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S1 Further details of local correlation approaches

We note in Sect. 2 of the main text, that the invariance of the correlation energy to unitary

orbital transformations is exploited when working in the LMO basis. However, the equa-

tions for the perturbative methods become coupled in such non-canonical basis sets. This

coupling introduces a smaller difficulty at the MP2 level, but it is more complex to han-

dle efficiently, e.g., for the (T) correction of CCSD(T) with the coupled or direct methods.

However, the use of the LMO basis is still worthwhile as they provide faster decay for the

wave function parameters with distance. To that end, often a hierarchy of distant, weak,

strong, etc. LMO pair lists is introduced, whose interaction is computed with methods of

increasing accuracy and cost. Such methods can be combined with orbital- or orbital-pair

specific NO approximations, leading to LNOs (or similar OSVs1) and PNOs. They efficiently

compress the wave function expansion in the unoccupied MO space due to their focused role

of correlating electrons only of a specific LMO or LMO pair. The drawback is the separate

set of orbitals (and corresponding ERIs) for each LMO or LMO pair. Thus, especially for

the latter combined with coupled methodologies, transforming the ERIs to all the different

pair-specific NO basis requires a large amount of operations and intermediate data that has

to be accessible for the whole molecule during the entire CC computation.

Additional similarities and differences between LNO and PNO methods can also be noted.

For example, the unoccupied LNOs are computed for each LMO form a density matrix that

collects contributions from all strong pairs of that LMO. Thus, the virtual LNOs can also

be interpreted as a weighted average of PNOs corresponding to a specific LMO and all of

its strongly interacting LMO pairs.2 Consequently, the number of LNOs per LMO is usually

larger than that of PNOs determined for a single LMO pair. However, there is a different

LNO basis set for each LMO and a different PNO basis set for each (non-distant) LMO pair.

Thus, the total number of different PNOs for the entire molecule is usually larger than that

of the total number of LNOs. Moreover, the LNO method enables the LNO compression of

the occupied domain space, while other methods work in the uncompressed occupied LMO
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space.

S2 Further details of the LNO method and algorithm

The steps of a practical LNO computation (Figure S1) begin with computing the HF or

Kohn–Sham (KS) orbitals for the entire molecule and the localization of the occupied orbitals

(except for the core orbitals left out from the correlated treatment). Next, we provide

additional technical details expanding on the introduction in Sects. 2.2–2.3 of the main text.

• solve Hartee–Fock or Kohn–Sham DFT reference

• occupied local MOs (LMOs), projected AOs (PAOs)

Quantities for the entire molecule

• multipole approximated MP2 pair energies

• → categorize strong/distant LMO pairs

Orbital pair energies

• DF integrals for strong pair LMOs & nearby PAOs

• MP2 energy of LMO via Laplace-transform

MP2 energy contribution of LMOs

• MP2 density of LMOs → LNOs → LNO integrals

• in LNO space: DF-CCSD & Laplace-transform (T)

CCSD(T) energy contribution of LMOs

Figure S1: Main algorithmic steps of the LNO-CCSD(T) method.

To obtain the orbital pair energies (δEMP2
IJ ), several methods,3–5 including our LNO

approach, employ fast multipole approximations for the energy contribution of distant pairs

below 10−5–10−6 hartree pair energies or about 10−3–10−5% of the correlation energy. The

strict control of the distant LMO pair list and higher-order multipole contributions up to

octupoles allow in the LNO methods to suppress this source of correlation energy error to
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around a hundredth of a percent for the entire molecule,2,6 while keeping an asymptotically

linear-scaling and manageable number of strongly interacting LMO pairs.

While for a molecule of a few (one) hundred atoms only about a few (few ten) percent

of the LMO pairs are strongly interacting, this amount of orbitals/electrons prohibits the

use of conventional correlation methods (besides MP2) to obtain the M1 level correlation

energy contributions for large molecules. Thus, in a domain built for the strong pairs of

each LMO, we compute the M2 level (currently MP2) estimate of the final, M1 level [e.g.,

CCSD(T)] wave function. The so-obtained M2 (e.g., first-order MP) amplitudes are used to

construct LMO-specific density matrices to determine the occupied and virtual LNO bases

(i.e., the summation restriction and bases employed in Eq. 2 of the main text) and the domain

correlation energies [δEM2
I of Eq. 3 at the MP2 level]. Then, the M1-level correlation energies

are computed in the LNO bases compressed according to the complexity of the M2-level wave

function probe.

