Supporting Information

Monitoring Electrophilic Intermediates in Reactions of Thiols in Aqueous Solution Directly With ¹⁹F NMR

Dmitry D. Saraev & Derek A. Pratt*

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada, K1N 6N5

dpratt@uottawa.ca

Table of Contents

Experimental section	S2
Measurement of pKa values for 1 and 6	S2
Observed rate constants for the reactions $1a$, $6a$, $7a$, $1b$, $6b$ and $7b$ with H_2O_2	S4
Mass balance changes during the reaction of Thiol 1 with thermally generated ${}^{1}O_{2}$	S4
Photosensitized Oxidation of Thiol 9 in CD ₃ OD/H ₂ O (15:1)	S5
Photosensitized Oxidation of Thiol 9 in THF	S6
Photosensitized Oxidation of Sulfenic Acid 10	S8
Computational data	S10
Gas-phase Cartesian coordinates and energetics of stationary points	S10
NMR spectra	S34
References	S53

Experimental Section

Measurement of pKa values for 1 and 6

The pKa values for both the thiol (**1**) and sulfenic acid (**6**) were obtained in both H₂O (Figure S1) and the 3:1 mixture of D₂O and THF in which the reactions were carried out (Figure S2). Measurements were made in accordance with a previously reported procedure.^[1] Briefly, 3.0 mL solutions of **1** and **6** (1 mM) were prepared in each medium and the pH was measured with a standard aqueous electrode. 5 μ L of a 20 mM aqueous solution of NaOH was added and the pH was measured again. This was repeated for 15 readings. pKa measurements were carried out in triplicate for each compound.

Figure S1. Titration of a 1 mM solution of **1** (•) and **6** (•) at 24°C in H₂O with 20 mM NaOH.

Figure S2. Titration of a 1 mM solution of **1** (•) and **6** (•) at 24°C in D₂O/THF (3:1) with 20 mM NaOH.

Figure S3. Titration of a 1 mM solution of isomerically pure **1a** (•) and **6a** (•) at 24°C in H₂O with 20 mM NaOH.

Observed rate constants for the reactions of **1a**, **6a**, **7a**, **1b**, **6b**, and **7b** with H₂O₂

The rate constants for the reactions of each of the thiolate, sulfenate and sulfinate with H_2O_2 that are given in Figure 2A of the manuscript (and the associated text on page 2), were derived from the average values of observed rate constants obtained from fitting the reaction progress data shown for both isomers in Figure 2C. The observed rate constants for the individual isomers obtained from these fits are given in Table S1.

Table S1. Observed rate constants for the reaction of each isomer of **1**, **6** and **7** with H_2O_2 in pD 7.8 D_2O/THF (3:1).

Compound	1a	6a	7a	1b	6b	7b
<i>k</i> _{obs} (M ⁻¹ s ⁻¹)	9.40 ± 0.13 × 10 ⁻²	1.43 ± 0.14 × 10 ⁻²	1.27 ± 0.18 × 10 ⁻³	9.15 ± 0.22 × 10 ⁻²	1.34 ± 0.26 × 10 ⁻²	1.43 ± 0.31 × 10 ⁻³

<u>Mass balance changes during the reaction of 1 with thermally generated ${}^{1}O_{2}$ </u>

Figure S4. The mass balance of fluorinated triptycenes relative to the internal standard (trifluoroethanol) in the experiment in Figure 4A of the manuscript. The downward trend is observed likely due to formation of paramagnetic species in the reaction of thiols with ${}^{1}O_{2}$.

Photosensitized Oxidation of Thiol 9 in CD₃OD/H₂O (15:1)

Figure S5. Representative ¹H NMR spectra of **9** (20 mM) in the presence of 200 μ M of Rose Bengal in 12:1 CD₃OD/H₂O containing 60 mM NaOH (corresponding to the experiment in Figure 4B of the manuscript). Peaks corresponding to thiolate **9**, sulfinate **11** and sulfonate **12** are annotated.

Figure S6. Representative¹⁹F NMR (C_6D_6 , 283 MHz) spectrum of an authentic sample of **15** (in black) stacked over the crude ¹⁹F NMR spectrum of the photo-oxygenation of **9** suspended in C_6D_6 (in gray). The reaction was continued until **9** was completely consumed. **11** and **12** were not detected as they are insoluble in C_6D_6 .

