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1 FDA analysis and mutational scan of ECC highlight
importance of ECL2 for the activation process.

Because of the changed communication in the ECC the cavity openings are slightly different
in the active and the inactive state. While the ECC is less deep in the active state and covered
by the ECL2, the inactive cavity is protrudes deeper into the receptor.!® This change in ECC
opening and communication between the active and the inactive state might also explain
the different interactions of agonists and antagonists as reported in the experimental pdb
structures of ligand bound D2 receptors. ' ® While most conventional antagonists (stabilizing
inactive state) bind deeper in the ECC'* and form contacts to TM2,TM3,TM5,TM6 and
TMY7, agonists mainly form contacts to TM3, TM5, TM6 and TM7.356

Since the FDA analysis showed larger changes in the ECC region, we first chose 8 residues



from ECL2 (N175, N176, A177, Q179, N180, C45.50,182, 145.51,183, 145.52,184) as well
as W23.50,100 from ECL1 and N402 from ECL3 for our initial mutational scan. N175,
A177, 145.52,184 and W23.50,100 all turned out to be strongly mutation inactivated, while
145.51,183 was strongly mutation activated and C45.50,182 was ambivalent. In our wt simu-
lations we had observed long lasting contacts between W23.50,100 in ECL1 and C45.50,182
and 145.51,183 in ECL2. The prediction that mutation of W23.50,100 leads to a stabilization
of the inactive over the active state matches with the hypothesis that antagonist interaction
with W23.50,1001* leads to a stabilization of the inactive state. For C45.50,182 we observed
a stabilization of the active state for the aromatic mutants because of increased 7 interac-
tions between the aromatic rings of C45.50,182F or C45.50,182Y mutants and W23.50,100.
Interesting in ECL2 is that residues from the CII motif (C45.50,182,145.51,183,145.52,184),
which plays a role in agonists and antagonists interaction!™® all displayed multiple high AAG
values in different directions.

The attraction between ECL2 and ECL3 that is visible in the FDA in Fig. 2B comes
from a higher flexibility of ECL2 in the active state. The main contributing residues here
are N175, in ECL2 and N402 in ECL3. This attraction is much weaker in the inactive state
because of the formation of the small helix in ECL2 and the following decrease in flexibility
of ECL2. N175 forms more interactions with residues in the extracellular TM4 region in the
inactive state.

The free energy scan showed that N175 is strongly mutation inactivated, possibly by

weakening the ECL2-ECL3 attraction. We do not detect larger AAG values for N402.
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Figure 1: FDA analysis of the DRD2 receptor. The FDA analysis shows different
behaviour in inactive and active state. Attractive forces are shown in red, repulsive forces
in blue.



Another feature of ECL2 is the formation of a small helix in the inactive state and a
unfolded an expanded lid-like conformation in the active state.’®” We analysed the ECL2
dynamics using PCA of only this loop. The first principal component vector corresponds to
helix unfolding, the second PC more to a slight twisting of the loop. While there is a more
clear separation between active and inactive state simulations in PC1, both states behave
similar in PC2.

Interestingly we do observe a tendency towards the inactive more ”condensed” state of
ECL2 in two (out of 5) active state simulations. In the inactive state we observe partial
unfolding of ECL2 only once (out of 5). This can be seen as another indication of the
stability of the inactive compared to the active state. However, the receptor can undergo

inactivation defined by the inward movement of TM6 without fully “folding” of ECL2.
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Figure 2: PCA analysis of ECL2 of the DRD2 receptor. .



2 Important residues locate differently along the mem-
brane normal.

If our hypothesis were valid that strongly mutation activated residues are found more often
closer to the ICC and G-protein binding site, we would expect that this trend holds up for
most of our sampled residues. We mapped the conserved residues to the structure and found
that there is an increase in conserved residues along the membrane normal towards the ICC,
matching with the region of G-protein/arrestin interaction (FIG 3, SI FIG 3).%? Interestingly,
the distribution of high AAG residues, along with their mutation activity (active/inactive
stabilizing), varies along the membrane normal. Specifically, an accumulation of high AAG
residues is observed around the central region of the transmembrane helices. Further, muta-
tion active stabilizing residues are mainly located at both the extracellular and intracellular
ends of the receptor, with the majority found in the ICC (5). In contrast, mutation inacti-
vated and ambivalent residues are predominantly located at the center of the transmembrane
region (FIG 3). For many mutants we observe a change in residue interaction patterns. As-
suming that mutation of high AAG residues not only alters interaction patterns but also
disrupts inter-residue contacts, we can explain this localization along the membrane normal
with the different opening of ECC and ICC in the active/inactive state. While the ECC
remains similarly open for both states, the ICC widens in the active state, resulting in fewer
interactions of residues within the ICC.®!% This correlates with our findings that mutation
of residues in this region more frequently leads to active state stabilization, which is likely
due to interaction disruption. Furthermore, although the ECC opening at the extracellular
sides appears similar in both states, the extracellular cleft extends deeper into the receptor
in the inactive state.*8! This aligns with the accumulation of mutation inactive stabilizing
residues in this region. Here, we observe that contact patterns are slightly changed between

the states and mutation favors the inactive state by disrupting some interactions. %12



Figure 3: Conserved residues mapped to the DRD2 structure Residues that are
conserved and have multiple high AAG values are shown in green, conserved residues that
have not been sampled or did not show multiple high AAG are shown in orange.