Here, local correlation methods face a technical complication, namely that the ratio of

the number of virtual over occupied LNOs is relatively small compared to the canonical case

without local and/or NO approximations. Therefore, we developed and optimized novel

CCSD and (T) algorithms, especially to handle small virtual over occupied orbital number

ratios.7,8 Moreover, the size of the occupied and virtual LNO bases can still be considerable

for complicated molecules. To handle large orbital spaces, our conventional CCSD and (T)

codes have outstanding peak-performance utilization as well as memory- and disk-economic

design due to exploiting all permutational symmetries and a DF-based integral-direct algo-

rithm optimization for all terms.7,8 These algorithms are also generalized and employed for

the domain CCSD(T) computations in the LNO basis. Additionally, all terms of the CCSD

and (T) parts are optimized including those which only become relatively costly for small

virtual over occupied orbital dimensions. We have also devoted considerable optimization

efforts to decrease the data demand of the LNO methods by introducing integral-direct local

integral transformation, MP2 and CCSD(T) algorithms.2,5,6
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Regarding the open-shell case, obtaining the reference determinant could be more com-

plicated. Therefore ROHF and ROKS, as well as UHF, UKS, and corresponding quasi-

restricted9 reference orbitals are also implemented.10,11 If needed, all these references are

converted to an RO formalism as the cost of integral transformation becomes similar to

that of the closed-shell case. Additionally, utilizing our unique long-range spin polarization

approximation, we can reuse the more economical closed-shell LNO-CCSD(T) codes for the

domains which are not interacting strongly with any singly-occupied LMOs.10,11

It is also worth noting that our LMP2 correlation energy is obtained with the same domain

and pair approximations as LNO-CCSD(T), but NO approximations are not introduced for

LMP2. Therefore, the LMP2 correlation energy

ELMP2 =
∑
I

[
δEMP2

I +
1

2

distant p.∑
J

δEMP2
IJ

]
, (S1)

is also obtained without additional cost in all LNO-CCSD(T) computations.

S3 Similarity of the LAF and CPS extrapolations for

the LNO and PNO methods

This LAF extrapolation expression in Eq. 5 of the main text can be reformulated as

E
S−(S+1)
LAF = ES + F(ES+1 − ES)± 0.5(ES+1 − ES) , (S2)

where we subtracted (ES+1 − ES) from the first term of Eq. 5 and added it to its second

term, leading to F = 1.5.

The benefit of this rearrangement is that one can point out the similarity of our LAF

extrapolation for the LNO methods to the recently proposed complete PNO space (CPS)
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extrapolation of Bistoni et al.12 in the context of DLPNO methods:

E
X−(X+1)
CPS = EX + F(EX+1 − EX) , (S3)

where X labels the employed 10−X PNO truncation threshold. For example, the common

CPS(6,7) extrapolation employs the NormalPNO and TightPNO, that is X = 6 and X+1 =

7, settings for the CPS extrapolation. The LAF and the CPS extrapolations are similar in

the sense that both employ F = 1.5 to scale the step size (cf. Eqs. S2 and S3) added to

the less converged ES/EX value. While the LAF extrapolations employ the Loose, Normal,

Tight, etc. LNO threshold series without any modification, the CPS extrapolation sets

TightPNO settings for all approximations other than the PNO truncation for the EX DLPNO

computations. Thus, the CPS method extrapolates only the PNO truncation error and

does not affect the other DLPNO-based local approximations, which are assumed to be

appropriate at the TightPNO level. In addition, Martin and co-workers also experimented

with optimizing the F = 1.5 factor of the LAF extrapolation system specifically. Indeed, this

improved the performance of the LAF approach when better F factors could be obtained

from the known canonical CCSD(T) correlation energies.13,14 However, it still needs to be

determined how to obtain in practice an improved F factor system specifically without

knowing the canonical correlation energy.

S4 Practical tools for accuracy improvement

The LAF extrapolation illustrated in Fig S2 and will be further studied on specific examples

in Sect. S7. The general form of the composite energy correction in Eq. 6 of the main text

can be formulated as

E
CBS(Y,Z),X
HL,LL = EX

HL + E
CBS(Y,Z)
LL − EX

LL = EX
HL + ∆E

CBS(Y,Z),X
LL , (S4)
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Figure S2: Illustration of the LAF extrapolation of Eq. 4 of the main text yielding the
Normal–Tight (N-T) result and uncertainty estimate obtained from the Normal and Tight
LNO-CCSD(T) values.

where X, Y, Z refers to the basis set cardinal numbers. Naturally, such a composite approach

can also be interpreted as a HL-LL correction added to the LL/CBS result.

We note that since the performance of MP2 can significantly deteriorate for large molecules,

better LL approaches (such as linearized CCSD) have also been suggested in the local corre-

lation context.15 In general, the composite scheme of Eq. S4 can be extended using various

levels of local correlation treatment as follows:

E
CBS(Y,Z),X
HL,LL local CCSD(T) = EX

HL local CCSD(T) + ∆E
CBS(Y,Z),X
LL local CCSD(T) . (S5)

Here, the local correlation method can be DLPNO, LNO, or other approaches with an estab-

lished local approximation hierarchy and the HL (LL) settings can be, e.g., tight (default)

local CCSD(T) settings.

Besides the robust ∆E
CBS(T,Q),T
N-T LNO-CCSD(T) variant, if the type of the application allows, one

can consider even more efficient combinations, such as:

E
CBS(X,X+1),X
S LNO-CCSD(T), LMP2 = EX

S LNO-CCSD(T) + ∆E
CBS(X,X+1),X
S LMP2 , (S6)

where S denotes the LNO approximation level (e.g,. Normal or N–T). Here, the benefit

is that the LMP2/X-ζ result is obtained free as the side product of LNO-CCSD(T)/X-ζ,
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while LMP2/(X + 1)-ζ costs about the same as LNO-CCSD(T)/X-ζ. While not always as

reliable as E
CBS(T,Q),T
N-T LNO-CCSD(T), one may try to reduce the computational expense by using

E
CBS(T,Q),T
S LNO-CCSD(T) or E

CBS(T,Q),T
S LNO-CCSD(T), LMP2 with S=Normal or L–N. Especially in combination

with BSSE corrections, it is also worth checking if ∆E
CBS(D,T),D
S LNO-CCSD(T) type basis set corrections

offer a good accuracy over cost performance.

