н	-1.105133	4.788914	-0.910898
н	-0.302540	3,291734	-1.397953
C	2 637856	2 140403	-0.832982
ŭ	1 027050	2.140400	1 002072
	1.037030	2.034143	-1.093978
Н	2.700231	2.149197	0.260616
С	3.960324	2.593619	-1.457120
Н	4.787803	1.923466	-1.208986
Н	4.227474	3.588547	-1.089386
Н	3.892624	2.654697	-2.546116
С	2 235710	0 369647	-3 124630
й	3 206500	0.505799	-3 360355
	1.005000	0.000733	-3.300333
П	1.905328	-0.050024	-3.415762
C .	1.3/83/0	1.386312	-3.883959
н	0.314994	1.240697	-3.677177
Н	1.529708	1.279190	-4.961167
Н	1.637560	2.414744	-3.614760
С	1.276288	-1.937185	2.845043
Ĥ	0.366364	-2 539749	2 942807
н	2 112659	-2 575192	3 1/2007
\hat{c}	1 206405	0.710000	2 762650
С Н	1.200420	-0.7 19980	3.102030
н	2.105681	-0.101891	3.687361

н	1.121183	-1.042224	4.804112
Н	0.341001	-0.096193	3.538178
С	1.596930	-3.367261	0.390608
Н	0.585627	-3.783779	0.434720
Н	1.835274	-3.283405	-0.672837
С	2.593760	-4.297111	1.087559
Н	3.607585	-3.886509	1.096080
Н	2.635603	-5.250947	0.554286
Н	2.306253	-4.514249	2.118669
0	-0.479284	-2.863912	-2.182800
Р	-2.645176	-0.300243	-0.185415
Р	-0.602015	1.633698	1.215753
Р	2.025117	0.447738	-1.288769
Р	1.460139	-1.625616	1.028077
Мо	-0.196458	-0.306424	-0.381972
Н	-0.922529	-1.191004	0.911292
Н	-0.570714	1.086591	-1.302458

Sum of electronic and zero-point Energies= -2339.344278 Sum of electronic and thermal Free Energies= -2339.413876

79 TS3			
C	-2 281708	-2 754118	-0.085673
й	-1 971286	-3 319295	0.800735
н	-3 294827	-3.085329	-0.330541
Ċ	-1 316700	-3 023534	-1 246296
й	-1 676949	-2 540130	-2 160098
н	-1 239195	-4.096702	-1 450109
Ċ	1 010905	3 073825	-1.400100
н	1.328694	2 724631	-2 075506
н	0.828166	4 149654	-1 166809
Ċ	2 086806	2 773038	-0.043566
н	1 810032	3 218063	0.018030
н	3 048131	3 208469	-0.330872
C	-3 002617	-1 039726	2 125037
н	-3 885620	-1 686890	2 097066
н	-2.267113	-1.551129	2,755852
Ċ	-3 353799	0.333224	2 706434
н	-2 486716	0.998484	2 712717
н	-3.710212	0.234213	3,735053
н	-4.146088	0.819113	2,129383
C	-3.638744	-0.193552	-0.588219
Ĥ	-3.630934	0.873885	-0.344804
H	-3.311845	-0.268571	-1.630691
С	-5.044200	-0.771584	-0.411484
Ĥ	-5.082356	-1.837328	-0.652691
Н	-5.746694	-0.262459	-1.077454
Н	-5.411105	-0.645237	0.610290
С	1.305831	-2.587384	-2.444431
Н	2.355524	-2.376679	-2.218644
Н	1.236662	-3.653734	-2.690688
С	0.844224	-1.725906	-3.620771
Н	-0.201646	-1.915483	-3.879526
Н	1.446004	-1.942884	-4.507513
Н	0.944555	-0.663391	-3.389144
С	1.074358	-3.603624	0.256094
Н	0.527524	-3.537574	1.201448
Н	0.849825	-4.584413	-0.178649
С	2.576985	-3.454645	0.505439
Н	3.155710	-3.627263	-0.406023
Н	2.914652	-4.180378	1.250347
Н	2.817685	-2.457299	0.877056
С	3.566094	0.376457	-0.914465
Н	3.663274	-0.703106	-0.757415
Н	3.116257	0.493607	-1.906568
С	4.934126	1.058209	-0.847874
Н	4.862910	2.136264	-1.016844
Н	5.596384	0.652132	-1.617863
Н	5.420972	0.901974	0.118291
С	3.164497	1.013596	1.911248

Н	3.960527	1.759473	1.811613
н	2.455184	1.418365	2.641162
С	3.744691	-0.314783	2.402087
н	2.966783	-1.064856	2.560383
Н	4.268477	-0.171699	3.351173
н	4.464683	-0.727619	1.689783
С	-1.556934	2.424320	-2.242070
Н	-2.600342	2.208998	-1.990127
н	-1.503995	3.491414	-2.481419
С	-1.120639	1.591140	-3.446812
Н	-0.071907	1.766973	-3.704514
Н	-1.722770	1.850997	-4.321869
Н	-1.238024	0.523199	-3.253853
С	-1.432674	3.272829	0.525402
Н	-2.306977	2.710719	0.869371
н	-0.762127	3.331286	1.388880
С	-1.835472	4.669232	0.046051
н	-0.980829	5.235783	-0.335022
н	-2.258653	5.240356	0.877273
Н	-2.591448	4.628782	-0.741953
Р	-2.278158	-0.952433	0.419105
Р	0.367806	-2.312122	-0.874112
Р	2.266314	0.942132	0.283933
Р	-0.570346	2.170094	-0.693833
Мо	0.003426	-0.051375	0.093948
н	-0.904670	-0.240165	-1.301238
Н	0.749685	0.272079	-1.375141
Н	-0.304707	1.021223	1.449928
С	0.205278	-0.230790	2.904046
0	0.067758	0.436949	3.849853
0	0.433586	-1.137597	2.157492

Sum of electronic and zero-point Energies= -2414.561989 Sum of electronic and thermal Free Energies= -2414.632992