Photosensitized Oxidation of Thiol 9 in THF

14 (traces)

Thiol **9** (4.8 mg, 0.016 mmol) was dissolved in THF (10 mL). To this suspension was added 50 μ L of a 1M solution of NaOH in water (3 eq.). Rose Bengal (*ca.* 0.01 eq.) was added, and the reaction mixture was cooled to 4°C. Trifluorotoluene (10 mM) was used as an internal standard for NMR quantification. Oxygen was bubbled continuously through the solution, after which the reaction vessel was irradiated with a 400W HPS lamp. After 1h, the reaction was concentrated *in vacuo*. Analysis of the mixture by ¹⁹F S6

NMR in CD₃OD in the observation of sulfonate **11** as the major product (34%), with **15** being undetectable. Initial progress of the reaction is shown in Fig. S5. Attempts to isolate/characterize the unknown downfield of **12** were unsuccessful. The unknown was not observed when the reaction was performed in the absence of THF in CD₃OD (Fig. 3B of the manuscript).

Figure S7. Representative ¹⁹F NMR monitoring of the reaction of **9** (20 mM) in the presence of 200 μ M of Rose Bengal in 15:1 THF/H₂O containing 60 mM NaOH. The known peaks of **9**, **11** and **12** are annotated.

Photosensitized Oxidation of Sulfenic Acid 10

In an NMR tube, to a 5.3 mM solution of **10** in CD₃OD (690 μ L) was added sodium hydroxide as a 1M solution in water (20 μ L, 0.06 mmol, 8.5 eq.). 2 μ L of a 1.5 mM aqueous solution of Rose Bengal (*ca.* 0.01 eq.) was added and the reaction mixture was cooled to *ca.* 4°C. Trifluorotoluene (10 mM) was used as an internal standard for NMR quantification. Oxygen was bubbled through the solution after which an initial NMR spectrum was acquired, which showed the formation of **11**. This is likely a result of Rose Bengal excitation by ambient light, as autoxidation of **10** is unlikely to occur on this timescale. The reaction vessel was subsequently irradiated with a 400W HPS lamp for 60s, upon which 85% of **10** was converted to **11** (Figure S8).

-206.30 -206.40 -206.50 -206.60 -206.70 -206.80 -206.90 -207.00 -207.10 -207.20 -207.30 -207.40 -207.50 -207.60 -207.70 (ppm)

Figure S8. Representative ¹⁹F NMR spectra of **10** (5 mM) in the presence of 50 μ M Rose Bengal in aqueous THF in the presence of 5 eq. of NaOH. Initial time point before irradiating the NMR tube with a 400W HPS lamp is shown below. The spectrum above was acquired after irradiating for 60s. Proposed mechanism is shown below. Subsequent oxidation of **11** is also shown.

Figure S9. Proposed mechanism among other possibilities for the reaction of RSOH with ${}^{1}O_{2}$. SET = single electron transfer. The observation of sulfinate as the major product strongly supports the formation of a sulfonyl hydroperoxide that then reacts with an additional equivalent of RSOH resulting in the formation of two equivalents of RSO₂H. We propose that homolysis is less likely to occur since in-cage recombination

would result in a higher yield of RSO_3H relative to RSO_2H during initial time points, which was not observed (*vide supra*).

Computational Section

Gas-phase Cartesian coordinates and energetics of stationary points

Tert-butanethiol

₩

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-555.840294	-555.843627
Sum of electronic and thermal Energies	-555.833024	-555.836328
Sum of electronic and thermal Enthalpies	-555.832080	-555.835383
Sum of electronic and thermal Free Energies	-555.870425	-555.873799

01

С	-0.35955600	-0.00545200	0.00000100
С	-0.84246900	-0.72909800	-1.26247200
Н	-0.49491100	-0.22331400	-2.16556900
Н	-0.48815000	-1.76255100	-1.28875400
Н	-1.93756700	-0.74838700	-1.27940300
С	-0.83170100	1.45525200	0.00000100
Н	-1.92520400	1.48149200	0.00000300
Н	-0.48098200	1.98859500	0.88704500
Н	-0.48098600	1.98859400	-0.88704700
С	-0.84246300	-0.72909600	1.26247700
Н	-0.48814300	-1.76254900	1.28876000
Н	-0.49490000	-0.22331000	2.16557200
Н	-1.93756000	-0.74838500	1.27941400
S	1.51490600	0.08144900	-0.00000400
Н	1.74704400	-1.24300300	-0.00000300

Tert-butanethiolate

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-555.281251	-555.377948
Sum of electronic and thermal Energies	-555.274645	-555.371385
Sum of electronic and thermal Enthalpies	-555.273701	-555.370441
Sum of electronic and thermal Free Energies	-555.310802	-555.407462