Regarding the uncertainty estimates for the basis set incompleteness error (BSIE), ap-

proaches useful for both conventional and local methods can be considered. For example, the

size of the ∆E
CBS(X,X+1),X
S LNO-CCSD(T) or ∆E

CBS(X,X+1),X
S LMP2 basis set corrections are usually a not very

tight upper estimate of the remaining BSIE. When available, the difference of the BSSE cor-

rected and uncorrected results and/or the difference of CBS(X,X+1) and CBS(X+1,X+2)

results (with X=D or T) offer a more practical and tighter estimate for the BSIE.16 For

the combined uncertainty of the local and BSI errors, the most conservative solution is to

sum their absolute values,16 as currently the distribution of these uncertainties is relatively

unknown. Adding together the local and BSI error bars is probably often an overestimation,

for example, these sources of error can partly cancel (see, e.g., Figs. 5–7 and S4–S9). Thus,

some authors prefer to take their root sum square.17

Considering these ideas, for example, for the specific example of the halocyclization re-

action of Fig. 6, the veryTight LNO-CCSD(T) computations at the Q-ζ or 5-ζ level would

be long but feasible due to their accessible memory demand and restartability. However,

observing the almost parallel LNO convergence with all basis set levels motivates the ap-

plication of a composite approach (see also in Sect. 3.4 of the main text). Namely, e.g.,

the well converged LNO-CCSD(T) results at the aug-cc-pVTZ basis set can be accurately

combined with a basis set correction obtained at the Tight, N–T, or often even at the

Normal LNO-CCSD(T)/CBS(T,Q) level, if one verifies that the target accuracy is reached

on a representative example. Convincingly, the NormalPNO DLPNO-CCSD(T1)/CBS(T,Q)

level basis set correction with respect to the DLPNO-CCSD(T1)/aug-cc-pVTZ barrier height

agrees well with the corresponding correction obtained with the LNO-CCSD(T) method.
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S5 Additional benchmarks

Table S1: Summary of local CCSD(T) benchmarks in the literature for various energy dif-
ference properties extending Table 4 of the main text with additional details. Mean absolute
error (MAE) and maximum error [in kcal/mol] against canonical CCSD(T) for the LNO-
CCSD(T) and DLPNO-CCSD(T1) methods are collected in the last columns corresponding
to their default or tight (italicized) settings. Results in rows labeled with † symbols were
evaluated independently from LNO and DLPNO method developers.

test set process entries No. of atoms basis set thresholds DLPNO error LNO error
AVG MAX MAE MAX MAE MAX

organic18 atomizationa 31 7.9 14 aug-cc-pVQZ tight 0.64 18 2.15 0.40 18 0.79 †

RSE3019 radical reactions 30 9.3 13 aug-cc-pVTZ default 0.17 20 0.47 0.04 11 0.11

IP2110 ionization 21 9.8 17 aug-cc-pVTZ default 0.72 20 3.25 0.16 11 0.62

NWH21 reactions 23 13.5 36 cc-pVTZ default 0.31 5 1.03 0.13 5 0.64

ion complexes22 anion binding 40 14.7 23 aug-cc-pVDZ tight 0.35 22 1.55 0.10 22 0.24 †

AC1223 carbene spin-states 12 15.6 23 cc-pVTZ default 0.79 20 0.92 0.24 11 0.45

S6624 interactions 66 19.9 34 haug-cc-pVTZ default 0.27 25 1.00 0.16 25 0.58

S66x826 dimer dissociation 528 19.9 34 haug-cc-pVTZ tight 0.10 13 0.65 0.05 13 0.22 †

Ru-complexes27 TM reaction & barrier 180 25.2 41 def2-TZVPP default 1.94 27 6.65 0.36 27 1.11 †

ACONF1228 alkene conformation 12 38 38 aug-cc-pVTZ default 0.24 14 0.31 0.31 14 0.39 †

CEMS262 react., interact., conf. 12 39 63 T-ζ & Q-ζ default 0.74 5 1.60 0.34 5 1.01

C40 fullerenes29 isomerization 28 40 40 6-31G(d) default 5.07 27 11.7 0.86 29 1.79 †

MOBH3530 TM reaction & barrier 81c 41.6 65 def2-SVP default 0.86 31 3.86 0.13 31 0.54 †

polypyrrol32 reaction & barrierb 18 57.9 67 cc-pVDZ tight 1.02 32 3.30 0.49 32 1.71 †

a Obtained with an early, 2017 version of LNO-CCSD(T) with the tighter settings in Ref. 8 and the 2013 version of DLPNO-CCSD(T0) with

TightPNO settings.33

b Extended π-systems with including a few borderline multireference examples.
c Reactions 17–20 and 24–25 were omitted due to their size, and 8–9 were recommended to be omitted due to their multireference character in
Ref. 31. The MAX local errors are larger for complexes 8 and 9, namely 2.41 kcal/mol for LNO-CCSD(T) and 14.96 kcal/mol for
DLPNO-CCSD(T1).