80

TS4	I		
С	-0.138691	0.135087	-2.958630
н	-0.212191	0.201743	-4.050559
С	2.693160	-2.314665	-0.872633
Н	2.330598	-2.559722	-1.876943
Н	3.751115	-2.588747	-0.834415
С	1.891397	-3.070067	0.192338
н	2.292752	-2.849551	1.185981
Н	1.950518	-4.154262	0.052015
С	-1.360215	2.622253	1.546630
Н	-1.252542	2.064327	2.480287
Н	-1.444459	3.675654	1.830709
С	-2.592646	2.152755	0.768804
н	-2.835539	2.887314	-0.005324
н	-3.463889	2.092061	1.425610
С	3.356072	0.225443	-2.095083
Н	4.328737	-0.268472	-2.188315
Н	2.775494	-0.044438	-2.983191
С	3.514406	1.745548	-2.012265
Н	2.536174	2.224707	-1.934208
Н	4.009934	2.132291	-2.906983
Н	4.118543	2.041271	-1.148795
С	3.583093	-0.106109	0.792002
Н	3.498206	0.970513	0.966348
Н	3.135957	-0.584293	1.670262
С	5.053277	-0.507496	0.651584
Н	5.172008	-1.586261	0.519538
Н	5.611386	-0.226347	1.549630
Н	5.528663	-0.011488	-0.198712
С	-0.652367	-3.283571	1.680424
Н	-1.505735	-2.660444	1.962732
Н	-1.074502	-4.245722	1.373340
С	0.282497	-3.509002	2.875212
Н	1.035999	-4.267272	2.650755
н	-0.292244	-3.861444	3.735887

н	0.816868	-2.604893	3.179784
С	-0.565787	-3.610204	-1.191412
Н	-0.092198	-3.299523	-2.124213
Н	-0.226528	-4.626611	-0.959340
С	-2.085895	-3.560590	-1.333982
Н	-2.594365	-3.875299	-0.417273
Н	-2.411242	-4.231178	-2.134166
Н	-2.413659	-2.553384	-1.586410
С	-3.496106	-0.639031	0.801818
Н	-3.380872	-1.619449	0.329893
Н	-3.093625	-0.740554	1.814998
С	-4.975040	-0.247595	0.864840
Н	-5.122946	0.725200	1.342018
Н	-5.535963	-0.983235	1.448918
Н	-5.427053	-0.202776	-0.128721
С	-3.299721	0.876537	-1.669571
Н	-4.197841	1.431517	-1.377655
Н	-2.674468	1.570842	-2.242362
С	-3.679834	-0.327377	-2.533816
Н	-2.796685	-0.869087	-2.874330
Н	-4.238209	0.002611	-3.415004
Н	-4.318148	-1.029330	-1.989768
С	1.530267	3.119686	1.489940
Н	2.426281	3.048093	0.864098
Н	1.299788	4.185275	1.588594
С	1.790887	2.523620	2.876080
Н	0.899799	2.573201	3.509971
Н	2.576782	3.089837	3.383204
Н	2.116120	1.484104	2.817570
С	-0.065696	3.591060	-0.867468
Н	0.886366	3.615982	-1.404807
Н	-0.779914	3.156955	-1.568240
С	-0.497033	4.999173	-0.450611
Н	-1.492168	5.005538	0.002337
Н	-0.538682	5.642446	-1.334147
Н	0.197615	5.463058	0.254434
0	-0.426774	-0.932003	-2.343039
0	0.238680	1.122260	-2.264261
Р	2.450572	-0.478283	-0.640420
Р	0.107171	-2.521096	0.147154
Р	-2.333377	0.498781	-0.115818
Р	0.155177	2.355350	0.502094
Мо	0.068223	-0.017048	-0.351587
0	0.552188	-0.270849	2.109075
C	-0.414472	-0.282376	2.784763
0	-1.322578	-0.299970	3.508563

Sum of electronic and zero-point Energies= -2601.956285 Sum of electronic and thermal Free Energies= -2602.029393

79 TS4			
C	-0.222092	1.428404	-2.119643
H	0.186351	-1.284516	-1.765463
С	2.152496	-2.883624	-0.281576
Н	1.847922	-3.267129	-1.260762
Н	3.100603	-3.362339	-0.024349
С	1.085127	-3.166145	0.773778
Н	1.394810	-2.759430	1.741362
Н	0.926443	-4.240849	0.910619
С	-0.953625	2.723989	1.456795
Н	-1.190719	2.171595	2.371683
Н	-0.788804	3.766575	1.745021
С	-2.089072	2.601611	0.444751
Н	-1.867049	3.173057	-0.461084
Н	-3.026804	2.987653	0.853020
С	3.328684	-0.858412	-2.016442
Н	4.043007	-1.687413	-2.067945
Н	2.614882	-0.983205	-2.834838
С	4.050926	0.486943	-2.146594
Н	3.344269	1.316833	-2.099418