-1 1

 \downarrow^{\oplus}_{s}

С	0.29823400	0.00003100	0.00004700
С	0.82493600	-0.06261100	-1.44361600
Н	0.48264500	-0.97114300	-1.94626800
Н	0.47743100	0.79577700	-2.02466100
Н	1.92316300	-0.06004000	-1.45791100
С	0.82330100	-1.21898500	0.77707800
Н	1.92149500	-1.23099200	0.78763500
Н	0.47542000	-1.20185300	1.81329900
Н	0.47955900	-2.15139100	0.32133300
С	0.82151600	1.28263200	0.66806500
Н	0.47678200	2.17124100	0.13263600
Н	0.47306300	1.35533800	1.70166600
Н	1.91969900	1.29681300	0.67804100
S	-1.57732400	-0.00063500	-0.00095100

Tert-butanethiyl radical

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-555.201800	-555.204652
Sum of electronic and thermal Energies	-555.194947	-555.197787
Sum of electronic and thermal Enthalpies	-555.194003	-555.196843
Sum of electronic and thermal Free Energies	-555.232290	-555.235152

\ ↓s`

С	0.31152200	0.00000000	-0.00659600
С	0.85997700	-1.26527300	-0.68380800
н	0.47871300	-2.16632500	-0.20017000
н	0.57910500	-1.30217500	-1.73912600
н	1.95436400	-1.27531200	-0.62673700
С	0.66638200	0.00000000	1.49506700
н	1.75702800	0.00000000	1.59943500
н	0.27760600	0.88727000	1.99960400
н	0.27760600	-0.88727000	1.99960400
С	0.85997800	1.26527200	-0.68380900
Н	0.57910600	1.30217400	-1.73912600
Н	0.47871500	2.16632500	-0.20017100
н	1.95436500	1.27531100	-0.62673700
S	-1.53273500	0.00000000	-0.07448100

Tert-butanesulfenic acid

↓^s_{он}

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-630.968347	-630.974013
Sum of electronic and thermal Energies	-630.959931	-630.965547
Sum of electronic and thermal Enthalpies	-630.958987	-630.964602
Sum of electronic and thermal Free Energies	-631.000321	-631.006078

0 1			
С	-0.66261500	0.08275000	0.00100600
С	-0.76343500	1.01531600	-1.21123400
Н	0.01783600	1.77883700	-1.18620500
Н	-0.67544500	0.45909400	-2.14716900
Н	-1.72967800	1.52999700	-1.20536400
С	-0.79955700	0.86777200	1.31039300
Н	-1.73854200	1.43090500	1.31266900
Н	-0.79738700	0.19767300	2.17293300
Н	0.02323600	1.57699600	1.42163600
С	-1.69845100	-1.04820700	-0.08349400
Н	-1.60138200	-1.61577100	-1.01273200
Н	-1.60978600	-1.73976300	0.75875600
Н	-2.70319100	-0.61671900	-0.05726200
S	0.96477900	-0.81141000	-0.01736600
0	2.07724700	0.46720800	0.11331900
Н	2.30423800	0.73787400	-0.78599200

Tert-butanesulfinyl radical

↓s.₀.

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-630.361309	-630.366390
Sum of electronic and thermal Energies	-630.353194	-630.358267
Sum of electronic and thermal Enthalpies	-630.352250	-630.357322
Sum of electronic and thermal Free Energies	-630.393921	-630.399013

02

С	0.64524600	0.06018200	0.00000000
С	0.78650200	0.91550200	1.26431200
Н	0.00388800	1.67602100	1.30041100
Н	0.71571400	0.30651800	2.16927500
Н	1.75837700	1.41965800	1.26791500

0.78651700	0.91546800	-1.26433400
1.75840200	1.41960500	-1.26795000
0.71571600	0.30646200	-2.16928100
0.00391600	1.67600100	-1.30044800
1.60560900	-1.13351100	0.00002200
1.47055300	-1.75999600	0.88635200
1.47054800	-1.76003400	-0.88628100
2.63995300	-0.77670300	0.00001100
-1.07240300	-0.68204200	-0.00000100
-2.04023200	0.48241200	0.00000000
	0.78651700 1.75840200 0.71571600 0.00391600 1.60560900 1.47055300 1.47054800 2.63995300 -1.07240300 -2.04023200	0.786517000.915468001.758402001.419605000.715716000.306462000.003916001.676001001.60560900-1.133511001.47055300-1.759996001.47054800-1.760034002.63995300-0.77670300-1.07240300-0.68204200-2.040232000.48241200

Tert-butanesulfenyl hydroperoxide

↓^S_OOH

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-706.025746	-706.031518
Sum of electronic and thermal Energies	-706.015876	-706.021637
Sum of electronic and thermal Enthalpies	-706.014932	-706.020693
Sum of electronic and thermal Free Energies	-706.059993	-706.065825