The NWH reaction energy benchmarks against DF-CCSD(T) are given in Fig. S3, as they

represent similar trends to the S66 and CEMS26 examples in Fig. 9 of the main text (see

Sect. 3.1). In brief, monotonic convergence can be observed for the statistical error measures

with NormalPNO DLPNO-CCSD(T1) being between Loose and Normal LNO-CCSD(T) and

TightPNO DLPNO-CCSD(T1) being between Normal and Tight LNO-CCSD(T). The default

MAD errors of 0.13 kcal/mol for Normal LNO-CCSD(T) and 0.31 kcal/mol for NormalPNO

DLPNO-CCSD(T1) are already good.
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Figure S3: LNO-CCSD(T) (left) and DLPNO-CCSD(T1) (right) reaction energy deviations
against the DF-CCSD(T) reference in the cc-pVTZ basis set5 for the NWH compilation.21

The notation explanation and data source are given in the caption of Fig. 9 of the main text.
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S6 Correlation energy benchmarks

The quality of the local CCSD(T) correlation energies are assessed for the (AcOH)2 dimer-

ization, octamethylcyclobutane (OMCB) formation reaction, and the halocyclization TS

(Tables S2–S4). Here, reference DF-CCSD(T) energies are available for the smaller species,

except for the halocyclization TS trimer. The purpose of the there examples is to illustrate

how to assess the convergence of the correlation energies and the level of potential local

error compensation upon forming energy differences. The first two examples show how this

analysis works with the advantage of having the exact DF-CCSD(T) result, while the halo-

cyclization TS is a real-life case illustrating what can be learned when the DF-CCSD(T)

result is unavailable.

Table S2: Relative LNO-CCSD(T) and DLPNO-CCSD(T1) local correlation energy errors
[in %] with respect to the DF-CCSD(T)/haug-cc-pVTZ reference for the (AcOH)2 dimer
and the corresponding AcOH monomer of the S66 set,24 supporting the dimerization energy
convergence plot in Fig. 5 of the main text. (The two AcOH monomers are not identical,
but their results agree for the presented number of digits.)

Threshold (AcOH)2 AcOH Compensated error
[%] [%] [%] [kcal/mol]

LNO-CCSD(T)
Loose -0,134 -0,075 -0,058 0,64
Normal -0,087 -0,054 -0,033 0,36
Tight -0,034 -0,018 -0,015 0,17
veryTight -0,007 -0,004 -0,004 0,04
L-N -0,064 -0,044 -0,020 0,21
N-T -0,007 0,000 -0,007 0,08
T-vT 0,006 0,003 0,002 -0,03

DLPNO-CCSD(T1)
NormalPNO -0,253 -0,169 -0,084 0,92
TightPNO -0,074 -0,050 -0,024 0,26
VeryTightPNO -0,035 -0,021 -0,014 0,15

Inspecting the first two columns of Table S2 and S3, the relative local CCSD(T) corre-

lation energy errors converge monotonically for both the LNO and DLPNO results (maybe

except for the Loose LNO case of OMCB). Especially the veryTight and the LAF extrapo-

lated LNO-CCSD(T) results reach the 0.01% local error (or 99.99% accuracy), while Very-

11



TightPNO local errors in the 0.02-0.06% range are also reliable.

It is constructive to inspect the level of correlation error compensation as collected in the

last two columns of Table S2 and S3 in percents and kcal/mol, respectively. Here, we take

the correlation energy weighted average of the correlation energy errors at the two terms

of the energy difference formation [e.g., separately for the dimer and monomers, or for the

reactant(s) and product(s)]. For example, the resulting “Compensated error” measure is the

same as the difference of the OMCB and 2,3-dimethylbut-2-ene (DMBE) relative errors, but,

for the halocyclization reaction in Table S4, the reactant side is weighted according to the

correlation energies of the two reactants and the catalyst. Consequently, the “Compensated

error” in Tables S2–S4 is practically the local correlation error in the interaction and reaction

energies of the (AcOH)2 and OMCB examples (due to the two almost identical monomers

and reactants), and it closely approximates the energy difference error if the relative errors

of different species are weighted together (like for the halocyclization example).

Table S3: Relative LNO-CCSD(T) and DLPNO-CCSD(T1) local correlation energy errors
[in %] with respect to the DF-CCSD(T)/cc-pVTZ reference for the OMCB product and the
corresponding 2,3-dimethylbut-2-ene (DMBE) reactant of the NWH set,21 supporting the
dimerization reaction energy convergence plot in Fig. 5 of the main text.

Threshold OMCB DMBE Compensated error
[%] [%] [%] [kcal/mol]

LNO-CCSD(T)
Loose 0,030 -0,042 0,072 -1,06
Normal -0,022 -0,020 -0,002 0,02
Tight -0,026 -0,013 -0,013 0,19
veryTight -0,017 -0,007 -0,010 0,15
L-N -0,048 -0,009 -0,038 0,56
N-T -0,028 -0,009 -0,019 0,27
T-vT -0,012 -0,003 -0,009 0,13

DLPNO-CCSD(T1)
NormalPNO -0,199 -0,140 -0,060 0,88
TightPNO -0,092 -0,051 -0,041 0,61
VeryTightPNO -0,057 -0,030 -0,027 0,40

When comparing the “Compensated error” with the largest relative errors in the rows

corresponding to a given local correlation setting for the individual species the LNO and
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DLPNO errors are cut by a factor of ca. 2 and 2–3, respectively, for all three examples.