н	4 560478	0 539446	-3 112343
	4.000470	0.000440	-0.112040
н	4.808918	0.621001	-1.369878
C	3 561537	0 615150	0 870805
C	5.501557	-0.013139	0.079095
Н	3.763410	0.452954	0.757696
ы	2 040676	0 701 404	1 025262
п	3.040070	-0.721404	1.0000000
С	4.877569	-1.399290	0.892950
ŭ	1 710155	2 450204	1 106007
п	4.7 19155	-2.409094	1.100227
Н	5.538317	-1.007298	1.671286
ы	E 100162	1 200702	0.050100
п	5.406465	-1.322793	-0.059160
С	-1.522950	-2.766990	1.862536
ы	0 566404	0 517701	1 667051
п	-2.000401	-2.317721	1.007051
н	-1.480552	-3.856717	1.976886
C	1 042742	2 001214	2 1 1 1 6 1 0
0	-1.042743	-2.001214	5.141040
н	-0.036303	-2.401985	3.423408
н	-1 708508	-2 320460	3 972566
	-1.700000	-2.020400	5.572500
н	-1.024454	-0.994875	3.033589
C	-1 2256/7	-3 630110	-0 8500/6
	-1.223047	-3.033440	-0.0000040
н	-0.641876	-3.546012	-1.780417
н	-1 016739	-4 629194	-0 437827
	-1.010700	-4.020104	-0.401021
C	-2./1//44	-3.493889	-1.160435
н	-3.327980	-3.644926	-0.265417
	0.027000	0.011020	0.200411
н	-3.027902	-4.240191	-1.896518
н	-2 945374	-2 509915	-1 569236
	2.040074	2.000010	1.0002.00
C	-3.352702	0.057520	1.188943
н	-3.573684	-0.947288	0.816795
	0.740000	0.070070	0.000040
н	-2.713299	-0.070370	2.066212
С	-4.654886	0.767202	1.569662
л.	4 474570	4 707550	1 071500
п	-4.4/45/9	1.707550	1.97 1533
н	-5.177808	0.195990	2.342102
ы	E 2224E0	0.961650	0 717002
п	-5.552456	0.001000	0.717095
С	-3.504807	1.105213	-1.514829
Ū.	4 220667	1 600251	1 106120
	-4.525007	1.090201	-1.100139
Н	-2.979279	1.729921	-2.237612
C	-1 031001	-0 160580	-2 185375
	-4.001004	-0.100303	-2.100070
н	-3.218846	-0.714820	-2.663086
н	-4 749500	0 103691	-2 966045
	4.740000	0.100001	2.000070
н	-4.541513	-0.825803	-1.481972
С	1 685500	1 969351	2 303222
ň	0.747744	4.047400	4.070055
н	2./1//14	1.817439	1.978355
н	1.643568	2.969758	2.745546
0	1 007570	0.000014	2 244400
C	1.20/5/5	0.922014	3.344409
н	0.285116	1.108244	3.740543
н	1 081533	0 9/8/55	/ 180212
	1.301333	0.340433	4.103212
н	1.292016	-0.085414	2.926396
C	1.366876	3 384874	-0 222407
Ň	0.000017	0.001011	0.222401
н	2.223347	2.949498	-0.746815
н	0 635325	3 623062	-0.999864
~	4 777400	4.050400	0.0000001
C	1.777189	4.650493	0.535868
н	0.944164	5.083536	1.097493
ы.	0 117021	E 400407	0 172010
п	2.11/931	5.409197	-0.173819
н	2.596219	4.463725	1.234720
\circ	0.011650	2 264000	2 664405
0	-0.911620	2.204980	-2.004105
0	0.958357	1.006173	-2.182593
Þ	2 352511	-1 052833	-0 157260
<u>г</u>	2.002011	-1.052055	-0.437209
Р	-0.548063	-2.387897	0.329805
Р	-2 310914	0 849245	-0 125537
	2.010014	0.045045	0.120001
Р	0.624809	2.015215	0.783486
Mo	-0.003944	-0.097330	-0.558994
	0.004040	0.045747	1 120040
н	-0.094219	-0.245/4/	1.136043
Н	-1.019917	-0.742048	-1.757595

Sum of electronic and zero-point Energies= -2414.566195 Sum of electronic and thermal Free Energies= -2414.635363

80 TS5-I

185	1 55-1				
С	-0.185120	-0.069312	-2.689532		
Н	-0.265586	-0.022818	-3.784521		
С	3.156227	-1.651146	-0.891499		
Н	2.793972	-2.032509	-1.852329		
н	4.249026	-1.642275	-0.939913		

С	2.663956	-2.531882	0.258825
Н	3.017937	-2.135323	1.214263
Н	3.045960	-3.553878	0.165868
С	-2.163426	2.507029	1.018196
	-2.291981	1.960671	1.971300
п С	-2.409755 -2.994194	3.540111	-0.078620
й	-2.862802	2.353471	-1.032224
Н	-4.061037	1.870066	0.160325
С	3.049364	0.788770	-2.375920
Н	4.106104	0.531024	-2.507892
Н	2.501291	0.243629	-3.151705
С	2.833991	2.295231	-2.524789
Н	1.773644	2.541998	-2.460586
п	3.200700	2.030103	-3.494935
C	3.564414	0.919249	0.513028
Ĥ	3.291498	1.979458	0.463942
Н	3.201797	0.561011	1.480483
С	5.077914	0.745366	0.371845
Н	5.378908	-0.298322	0.495882
н	5.595042	1.325641	1.141142
н	5.443201	1.089402	-0.600192
н	-0.623812	-3.279616	2 137023
н	0.637482	-4.463292	1.822126
С	1.234657	-2.876276	3.176576
Н	2.298221	-3.115790	3.094296
Н	0.861645	-3.358362	4.084193
Н	1.134682	-1.797378	3.296281
С	0.320080	-3.863657	-0.876376
п	0.046890	-3.480987	-1.872401
C	-1 164796	-4 225486	-0.771218
Ĥ	-1.398740	-4.698310	0.186514
Н	-1.446437	-4.924888	-1.562867
Н	-1.791760	-3.337144	-0.874166
С	-3.599799	-0.953942	0.721714
н	-3.262093	-1.990277	0.614032
н	-3.354247	-0.664620	1.745288
н	-5.463545	0 186886	0.470027
н	-5.641740	-1.437242	1.225445
Н	-5.398972	-1.213896	-0.506458
С	-3.255559	-0.199672	-2.074121
Н	-4.268675	0.214068	-2.022370
Н	-2.699665	0.440035	-2.764178
C	-3.290261	-1.647833	-2.568014
п	-2.204292	-2.057000	-2.007070
н	-3.855983	-2.293049	-1.890492
С	0.543200	3.118518	2.043293
Н	1.600987	2.909722	1.853487
Н	0.419301	4.206227	2.014032
С	0.141747	2.573478	3.416827
н	-0.906085	2.784297	3.040784
н	0.303211	3.055278	3 481939
C	-0.130208	3.729007	-0.708978
Ĥ	0.952383	3.887302	-0.763742
н	-0.421555	3.286326	-1.662831
С	-0.856932	5.056131	-0.471793
н	-1.941837	4.940009	-0.542460
H LJ	-0.557965	5.784713	-1.230663
	-0.020013 _0.051/01	0.409001 -1 172805	-2 101552
õ	-0.235202	0.996313	-2.006789
P	2.509105	0.084956	-0.750634
Р	0.809311	-2.562491	0.340252
Р	-2.516071	0.055079	-0.392275
Р	-0.360727	2.421921	0.585493

056711
32423
76358
99463

77

Sum of electronic and zero-point Energies= -2601.961127 Sum of electronic and thermal Free Energies= -2602.035144