3 Class A sequence alignment

For the sequence alignment we used the sequences from the UniProt database!® for human
GPCR class A aminergic receptors including the Dopamine receptors 1 to 5 (DRD1-5), the
Alpha-2A; B and C adrenergic receptors (ADA2A/B/C), the Rhodopsin receptor (OPSD),
the Cannabinoid receptor 1 and 2 (CNR1-2), the 5-hydroxytryptamine receptor A, B, D, F
and E (B HT1A/B/D/F/E), the Muscarinic acetylcholine receptor M1 to 5 (ACM1-5), the
adenosine receptor A2a, A2b, Al and A3 (AA2AR, AA2BR, AA1R, AA3R). We used the

sequence alignement tool of the UniProt database for sequence alignement. 3717
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Figure 4: Sequence logo of the aligned class A GPCRs. The sequence logo was created

with the online tool WebLogo3.®



4 Alternative representations of the AAG mutation scan

and chemical properties of the DRD2 receptor
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Figure 5: Sequence Logo of the mutated residues (A), snake plots with residues
colored after the relative free energy trends (B) and colored according to their
chemical properties(C). A shows an alternative representation of the mutation scan re-
sults. Negative values indicate a stabilization of the active state and positive values a sta-
bilization of the inactive state. The amino acids are colored according to their chemical
properties (F, Y brown; N, Q purple; S yellow; A, G pink, L green). The logo was created
using the python package logomaker.'® The residues that are strongly mutation activated
(red), strongly mutation inactivated (blue) and ambivalent (yellow) are shown in the snake
plot in B. Residues that were mutated but did not show multiple high relative free energies in
our scan are colored in grey. C shows the DRD2 residues colored according to their chemical
properties. Apolar residues are colored in yellow, glycine in pink, polar residues in purple,
negatively charged residues in red, positively charged residues in blue and aromatic residues
in green.



5 An overview of the DRD2 residue properties

The following figure shows the results of our analysis. The first part shows the free energy
mutation scan and the resulting trends.

The following 4 columns show different aspects of residue positioning in the receptor,
including: the position in the Z-axis (membrane normal), the secondary structural element
(trans membrane helix TM or loop ECL/ICL), the Ca backbone atom distance between the
aligned structures of active and inactive receptor state in A (see main text) as well as the
orientation of the residue relative to the receptor center (inward, outward or tangential, see
main text).

The next 3 columns show the comparison to literature data and conservance which in-
cludes: comparison to known microswitches (green if residue shows multiple high AAG and
belongs to the microswitches, red if residue belongs to the microswitches but did not show
multiple high AAG), comparison to conserved residues according to the class A GPCR
alignment (see above; green if conserved and multiple high AAG, red if conserved but no
multiple high AAG) and finally comparison to experimental data from the GPCRdb? 22
(green if the trends are matching, red if the trends are not matching).

The following column shows the outside pockets that the scanned residues belong to.
Residues that are within outside pockets and have multiple high AAG are colored in the
respective multiple high AAG trend color (red active, blue inactive, yellow ambivalent).

Results of the structure alignment comparison (DBASS analysis, see main text) are found
in the next column. Residues that show differences between the active and inactive state
environments and have multiple high AAG are colored in light purple, those that show
differences between active and inactive state environments but without multiple high AAG
are shown in dark purple.

The last column shows the 12 new residues that do not have experimental comparison
but show a clear influence on the active-inactive state-equilibrium when mutated to different

amino acids (show multiple high AAG).
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5.1 Simulations of mutants show similar trends as free energy

scarl.

We simulated L2.46,76A (ambivalent, Ala mutant activating), L1.52,54A (no effect) and
N7.45,418A (ambivalent, Ala mutant inactivating) for 1000ns (2 replicates per state) and
analyzed the trajectories with PCA. Matching the predictions from our free energy scan we
find a stabilization of the active state and a slight destabilization of the inactive state in
L2.46,76 A compared to the wt. For N7.45418A the trend is less clear, however we find
that the active state is less stable than the inactive state which matches the free energy
prediction. For L1.52,54A we did not detect high AAG and expected to find no difference
in active/inactive state stabilization. Interestingly, we do not find a big difference between
the stability of the active/inactive state of this mutant, but compared to the wt we find
that both states are stabilized. This indicates that this mutant does not effect the state

equilibrium, but stabilizes both states equally.