This is in accord with our expectations, as these are examples where sizable local error

compensation cannot occur. Nevertheless, while the similarly named DLPNO settings yield

larger correlation energy errors than the corresponding LNO settings, their somewhat better

error compensation leads to comparable NormalPNO DLPNO-CCSD(T1) and Loose LNO-

CCSD(T), or TightPNO DLPNO-CCSD(T1) and Normal LNO-CCSD(T), or VeryTightPNO

DLPNO-CCSD(T1) and Tight LNO-CCSD(T) compensated errors.

These convergence trends look practically the same for the (AcOH)2 dimerization and

OMCB reaction with respect to two references: DF-CCSD(T) or local CCSD(T) converged

to the hundredths of a percent or better errors. The benefit of the “Compensated error”

measure is that it connects the convergence of the individual correlation energies and of

the energy differences. In addition, the “Compensated error” can be computed also from

the best available local CCSD(T) result, even if the exact DF-CCSD(T) is too costly. For

the halocyclization barrier, we can employ vT–vvT LAF extrapolated LNO-CCSD(T) as a

reference, but often T–vT or veryTight LNO-CCSD(T) can be similarly suitable for such an

analysis. For example, the errors of vT–vvT LNO-CCSD(T) can be verified to be in the

0.002–0.005% range against DF-CCSD(T) for the three smaller species on the reactant side

(see first raw of Table S4).

Taking this 0.002–0.005% uncertainty in the errors of Table S4 compared to vT–vvT

LNO-CCSD(T), the convergence trends are similar to the smaller (AcOH)2 and OMCB

examples in terms of the rate of convergence and error compensation. Namely, the Nor-

mal, Tight, vTight, and vvTight LNO-CCSD(T) correlation energies show -0.050%, -0.024%,

-0.008%, and -0.0027% relative deviations for the most complicated, TS structure. Compared

to the same reference NormalPNO, TightPNO, and VeryTightPNO DLPNO-CCSD(T1) cor-

relation energies differ by -0.355%, -0.144%, and -0.115%, respectively. However, an im-

portant difference is that the halocyclization TS correlation energy is ca. 3960 kcal/mol.

Thus even the 0.03–0.04% compensated errors of Normal LNO-CCSD(T) or VeryTightPNO
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Table S4: Relative LNO-CCSD(T) and DLPNO-CCSD(T1) local correlation energy devi-
ations [in %] with respect to the vT–vvT LAF extrapolated LNO-CCSD(T)/aug-cc-pVTZ
reference for species contributing to the halocyclization barrier height in Fig. 6 of the main
text.

Ph-pent-ac DCDMH QUI TS Compensated error
Thresholds [%] [%] [%] [%] [%] [kcal/mol]

LNO-CCSD(T)
vT–vvT vs DF-CCSD(T) 0,002 -0,005 0,002 - - -
Normal -0,004 -0,065 0,027 -0,050 -0,032 1,27
Tight 0,006 -0,034 0,011 -0,024 -0,017 0,68
veryTight 0,006 -0,012 0,005 -0,008 -0,007 0,30
veryveryTight 0,002 -0,004 0,002 -0,003 -0,002 0,10
N–T 0,010 -0,018 0,002 -0,011 -0,010 0,38
T–vT 0,007 -0,002 0,003 -0,00004 -0,003 0,11

DLPNO-CCSD(T1)
NormalPNO -0,228 -0,299 -0,187 -0,355 -0,112 4,80
TightPNO -0,085 -0,120 -0,077 -0,144 -0,048 2,05
VeryTightPNO -0,052 -0,058 -0,043 -0,088 -0,036 1,55

DLPNO-CCSD(T1) indicate about 1.3–1.6 kcal/mol respective error in their barrier heights.

In other words, this example underlines the importance of accurate correlation energies

when the local error compensation is small. For example, even the ca. 0.11% NormalPNO

DLPNO-CCSD(T1) compensated error points to 4–5 kcal/mol barrier height error.

S7 Additional systematic convergence examples

Here, we collect additional examples for systematic convergence with respect to both the

local approximations and basis set, extending Sect. 3 of the main text.

Expanding first on the brief analysis of the acetic acid dimer interaction energies in

Sect. 3.2 of the main text, Fig. S4 shows CBS(T,Q) and CBS(Q,5) CCSD(T) results within

0.07 kcal/mol from each other, indicating excellent basis set convergence close to the CBS

limit. The Loose–vTight LNO-CCSD(T) energies also converge convincingly to the conven-

tional CCSD(T) results (horizontal lines of matching color). While the Loose LNO-CCSD(T)

errors of around 0.5–0.7 kcal/mol are not sufficient for quantitative purposes, the largest Nor-
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mal, Tight, and vTight LNO errors for all five basis set levels reliably improve as ca. 0.4,

0.25, and 0.04 kcal/mol, respectively.
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Figure S4: Interaction energy of the acetic acid dimer of the S66 compilation24 using
Counterpoise correction. The plot show LNO-CCSD(T) (left), LAF extrapolated LNO-
CCSD(T) according to Eq. 5 (middle) and DLPNO-CCSD(T1) (right) results compared to
the horizontal lines corresponding to the conventional CCSD(T) results. The Normal LNO-
CCSD(T)/∆CBS(T,Q) basis set correction to Normal–Tight LNO-CCSD(T)/haTZ in the

composite E
CBS(X,X+1),X
LAF CCSD(T) approach of Eq. 7 is depicted as an orange vertical arrow.