TS5			
С	0.796850	-0.412170	-2.312391
С	1.888520	-3.020667	0.021348
Н	1.829384	-3.217266	-1.054358
н	2.748455	-3.575372	0.405779
С	0.596169	-3.427637	0.725483
Ĥ	0.689516	-3 285009	1 805598
н	0.351/17	-4 480700	0 554875
Ĉ	0.553028	3 307030	0.004075
Ц Ц	-0.333020	3.307030	1 520206
	-0.707390	3.204015	1.539206
Н	-0.274028	4.336350	0.212925
С	-1.824214	2.879491	-0.273646
Н	-1.689209	2.927710	-1.359366
Н	-2.664788	3.530973	-0.019178
С	3.666399	-0.947756	-0.817262
Н	4.335303	-1.786534	-0.596826
Н	3.349973	-1.053219	-1.858329
С	4.402338	0.376691	-0.612499
Ĥ	3 774632	1 230957	-0.872400
н	5 286511	0 415361	-1 254054
н	4 741708	0.500656	0 420270
2	2 721060	1 022420	1 066990
L L	2.721000	-1.032420	1.900000
	2.904040	0.022430	2.122497
Н	1.844063	-1.234367	2.590041
C	3.909026	-1.904424	2.381182
Н	3.678266	-2.970784	2.315939
Н	4.181913	-1.694080	3.419104
Н	4.791336	-1.712380	1.764814
С	-2.147684	-2.672347	1.340354
Н	-3.020146	-2.112655	0.994823
н	-2.410347	-3.735553	1.290383
С	-1.785445	-2.267660	2.773111
Ĥ	-1 029459	-2 932219	3 199617
н	-2 667068	-2 324578	3 417130
ц.	1 308205	1 246410	2 800613
0	1 200002	2 290200	2.009013
iii ii	-1.309003	-3.200299	-1.410403
	-0.411150	-3.324279	-2.043470
Н	-1.540322	-4.306280	-1.107682
C	-2.468380	-2.675716	-2.209909
н	-3.401965	-2.713803	-1.643833
Н	-2.620984	-3.244983	-3.130636
Н	-2.261445	-1.638794	-2.484730
С	-2.871095	1.156610	1.842564
Н	-3.255345	0.153620	2.052612
Н	-1.996120	1.279759	2.488797
С	-3.933408	2.216329	2.146864
н	-3.530944	3.228785	2.056173
н	-4.301277	2,101979	3,170454
н	-4 793389	2 137939	1 476139
Ċ	-3 704331	0.849324	-0 977889
ŭ	4 218685	1 811650	1 072218
	-4.210000	0.609440	-1.072210
	-3.291525	0.000419	-1.902394
	-4.00039/	-0.225020	-0.5121/1
н	-4.206265	-1.198613	-0.409880
Н	-5.493113	-0.338657	-1.243540
Н	-5.148071	0.027428	0.447040
С	2.079442	2.543108	1.378354
Н	2.984183	1.971287	1.162009
Н	2.349773	3.600262	1.294413
С	1.556328	2.240563	2.788038
Н	0.800722	2.967026	3.096489
н	2.372948	2.296884	3.512926

н	1.109874	1.245252	2.848443
С	1.541170	2.921402	-1.519925
Н	2.234303	2.193531	-1.949120
Н	0.688242	2.949753	-2.207149
С	2.201428	4.296423	-1.394809
Н	1.540883	5.034026	-0.929776
Н	2.461085	4.672685	-2.388014
Н	3.123651	4.251227	-0.809502
0	-0.790121	0.286806	-2.177415
0	1.285626	-0.601219	-3.363095
Р	2.145506	-1.191624	0.211496
Р	-0.799605	-2.364716	0.114604
Р	-2.225474	1.106769	0.107525
Р	0.862043	2.172732	0.037809
Мо	-0.045030	-0.083104	-0.493466
Н	-0.144025	-0.000313	1.269854

Sum of electronic and zero-point Energies= -2413.374377 Sum of electronic and thermal Free Energies= -2413.444812

80	
TS6-II	

130	-11		
С	-1.352828	-0.598399	-2.126206
С	0.777712	3.365111	-0.862005
Н	1.140078	3.159646	-1.874777
Н	0.533302	4.430482	-0.814644
С	1.837458	2.997651	0.183989
Н	1.464286	3.183162	1.194875
Н	2.730762	3.612714	0.041419
С	-1.612721	-2.345229	1.702024
Н	-1.055112	-1.870379	2.507728
Н	-2.447871	-2.895967	2.144260
С	-0.696332	-3.285909	0.915753
Ĥ	-1.269741	-3.860940	0.181339
Н	-0.225682	-4.009683	1.586544
C	-1 799401	2 834431	-2 116420
й	-1 744772	3 919998	-2 250659
н	-1.321571	2 375806	-2 987795
Ċ	-3 256647	2.370/35	-1 000232
ŭ	3 327203	1 308705	1 777/80
LL L	3 70/833	2 565062	2 022040
	2 777545	2.303002	-2.922940
	-3.777343	2.917930	-1.193009
	-1.032221	3.104370	0.797257
п	-2.008003	2.003092	0.912/72
Н	-1.021239	2.867402	1.669481
C	-1.905627	4.608660	0.702006
н	-0.980461	5.188224	0.653052
н	-2.447609	4.938861	1.592334
Н	-2.514211	4.866017	-0.169029
С	3.372626	0.952363	1.586227
Н	2.755163	1.160574	2.461400
Н	3.626985	-0.110638	1.629233
С	4.641215	1.811661	1.637490
Н	5.325869	1.586031	0.816587
Н	5.175566	1.624905	2.573312
Н	4.408973	2.879467	1.602170
С	3.496328	1.175942	-1.315233
Н	2.919466	1.374883	-2.220675
Н	4.195939	2.005175	-1.172024
С	4.243336	-0.151184	-1.460890
Н	4.832911	-0.390864	-0.570631
Н	4.932208	-0.109509	-2.309030
H	3.545219	-0.969077	-1.644941
C	2,194549	-2.619964	0.924187
Ĥ	2 959409	-2 056350	0.382050
н	2 029800	-2 100992	1 872133
Ċ	2.023000	-4.065886	1 143919
й	1 895343	-4 657614	1 673050
н	3 555000	-4.080119	1 752/22
н	2 87/272	-4.570752	0.201225
С С	2.014212 0.007701	-4.0/0/00	1 524260
C	U.OU//04	-3.410191	-1.031300