12
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Figure 7: PCA of wt system and mutant systems. 12.46,76A (ambivalent, Ala mutant
activating), L1.52,54A (no effect) and N7.45418A (ambivalent, Ala mutant inactivating)
were simulated for 1000ns (2 replicates per state). To compare the wt and mutant simulations
we only plotted the wt PCA for t=1000ns in this figure.
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6 Risperidone Data

6.1 The antagonist risperidone affects different residues.

To examine if ligands effect the mutational relative free energy differences we conducted
alanine scans with the ligand risperidone bound to the inactive state binding pocket.

For the ligand scan we used the risperidone position as reported by Wang and coworkers!
in the inactive receptor and compared the mutational relative free energy of the apo inac-
tive receptor against the risperidone bound inactive receptor. The resulting AAG can be
compared to the experimental AAG of ligand binding between wt and mutants. However,
since we worked with restraints on the protein backbone and sodium ions, it is expected
that the pmx calculated AAG would underestimate the experimental AAG. Even though
we calculated a Pearson correlation coefficient of 0.97 and a slope of 1.29 for a liner fit of our
pmx data, it is clearly visible that we underestimate the binding effect (FIG 8). Since delet-
ing residue-ligand interactions by mutation to alanine should result in destabilization of the
ligand bound to the apo state, important residues for ligand binding are expected to show
a more positive AAG (stabilization of the unbound state) upon mutation. The addition of
risperidone in the inactive state led to a stabilization of the unbound state for most mutants.
However, the addition of risperidone had the biggest effect on C6.47,385A and W6.48,386A
from the CWxP motif where we detected a difference in AAG between the apo and the
risperidone scan of more than 30 kJ/mol. Interestingly both C6.47,385 and W6.48,386 did
not show multiple high AAG values in the other scan, even though they are highly conserved
and have shown to be important within the activation process.®1123:24 Moreover, all available
structures for the D2 receptor on the pdb with different ligands (agonists and antagonists)
show ligand-D2 interaction at the CWxP motif. Since the CWxP motif is the only motif
where we did not detect any multiple high AAG values in our initial scan but observed a
very high difference between the inactive state with and without the ligand we propose that

this motif plays a more important role in ligand binding than in stabilization of inactive/

14



active state without ligand and sodium ions.

A stabilization of the apo inactive state was also observed for Y3.51,133A (DRY mo-
tif), F5.47,198A (RISP binding side), C45.50,182A(ECL2, CII ligand binding motif) and
17.52,425A (between NPxxY and DRY motif). We also observe an effect of the ligand for
residues that are further apart from the binding pocket, which indicates an allosteric cou-
pling between those residues (Y3.51,133A, 17.52,425A) and ligand binding. This matches
very well with the finding that both Y3.51,133 (DRY motif) and 17.52,425 (NPxxY motif)

are part of the known allosteric microswitch system.®?2
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Figure 8: Risperidone Scan (A), the thermodynamic cycle of ligand binding (B)
and comparison to the experiment (C). The alanine mutation scan shows the relative
free energy change of mutation in presence of risperidone in the binding pocket (RISP) and
without risperidone (no RISP). Residues with a difference of more than 10 kJ/mol in AAG
between the two scans were classified as ’affected by risperidone binding’ and are marked in
orange (risperidone binding leads to more positive AAG, stabilization inactive state) and
green (risperidone binding leads to more negative AAG, stabilization active state). For
comparison the binding site residues are shown in the last map in panel A. The comparison
with experimental data is shown in panel C using the thermodynamic cycle from panel B.
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6.2 Simulation of the ligand bound systems

The active receptor was solved with the ligand bromocriptine bound (pdb 7jvr)?® and the inac-
tive structure was solved with risperidone bound (pdb 6cm4).! We parameterized risperidone
using CGenFF.252" Wang et al. had already docked risperidone into the inactive receptor
structure,! so we used this experimentally defined position as a starting point for our mu-
tations. We applied position restraints on all C|, protein backbone atoms and all Na™ as
described above. There were no position restraints applied to risperidone. There are only
five experimental data points available for the Kd of risperidone binding to different single
mutants of DRD2. We used these and the wild type data to calculate the experimental

AAGPserdbinding of ligand binding in mutated systems with the following equations:

AG = —In(K,)RT

ligandbinding __ ligandbinding ligandbinding
AAC;fmutation - AGmutcmt - Ath

o AGligand . AGnoligand

mutation mutation

where T is the temperature where the experiments were performed 298 K, R is the gas
constant 8.314472 J/mol - K

The simulations were compared to the experimental data with the second equation.
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