The next three examples (Figs. S5–S7) have representative systems size (ca. 60–90 atoms)

and show relatively fast convergence toward the conventional CCSD(T)/CBS result. The

reaction energy corresponding to the formation of androstendione from its precursor is a

relatively simple organic reaction (Fig. S5).5 For the second example, the interaction energy

for a phenylalanine residue trimer (formed from a monomer and a dimer as defined in the

L7 set34) is taken based on our data from Ref. 16. For the third example, the difference of

two barrier heights are studied for the Michael-addition reaction discussed also in Sect. 3.3

of the main text. The two transition states lead to different stereoisomers of the product and

thus play a crucial role in exploring the stereochemical details of this reaction mechanism.35

These three examples, while having a considerable system size, exhibit relatively fast con-

vergence, especially with the LNO approximations. Already the N-T uncertainty estimates
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Figure S5: Reaction energy for the formation of androstendione from its precursor with the
LNO-CCSD(T) method.5
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Figure S6: Interaction energy of the phenylalanine residue trimer (from the L7 set34) with
the LNO-CCSD(T) method.16

are below 0.1 kcal/mol (with the only exception of ±0.18 kcal/mol for the aug-cc-pVTZ

result of Fig. S6), and even the Loose or L-N are well within chemical accuracy. For these

cases in Figs S5–S7, CBS(T,Q) and when available even CBS(D,T) basis set levels are also
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highly accurate.
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Figure S7: Barrier height differences between two transition state structures taken from the
stereoselectivity study of Ref. 35.

The fast convergence can be attributed to the relatively high level of similarity on the

two sides of the energy differences, which is a frequently occurring scenario. For example,

the reactant and product side of the reaction forming androstendione are relatively simi-

lar. A minor difficulty is cased by the intermolecular BSSE between the atoms of the two

product molecules as shown by an about 3 kcal/mol basis set error at the aug-cc-pVTZ

level. While the interaction energy is considerable for the phenylalanine residue trimer,

the interacting surface is not as large and the individual interaction components (mostly

dispersion and H-bonding) are not very problematic either for local approximations. Here,

excellent basis set convergence is also found even without Counterpoise corrections, while

the Counterpoise corrected interaction energies show only ca. 0.1 kcal/mol basis set error
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already at the aug-cc-pVTZ level.16 The largest error compensation can be expected for the

barrier height difference example of Fig. S7, where the same interactions are found in both

sides with a different spatial orientation. Here, already the Normal LNO-CCSD(T)/aug-

cc-pVTZ results are converged to almost 0.1 kcal/mol, and for most purposes even Normal

LNO-CCSD(T)/aug-cc-pVDZ is sufficient.

In contrast to the average examples, we also show an interaction and reaction energy

example which are considerably more complicated than the average applications (Figs. S8

and S9). First, the coronene dimer (Fig. S8) is extensively studied also by multiple high-

quality wave function methods, including LNO-, DLPNO-, PNO-LCCSD(T), FN-DMC, etc.,

but here we focus on the convergence of the local approximations and refer to its extensive

literature.4,16,36–41
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Figure S8: Interaction energy of the coronene dimer with the LNO-CCSD(T) method using
Counterpoise corrections.16 Some results are slightly shifted along the x-axis to increase
visibility.

The convergence of the LNO approximations is again reliable for the coronene dimer

interaction energies of Fig. S8. The main difference compared to the other examples is in

the magnitude of the local correlation errors. In this case, Tight LNO-CCSD(T) settings are

needed to reach the edge of chemical accuracy. However, the systematic convergence and

the LAF extrapolation remain robust, as shown by the few tenths of a kcal/mol agreement

between the veryveryTight, N–T, T–vT, vT–vvT LNO-CCSD(T) results. Moreover, the
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LNO error bars reliably decrease and envelope the LAF limit, reaching only about ±0.15

kcal/mol uncertainty at the vT–vvT LNO-CCSD(T) level. The coronene dimer is challenging

for other local methods, too. For example, using diffuse basis sets leads to severe basis set

redundancy issues, which cannot be treated with any other local CC method, and can only

be circumvented in the LNO-CCSD(T) implementation. Thus, most previous DLPNO-

CCSD(T) computations had to rely on relatively small, double- or triple-ζ basis sets, often

without diffuse basis functions, combined with low-level (mostly MP2) basis set corrections.

However, the interaction energy error of MP2 with respect to CCSD(T) is close to 100%

in this case, which discourages the use of MP2-based basis set incompleteness corrections.