Н	0.935594	-4.505412	-1.177975
н	-0.157892	-3.430212	-2.045846
С	1.936867	-3.079446	-2.482371
н	1.813557	-2.052135	-2.834198
н	1.940391	-3.740017	-3.353404
н	2.914668	-3.167281	-2.000201
С	-3.429414	-0.032892	1.654747
Н	-3.789031	0.795688	1.035418
н	-4.294235	-0.677831	1.836281
С	-2.880849	0.472836	2.990200
Н	-2.535108	-0.350671	3.619887
Н	-3.673297	0.990875	3.537432
Н	-2.056304	1.172177	2.863109
С	-3.448663	-1.939022	-0.507588
Н	-3.984472	-1.183450	-1.092493
Н	-2.849700	-2.504226	-1.226119
С	-4.438612	-2.883805	0.180757
Н	-3.929633	-3.707074	0.688592
н	-5.101742	-3.324021	-0.569048
н	-5.070642	-2.374755	0.912315
0	0.901175	0.164919	-2.153817
0	-1.984389	-0.832139	-3.058943
Р	-0.769224	2.366545	-0.655598
Р	2.293458	1.193363	0.090620
Р	0.634069	-2.394700	-0.037722
Р	-2.260192	-1.011848	0.594567
Мо	0.001647	-0.032923	-0.680696
Н	0.002151	0.214470	1.194331
С	0.409529	0.424520	2.660660
0	0.633501	-0.670187	3.093855
0	0.377201	1.611923	2.826751

Sum of electronic and zero-point Energies= -2601.956164 Sum of electronic and thermal Free Energies= -2602.030577

80

TS6	-		
С	-0.287942	1.597041	2.384205
С	-2.728055	-2.307596	0.803346
Н	-2.419532	-2.518467	1.832714
н	-3.778299	-2.599225	0.712889
С	-1.855213	-3.070546	-0.199907
Н	-2.173769	-2.848193	-1.221389
Н	-1.951441	-4.151451	-0.057769
С	1.380543	2.414404	-1.776825
н	1.122332	1.798745	-2.634480
н	1.534085	3.434333	-2.140577
С	2.663582	1.871633	-1.133246
Н	3.143543	2.646061	-0.526674
Н	3.370831	1.586324	-1.915365
С	-3.489905	0.267029	1.943923
Н	-4.434574	-0.275909	2.054431
Н	-2.906190	0.083347	2.851610
С	-3.748990	1.765451	1.757004
Н	-2.822535	2.312757	1.558052
Н	-4.197625	2.190603	2.658210
Н	-4.433710	1.952758	0.925280
С	-3.512295	-0.110373	-0.968814
Н	-3.457335	0.972010	-1.111487
Н	-2.950493	-0.547328	-1.797118
С	-4.969201	-0.579407	-0.955732
Н	-5.047343	-1.667550	-0.887159
Н	-5.465899	-0.275491	-1.881353
Н	-5.532652	-0.148007	-0.123694
С	0.802021	-3.371550	-1.482760
Н	1.552916	-2.661353	-1.828122
н	1.332724	-4.243242	-1.087145
С	-0.087801	-3.798677	-2.654476
Н	-0.800654	-4.574963	-2.365152
Н	0.535221	-4.202859	-3.456658
Н	-0.652339	-2.960633	-3.070663

С	0.461748	-3.624519	1.399806
Ĥ	-0.119562	-3.292482	2.263701
н	0.168472	-4.655874	1.171193
С	1.955302	-3.542704	1.717927
Ĥ	2.571153	-3.862469	0.871533
н	2.198353	-4,193669	2.562063
H	2.236315	-2.524814	1.989504
С	3.600907	-0.897996	-0.613822
H	3.435237	-1.782857	0.007441
H	3.263989	-1.138934	-1.622681
С	5.079392	-0.498805	-0.601328
Ĥ	5.261590	0.411992	-1.179194
н	5.680195	-1.293959	-1.051560
н	5.454941	-0.337174	0.412258
С	3.204486	1.007390	1.555544
H	4.189710	1.404670	1.288032
н	2.601123	1.858211	1.888195
С	3.327835	-0.025962	2.674948
н	2.348876	-0.411924	2.968511
н	3.791984	0.427223	3.555331
н	3.954765	-0.869674	2.372206
С	-1.474111	3.072199	-1.564843
Н	-2.353910	2.965814	-0.920798
н	-1.300434	4.147203	-1.675848
С	-1.726293	2.446295	-2.939398
Н	-0.881082	2.613749	-3.612256
Н	-2.605937	2.904726	-3.399933
Н	-1.893009	1.372473	-2.866363
С	0.335634	3.781572	0.562531
Н	-0.579171	3.961492	1.138904
Н	1.078661	3.414586	1.276149
С	0.830878	5.086440	-0.068542
Н	1.810344	4.961487	-0.537124
Н	0.933326	5.854207	0.703299
Н	0.142773	5.474250	-0.824306
0	0.152814	-0.747104	2.058097
0	-0.536235	1.820511	3.474592
Р	-2.533606	-0.480986	0.551741
Р	-0.063607	-2.581209	-0.033531
Р	2.415957	0.389556	-0.013502
Р	-0.046318	2.376482	-0.598852
Мо	-0.034767	-0.099176	0.490108
С	0.215345	-0.459769	-2.731041
0	1.441232	-0.491759	-2.798929
0	-0.502117	-0.289456	-1.664149
н	-0.394905	-0.569630	-3.646892

Sum of electronic and zero-point Energies= -2601.980620 Sum of electronic and thermal Free Energies= -2602.054717

77			
TS6			
С	0.239504	1.589675	-2.697628
С	2.522054	-2.579991	-0.040176
Н	2.259613	-3.067155	-0.985203
Н	3.536477	-2.896997	0.214376
С	1.521376	-2.957443	1.054308
Н	1.791708	-2.485664	2.004443
Н	1.497955	-4.039778	1.216898
С	-1.255079	2.340487	1.797953
Н	-1.218168	1.583033	2.585197
Н	-1.258543	3.320491	2.284205
С	-2.493137	2.144607	0.923817
Н	-2.577087	2.953605	0.191019
Н	-3.407383	2.162503	1.523089
С	3.283077	-0.571852	-2.003086
Н	4.150221	-1.239812	-2.041959
Н	2.552088	-0.934564	-2.732015
С	3.695389	0.869380	-2.316463
Н	2.858670	1.561823	-2.184259
Н	4.034324	0.952717	-3.352160