The significant, about 2.2 kcal/mol step between the TightPNO and VeryTightPNO results

reported in Ref. 41 also indicates the challenges of converging the DLPNO or, in fact,

any local correlation results. While the BSSE is above 10 kcal/mol at the triple-ζ level,16

Counterpoise corrections and CBS extrapolation lead to reliable basis set convergence for

LNO-CCSD(T).
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Figure S9: Reaction energy of lanosterol to (S)-2,3-oxidosqualene (ISOL4)42 with the LNO-
CCSD(T) method.5

The second challenging case is the fourth reaction of the isomerization test set (ISOL4)

of Grimme and co-workers (Fig. S9).42 Here, the two intermediate steps in the biosynthe-

sis of cholesterol, lanosterol [ISOL4 educt] and (S)-2,3-oxidosqualene [ISOL4 product] are
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markedly different, separated by many elementary steps of the net reaction. Therefore one

cannot rely on any error compensation between the educt and product. First, the basis

set incompleteness errors at the aug-cc-pVDZ and aug-cc-pVTZ levels are about 24 and

8-9 kcal/mol, respectively, with respect to the CBS(T,Q) reaction energies.5 Compared to

that, the LNO uncertainty convergence is acceptable, namely 0.7-0.8, 0.3-0.4, and at most

0.1 kcal/mol error bars are assigned to the L-N, N-T, and T-vT LAF extrapolated LNO-

CCSD(T) results.

S8 Correlation energy error statistics

Here, we collect the correlation energy error statistics to provide more background to the cor-

responding energy difference analysis of Sect. 4 in the main text. The available information

includes in Table S5 the mostly default and partly tight LNO and DLPNO correlation energy

errors for 10 compilations (of the 14 sets in Table 4 of the main text). Additionally, the con-

vergence of the LNO and DLPNO relative correlation energy errors with respect to the local

threshold sets are shown for the NWH,21 S66,24 and CEMS262 compilations in Fig. S10,

supplementing the corresponding energy difference convergence statistics in Figs. S3, and 9.

In brief, the average (maximum) LNO correlation energy errors in Table S5 are mostly

below 0.03-0.07% (0.1%) with only a handful of exceptions, as noted in Sect. 4 of the main

text. Compared to that, the relative DLPNO-CCSD(T1) correlation energy errors in Table S5

are in most cases 3–5 times larger than that of LNO-CCSD(T). However, this difference

between the LNO and DLPNO performance is notably larger than the corresponding energy

difference deviations in Table 4 of the main text. A better understanding of this comparison

is offered by looking also at the distribution of the relative correlation energy errors of

Fig. S10. There, we find a similar width and shape for the NormalPNO DLPNO-CCSD(T1)

with Loose or Normal LNO-CCSD(T) and for TightPNO DLPNO-CCSD(T1) with Normal

and Tight LNO-CCSD(T), aside from a shift along the vertical axis. Thus, taking into
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account a possible compensation of some of the DLPNO-CCSD(T1) correlation energy errors

responsible for the shift with respect to the LNO-CCSD(T) results provides an explanation

that is more consistent with the experience found for the energy difference errors in the main

text.

Table S5: Summary of local CCSD(T) benchmarks in the literature for correlation energies
corresponding to the energy difference benchmarks of Table 4 of the main text. Mean abso-
lute error (MAE) and maximum errors [in %] relative to canonical CCSD(T) for the LNO-
CCSD(T) and DLPNO-CCSD(T1) methods are collected in the last columns corresponding
to their default or tight (italicized) settings. Results in rows labeled with † symbols were
evaluated independently from LNO and DLPNO method developers.

test set property entries No. of atoms threshold DLPNO error LNO error
AVG MAX MAE MAX MAE MAX

RSE3019 radical reactions 62 9.3 13 default 0.148 20 0.313 0.029 11 0.081

IP2110 ionization 42 9.8 17 default 0.183 20 0.627 0.047 11 0.109

NWH21 reactions 47 13.5 36 default 0.160 5 0.308 0.024 5 0.092

AC1223 carbene spin-states 24 15.6 23 default 0.296 20 0.406 0.043 11 0.084

S6624 interactions 198 19.9 34 default 0.141 5 0.302 0.029 5 0.094

S66x813 dimer dissociation 660 19.9 34 tight 0.034 31 0.097 0.017 31 0.045 †

ACONF28 alkene conformation 13 38 38 default 0.149 14 0.164 0.029 14 0.049 †

CEMS262 reac., inter., conf. 26 39 63 default 0.236 5 0.430 0.067 5 0.145

MOBH3530 TM reaction barriers 81a 41.6 65 default 0.542 31 1.373 0.026 31 0.074 †

polypyrrol32 reaction & barrierb 21 57.9 67 tight 0.181 32 0.241 0.063 32 0.089 †

a Reactions 17–20 and 24–25 were omitted due to their size and 8–9 were recommended to be omitted due to their
multireference character.31
b Extended π-systems with multiple borderline multireference examples.
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Figure S10: LNO-CCSD(T) (left sides) and DLPNO-CCSD(T1) (right sides) correlation en-
ergy deviations with respect to the DF-CCSD(T) reference. Top panel: NWH compilation21

(cc-pVTZ basis set).5 Middle panel: dimers of the S66 compilation24 (haug-cc-pVTZ basis
set).25 Bottom panel: CEMS26 compilation.5 Source of data: Tables 2 and S1 of Ref. 5 and
Ref. 25.
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S9 Additional computational requirement measurements

Wall-time measurement for the Michael-addition TS structure are reported in Fig. S11 (anal-

ogously to the case of the halocyclization TS in Fig. 10 and corresponding discussion in the

main text.)
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Figure S11: DF-HF, LNO-CCSD(T) (solid lines) and DLPNO-CCSD(T1) (dashed) wall time
measurements [in days] on 6 cores for the 90-atom TS of the Michael-addition reaction in
Fig. 7 of the main text with various basis set choices. The time plotted for the CBS(T,Q)
result is the sum of the aug-cc-pVTZ and aug-cc-pVQZ wall times.