н	4.513668	1.204548	-1.672875
С	3 671195	-0 038888	0 844436
ŭ	2 712770	1 021021	0,620420
п	3./13//9	1.031931	0.029439
Н	3.229958	-0.136847	1.839475
С	5 082322	-0.633512	0 811279
Ň	5.002022	4.007500	1.000000
н	5.090216	-1.687503	1.099303
Н	5.727347	-0.099799	1.514889
н	5.536830	-0.551141	-0.179488
<u> </u>	1 100111	0.757000	0,000,040
	-1.109114	-2.757652	2.099340
н	-2.221297	-2.761032	1.805351
н	-0.918037	-3,790890	2.367430
C	0.052076	1 827/20	3 203/01
	-0.952070	-1.02/429	3.293401
н	0.094285	-1.812470	3.610871
Н	-1.554192	-2.159031	4.144140
н	-1 229008	-0 799374	3 050040
~	0.702004	0.100014	0.000040
C	-0.703691	-3.082437	-0.605598
Н	-0.022006	-3.605189	-1.457020
н	-0.535531	-4.653754	-0.125914
C	2 145650	3 557523	1 008250
	-2.145059	-3.557525	-1.096250
н	-2.867253	-3.668526	-0.282869
Н	-2.363978	-4.338417	-1.831824
н	-2 302596	-2 592772	-1 582208
~	2.002000	-2.002112	0.000575
C	-3.633630	-0.550230	0.803575
Н	-3.533780	-1.534152	0.338673
н	-3.293747	-0.658507	1.838980
C	5 001277	0.094257	0 752520
	-5.091577	-0.064357	0.755556
н	-5.220747	0.918352	1.170943
Н	-5.721473	-0.763105	1.335072
н	-5 475419	-0 075199	-0 269403
~	-0.474000	0.000004	4 045407
C	-3.174069	0.989621	-1.645437
Н	-4.141301	1.455773	-1.429075
н	-2.534517	1.764373	-2.079999
C	2 220525	0 170401	2 610200
	-3.330535	-0.179401	-2.010200
н	-2.361797	-0.631153	-2.846046
Н	-3.773871	0.169593	-3.554748
н	-3 988536	-0 953310	-2 211796
~	4.000540	0.000010	2.211700
C	1.608512	2.518499	2.024319
Н	2.568078	2.440288	1.508298
н	1.492742	3.568778	2.307769
C	1 585/02	1 630/61	3 278361
Ň	0.700047	1.033401	0.00074
н	0.723647	1.873047	3.908971
Н	2.484758	1.810847	3.876284
н	1.529324	0.578336	3.025145
C	0.202637	3 640562	0 307158
	0.292037	3.040302	-0.307 130
н	1.247887	3.622594	-0.843822
Н	-0.473417	3.471011	-1.068474
C	0 074498	4 997299	0.367971
ŭ	0.000040	F 054442	0.001011
п	-0.899348	5.054443	0.862113
Н	0.105938	5.792898	-0.381835
Н	0.843430	5.222019	1.111077
0	-0 080845	-0 90/0/0	-1 961188
š	0.000040	4 550550	0.004400
0	0.214840	1.552556	-3.834480
Р	2.458350	-0.750224	-0.357861
Р	-0.179412	-2.363955	0.586067
Б	2 206005	0 544477	0.025074
г 5	-2.300903	0.5441/7	-0.023971
Р	0.286442	2.131760	0.781753
Мо	0.012689	-0.161664	-0.389586
н	0.333951	-0.247575	1.396311

Sum of electronic and zero-point Energies= -2413.383185 Sum of electronic and thermal Free Energies= -2413.456044

-2.229495	-2.675864	0.419132
-2.098290	-2.626698	1.504768
-3.185188	-3.171822	0.229347
-1.070390	-3.419737	-0.241654
-1.216199	-3.482612	-1.325338
-0.983783	-4.442782	0.139114
0.986906	3.330307	0.144179
	-2.229495 -2.098290 -3.185188 -1.070390 -1.216199 -0.983783 0.986906	-2.229495 -2.675864 -2.098290 -2.626698 -3.185188 -3.171822 -1.070390 -3.419737 -1.216199 -3.482612 -0.983783 -4.442782 0.986906 3.330307