Moreover, we show on the specific example of the halocyclization TS, how the errors

depend on the computational requirements. For this purpose, Fig. S12 combines the wall

time measurements from Fig. 10 of the main text with the energy errors obtained from the

convergence test of Fig. 6 from the main text.
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method.
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S10 Computational details

The LNO-CCSD(T) computations were performed with the Mrcc package using multiple

releases by us and by independent users over the years.43,44 Similarly, multiple versions,

namely 4.0, 4.1, 4.2, and 5.0 of the Orca package were employed for the DLPNO-CCSD(T)

computations.45 The appropriate Mrcc and Orca code versions can be found in the original

cited publications. However, for both the LNO and DLPNO methods the latest method and

code versions are recommended due to their ongoing developments. The open-shell LNO-

CCSD(T) computations are made with the development version of Mrcc,43,44 which will

be made available in a forthcoming release. Both Mrcc and Orca are free for academic

purposes and they both facilitate commercial use. Mrcc is also open-source for academic

use.

A typical LNO-CCSD(T) input file looks as follows:
calc=LNO-CCSD(T)

basis=aug-cc-pVTZ

mem=25gb

localcc=2021

lcorthr=tight

geom=xyz

2

H 0.00000000000000 0.00000000000000 -0.3715911499

H 0.00000000000000 0.00000000000000 0.3715911499

The wall-time measurements were performed via shared-memory OpenMP paralleliza-

tion for LNO-CCSD(T) in Mrcc and replicated-memory MPI parallelization for DLPNO-

CCSD(T1) in Orca. For the 63-atom halocyclization TS in Fig. 10 of the main text we

used 16 cores of a 64-core 2.45 GHz AMD EPYC 7763 CPU for both LNO-CCSD(T) and

DLPNO-CCSD(T1). The optimal memory allocations were 5, 10, 14, and 20 GBs for the

Loose, Normal, Tight, and veryTight LNO-CCSD(T)/aug-cc-pVTZ computations in Fig. 10.

Since the memory demand of DLPNO-CCSD(T1)/aug-cc-pVTZ computations is higher, the

entire memory of the 128-core dual-CPU node was used for the 16-core DLPNO-CCSD(T1)
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computations. That is, for each of the 16 MPI tasks 13 GB memory was allocated, total-

ing 16*13=208 GB memory use for the DLPNO-CCSD(T1) computations. For the 90-atom

Michael-addition TS in Fig. S11 of the main text we used a 6-core 3.5 GHz Intel Xeon E5-1650

v2 CPU node with a local hard drive for both LNO-CCSD(T) and DLPNO-CCSD(T1). The

optimal memory allocations were 16, 26, 36, and 43 GB for the Loose, Normal, Tight, and

veryTight LNO-CCSD(T)/aug-cc-pVTZ computations. For the DLPNO-CCSD(T1) compu-

tation the entire node memory (126 GB) was enabled, that is 6 tasks times 21 GB/task

memory was used.

S11 CBS extrapolation

The CBS limit of the HF and correlation energies is approached via standard two-point

extrapolation techniques but any other extrapolation formula developed for conventional

methods can also be adopted. The compact notation of CBS(X,X+1) is employed to denote

extrapolation using the X-ζ and (X + 1)-ζ bases. For instance, extrapolated results based

on the aug-cc-pVTZ and aug-cc-pVQZ sets is labeled by CBS(T,Q). For the extrapolation

of HF energies the two-point formula suggested by Karton and Martin46 is used:

EHF
X(X−1) = EHF

X +
(EHF

X − EHF
X−1)(X + 1)

X exp
(
γ(
√
X −

√
X − 1)

) , (S7)

where EHF
X is the HF energy obtained with the X-ζ basis set and γ is 6.57 or 9.03 for X = 4

or X = 5, respectively.46 Correlation energies are extrapolated using the formula introduced

by Helgaker et al.47 as

Ecorr
X(X+1) =

X3Ecorr
X − (X + 1)3Ecorr

X+1

X3 − (X + 1)3
, (S8)

with Ecorr
X being the correlation energy with the X-ζ basis set. For smaller basis sets, e.g., for

CBS(D,T) extrapolations, the exponents optimized by Neese and Valeev can be employed.48
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Soc. 2023, 145, 25372.

(18) Paulechka, E.; Kazakov, A. J. Chem. Theory Comput. 2018, 14, 5920.

(19) Ma, Q.; Werner, H.-J. J. Chem. Theory Comput. 2020, 16, 3135.
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