н	1 288645	3 622861	-0 865710
н	0 761772	4 248708	0.694151
Ċ	2 098181	2 532341	0.825957
н	1 845920	2 313309	1 867869
н	3 043990	3 081319	0.819995
Ċ	-3 590327	-0 223237	0.951655
н	-4 302599	-1 033433	1 142304
н	-3 0002000	-0.027689	1 904553
Ċ	-0.000700	1 006588	0.434005
й	-3 668165	1 835491	0.404000
н	-5 046663	1 358494	1 189935
н	-4 909295	0 781698	-0.470723
Ċ	-3 113124	-1 018826	-1 841429
н	-3 263236	0.019141	-2 157279
н	-2 359322	-1 421631	-2 523632
C	-4 418921	-1 812949	-1 916206
н	-4 258744	-2 875082	-1 712502
н	-4.845917	-1.735975	-2.920072
н	-5.169178	-1.445955	-1.210305
Ċ	1.718911	-3.445693	-1.001882
Ĥ	2.718023	-3.291194	-0.585414
H	1.489326	-4.510556	-0.875791
C	1.683095	-3.047353	-2.478665
Ĥ	0.693111	-3.204133	-2.915955
H	2.398137	-3.646750	-3.048386
н	1.928617	-1.991473	-2.612416
C	0.905799	-3.098311	1.774734
Ĥ	0.037195	-2.844013	2.387007
Н	0.950286	-4.191994	1.710570
С	2.175370	-2.546132	2.419052
Н	3.064787	-2.752819	1.818661
Н	2.325180	-3.009409	3.397947
Н	2.099648	-1.469407	2.572786
С	2.941762	1.318403	-1.712903
Н	3.178351	0.364736	-2.194608
Н	2.092116	1.722970	-2.269081
С	4.137341	2.272344	-1.759856
Н	3.890974	3.253929	-1.345575
Н	4.451090	2.424264	-2.796376
Н	4.997811	1.882304	-1.209855
С	3.802173	0.221447	0.860894
Н	4.482301	1.063851	1.025746
Н	3.468023	-0.107596	1.846738
С	4.520643	-0.901288	0.111675
Н	3.832420	-1.699489	-0.171656
Н	5.301529	-1.338955	0.738882
Н	4.996114	-0.535179	-0.801777
С	-1.515147	3.103797	-1.341734
н	-2.518649	2.669749	-1.327180
Н	-1.616865	4.162613	-1.082012
C	-0.893565	2.942755	-2.732604
н	0.096156	3.406159	-2.788752
н	-1.523211	3.435655	-3.478129
Н	-0.791882	1.890465	-3.006499
	-1.402329	2.080203	1.000042
	-2.100911	1.097.300	1.790033
C C	2 0/8270	2.001400	2.37 1203
ц	-2.040279	4.005251	1.091372
ц	2 424635	4.007244	2 703653
н	-2.424000	4.255400	1 004142
P	-2.032724	-0 921233	-0 178371
P	0 524608	-2 511304	0.061400
P	2 316038	0 891251	-0.013577
P	-0.548103	2.285321	0.009569
Мо	0.049558	-0.101768	-0.483366
н	-0.232965	-0.199631	1.394990
C	-0.209470	-0.091330	3.101417
Ō	0.717287	0.624779	3.308371
0	-1.137443	-0.782071	3.372022
0	-0.047692	-0.248762	-2.181211

Sum of electronic and zero-point Energies= -2488.654229 Sum of electronic and thermal Free Energies= -2488.727678

IV. Crystallographic data

IV.1. $[Mo(depe)_2H_5][B(C_6H_5)_4]$ (1.BPh₄) – Molecular structure

IV.2. [Mo(depe)₂(CO)₂H][B(C₆H₅)₄] (4.BPh₄) – Molecular structure

Crystal Data	
Chemical Formula	$C_{20}H_{53}MoP_4 \cdot C_{24}H_{20}B$
M _r	828.79
Crystal system, space group	monoclinic, P21/c
Temperature (K)	100
a, b, c (Å)	13.9330 (3), 16.7804 (4), 19.2576 (5)
α, β, γ (°)	90, 95.774 (2), 90
V (Å ³)	4479.61 (19)
Z	4
Radiation type	Cu $K\alpha$ radiation, $\lambda = 1.54184$ Å
μ (mm⁻¹)	3.96
Crystal size (mm)	0.10 × 0.07 × 0.02
Data Collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption Correction	multi-scan CrysAlisPro 1.171.41.120a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.774, 1.000
No. of measured, independent and observed [I > $2\sigma(I)$] reflections	30591, 7622, 5143
R _{int}	0.150
θ _{max} (°)	65.1
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.078 , 0.280, 1.16
No. of reflections	7622
No. of parameters	479
H-atom treatement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{max}$, $\Delta \rho_{min}$ (e Å ⁻³)	1.32, -1.94

IV.3. [Mo(depe)₂H₅][B(C₆H₅)₄] (1.BPh₄) – Tables

IV.4.	[Mo(depe) ₂ (HCO	O)H ₂][B(C ₆ H ₅) ₄]	(3.BPh ₄) – Tables
-------	-----------------------------	---	--------------------------------

Crystal Data	
Chemical Formula	2(C ₂₁ H ₄₉ MoO ₂ P ₄)·2(C ₂₄ H20B)·C ₄ H ₈ O
M _r	1817.37
Crystal system, space group	triclinic, P -1
Temperature (K)	100
a, b, c (Å)	15.332 (3), 15.378 (3), 23.433 (5)
α, β, γ (°)	101.532 (6), 99.455 (5), 108.140 (5)
V (Å ³)	4989.8 (16)
Z	2
Radiation type	Mo K α radiation, λ = 0.71073 Å
μ (mm⁻¹)	0.43
Crystal size (mm)	0.10 × 0.08 × 0.02
Data Collection	
Diffractometer	Bruker Kappa Apex2 diffractometer
Absorption Correction	multi-scan SADABS (Siemens, 1996)
Absorption Correction T _{min} , T _{max}	multi-scan <i>SADABS</i> (Siemens, 1996) 0.676, 0.740
Absorption Correction T_{min}, T_{max} No. of measured, independent and observed [I > 2 σ (I)] reflections	multi-scan <i>SADABS</i> (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913
Absorption Correction T_{min}, T_{max} No. of measured, independent and observed [I > 2 σ (I)] reflections R_{int}	multi-scan <i>SADABS</i> (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913 0.124
Absorption Correction T_{min}, T_{max} No. of measured, independent and observed [I > 2 σ (I)] reflections R_{int} θ_{max} (°)	multi-scan SADABS (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913 0.124 24.7
Absorption Correction T _{min} , T _{max} No. of measured, independent and observed [I > 2σ(I)] reflections R _{int} θ _{max} (°) Refinement	multi-scan <i>SADABS</i> (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913 0.124 24.7
Absorption Correction T_{min}, T_{max} No. of measured, independent and observed [I > $2\sigma(I)$] reflections R_{int} θ_{max} (°)Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$	multi-scan SADABS (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913 0.124 24.7 0.099, 0.225, 1.19
Absorption Correction T_{min}, T_{max} No. of measured, independent and observed [I > $2\sigma(I)$] reflections R_{int} θ_{max} (°)Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflections	multi-scan SADABS (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913 0.124 24.7 0.099, 0.225, 1.19 16987
Absorption Correction T_{min}, T_{max} No. of measured, independent and observed [I > 2 σ (I)] reflections R_{int} θ_{max} (°)Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflectionsNo. of parameters	multi-scan SADABS (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913 0.124 24.7 0.099, 0.225, 1.19 16987 1016
Absorption Correction T_{min}, T_{max} No. of measured, independent and observed $[1 > 2\sigma(1)]$ reflections R_{int} θ_{max} (°) Refinement $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ No. of reflectionsNo. of parametersH-atom treatement	multi-scan SADABS (Siemens, 1996) 0.676, 0.740 105966, 16987, 11913 0.124 24.7 0.099, 0.225, 1.19 16987 1016 H atoms parameters constrained

IV.5.	[Mo	(depe) ₂	(CO) ₂ H][B(C ₆ H	5)4] (4.	BPh₄) –	Tables
-------	-----	---------------------	---------------------	----------------------	----------	---------	--------

Crystal Data	
Chemical Formula	$C_{22}H_{49}MoO_2P_4 \cdot C_{24}H_{20}B$
Mr	884.64
Crystal system, space group	monoclinic, P21/c
Temperature (K)	100
a, b, c (Å)	21.5133 (2), 18.8557 (2), 22.6970 (2)
α, β, γ (°)	90, 99.354 (1), 90
V (Å ³)	9084.57 (15)
Z	8
Radiation type	Cu $K\alpha$ radiation, λ = 1.54184 Å
μ (mm ⁻¹)	3.96
Crystal size (mm)	0.20 × 0.15 × 0.04
Data Collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption Correction	multi-scan CrysAlisPro 1.171.41.120a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.432, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	162235, 17141, 15649
R _{int}	0.051
θ _{max} (°)	70.1
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.030 , 0.075, 1.02
No. of reflections	17141
No. of parameters	1000
H-atom treatement	H atoms treated by a mixture of independent and constrained refinement

IV.6.	[Mo	(depe)2(ⁱ F	PrNCHN [/] P	r)H₂]	(7.BPh4)	– Tables
-------	-----	-------	--------------------	------------------------------	-------	----------	----------

Crystal Data	
Chemical Formula	$C_{27}H_{63}MoN_2P_4 \cdot C_{24}H_{20}B$
Mr	954.82
Crystal system, space group	monoclinic, P2 ₁
Temperature (K)	100
a, b, c (Å)	11.2886 (1), 25.1547 (2), 20.9232 (2)
α, β, γ (°)	90, 90.436 (1), 90
V (Å ³)	5941.21 (9)
Z	4
Radiation type	Cu $K\alpha$ radiation, λ = 1.54184 Å
μ (mm ⁻¹)	3.04
Crystal size (mm)	0.15 × 0.09 × 0.02
Data Collection	
Diffractometer	XtaLAB Synergy, Dualflex, HyPix
Absorption Correction	multi-scan <i>CrysAlis PRO</i> 1.171.41.93a (Rigaku Oxford Diffraction, 2020) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
T _{min} , T _{max}	0.801, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	112023, 19997, 19255
R _{int}	0.055
θ _{max} (°)	65.1
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.055 , 0.136, 1.05
No. of reflections	19997
No. of parameters	1035
H-atom treatement	H atoms treated by a mixture of independent and constrained refinement
Δ0	1.06, -0.82

V. Supplementary references

- [1] S. Kim, Y. Park, J. Kim, T. P. Pabst, P. J. Chirik, Nature Synthesis 2022, 1, 297–303.
- [2] N. Queyriaux, N. Durvin, D. Leon, M.-C. Boegli, L. Vendier, A. Simonneau, *European Journal of Inorganic Chemistry* **n.d.**, *n/a*, e202300426.
- [3] A. Faulkner, J. S. Scott, J. F. Bower, J. Am. Chem. Soc. 2015, 137, 7224–7230.
- [4] R. K. Harris, E. D. Becker, S. M. C. De Menezes, P. Granger, R. E. Hoffman, K. W. Zilm, Magnetic Resonance in Chemistry 2008, 46, 582–598.
- [5] R. K. Harris, E. D. Becker, S. M. Cabral de Menezes, R. Goodfellow, P. Granger, *Pure Appl. Chem.* 2001, 73, 1795–1818.
- [6] G. M. Sheldrick, Acta Cryst A 2015, 71, 3–8.
- [7] G. M. Sheldrick, Acta Cryst C 2015, 71, 3–8.
- [8] L. J. Farrugia, J Appl Cryst 1999, 32, 837–838.
- [9] P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J Appl Cryst 2003, 36, 1487– 1487.
- [10] J. A. Ibers, W. C. Hamilton, Eds., International Tables for X-Ray Crystallography, Vol. IV, Kynoch Press, Birmingham, England, 1974.
- [11] L. J. Farrugia, J Appl Cryst 1997, 30, 565-565.
- [12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, **2016**.
- [13] A. D. Becke, The Journal of Chemical Physics 1993, 98, 5648-5652.
- [14] C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B* 1988, 37, 785–789.
- [15] S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200-1211.
- [16] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, The Journal of Chemical Physics 2010, 132, 154104.
- [17] S. Grimme, S. Ehrlich, L. Goerigk, Journal of Computational Chemistry 2011, 32, 1456–1465.
- [18] M. Dolg, U. Wedig, H. Stoll, H. Preuss, The Journal of Chemical Physics 1987, 86, 866–872.
- [19] D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Theoret. Chim. Acta 1990, 77, 123–141.
- [20] A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuß, Molecular Physics 1993, 80, 1431–1441.
- [21] A. W. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chemical Physics Letters* **1993**, 208, 111–114.
- [22] R. Ditchfield, W. J. Hehre, J. A. Pople, *The Journal of Chemical Physics* 1971, 54, 724–728.
- [23] W. J. Hehre, R. Ditchfield, J. A. Pople, The Journal of Chemical Physics 1972, 56, 2257–2261.
- [24] Y. Zhao, D. G. Truhlar, The Journal of Chemical Physics 2006, 125, 194101.
- [25] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.
- [26] F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.
- [27] S. Miertuš, E. Scrocco, J. Tomasi, Chemical Physics 1981, 55, 117–129.
- [28] J. L. Pascual-ahuir, E. Silla, I. Tuñon, Journal of Computational Chemistry 1994, 15, 1127–1138.
- [29] V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.
- [30] Carlos. Gonzalez, H. Bernhard. Schlegel, J. Phys. Chem. 1990, 94, 5523–5527.
- [31] CYLview20; Legault, C. Y., Université de Sherbrooke, 2020 (http://www.cylview.org), 2020.
- [32] G. and A.-R. Luchini, F1000Research 2020, 9.