0 1

С	-0.97905000	0.15645100	0.01209000
С	-0.72708500	1.47621800	-0.72670600
Н	0.15718500	1.98258900	-0.33674500
Н	-0.58341100	1.30978500	-1.79643100
Н	-1.58844800	2.13898000	-0.59361000
С	-1.18164600	0.39012500	1.51229400
Н	-2.01261400	1.08544800	1.66792100
Н	-1.41189200	-0.54299500	2.03109500
Н	-0.28696900	0.82464400	1.96240300
С	-2.16686300	-0.60176000	-0.60261100
Н	-2.01294800	-0.80242800	-1.66636400
Н	-2.35151500	-1.54975200	-0.09095300
Н	-3.06655400	0.01258700	-0.50670900

S	0.44346100	-1.01286700	-0.24790400
0	1.69578500	-0.29351300	0.58493300
0	2.45354000	0.68090600	-0.25277900
Н	3.19504300	0.12167900	-0.53177500

Tert-butanesulfenyl peroxide

↓s,o,o

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-705.450621	-705.552516
Sum of electronic and thermal Energies	-705.441538	-705.543224
Sum of electronic and thermal Enthalpies	-705.440594	-705.542280
Sum of electronic and thermal Free Energies	-705.483555	-705.586200

-1 1

С	-0.93192700	0.14967800	0.01622000
С	-0.63747200	1.46999100	-0.71073700
Н	0.35891400	1.82138100	-0.43641200
Н	-0.64964900	1.32486000	-1.79474200
Н	-1.39321300	2.22327700	-0.45621500
С	-1.07579300	0.38018600	1.52407400
Н	-1.85467600	1.12416400	1.72535400
Н	-1.34345700	-0.54609300	2.03924700
Н	-0.13451700	0.74356800	1.94128400
С	-2.17221600	-0.54284700	-0.56134000
Н	-2.04900100	-0.75886200	-1.62678600
Н	-2.38988600	-1.48076600	-0.04278800
Н	-3.04366800	0.11190200	-0.45406500
S	0.47821600	-1.03493300	-0.27435000
0	1.75883000	-0.31289600	0.51817500
0	2.46018800	0.71957600	-0.28249700

Tert-butanethiyl peroxyl radical

↓^s、₀.º'

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-705.381845	-705.385390
Sum of electronic and thermal Energies	-705.372302	-705.375759
Sum of electronic and thermal Enthalpies	-705.371358	-705.374815
Sum of electronic and thermal Free Energies	-705.417033	-705.420713

С	-0.93053200	0.15845200	0.00396700
С	-0.66636400	1.37212200	-0.89415600
Н	0.23105400	1.91019900	-0.58445000
н	-0.53986000	1.07363900	-1.93635900
Н	-1.51255400	2.06477800	-0.83061200
С	-1.10905600	0.57310600	1.46913400
Н	-1.94032200	1.28130400	1.55224700
Н	-1.32631200	-0.29065100	2.10034700
Н	-0.21118700	1.06061000	1.85292300
С	-2.14821900	-0.63932200	-0.49556000
Н	-2.02625900	-0.95781100	-1.53395900
Н	-2.33637700	-1.52099300	0.12216300
Н	-3.03402600	0.00121200	-0.44452500
S	0.45402300	-1.07001400	-0.14607900
0	1.79470100	-0.07539000	0.53729500
0	2.52486100	0.53936400	-0.34489700

Thiyl peroxyl radical rearrangement TS

Imaginary frequency: -817.40 (CBS-QB3)

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-705.356334	-705.364402
Sum of electronic and thermal Energies	-705.347260	-705.499673
Sum of electronic and thermal Enthalpies	-705.346316	-705.498729
Sum of electronic and thermal Free Energies	-705.390553	-705.543082

02

С	-0.89080900	0.07211900	0.06977400
С	-0.69203700	0.41779200	1.54313300
Н	-0.45180100	-0.46694600	2.13479400
Н	0.11674600	1.13824900	1.66285200
Н	-1.61840100	0.85226700	1.93115200
С	-1.91728200	-1.05412500	-0.13133100
Н	-2.90368900	-0.70589900	0.19019800
Н	-1.99878600	-1.34923700	-1.18170300
Н	-1.66189200	-1.93958900	0.45476000
С	-1.25866500	1.30786600	-0.76489500
Н	-0.52954800	2.10426600	-0.61505100
Н	-1.30437200	1.07811600	-1.83365500
Н	-2.24689700	1.66830500	-0.46233600
S	0.72293800	-0.57802000	-0.62854400
0	1.73693600	-0.65311400	0.53923800
0	1.96111300	0.95397300	-0.10478700

¹O₂-TS1

Imaginary frequency: -452.40 (CBS-QB3), -355.62 (PCM CBS-QB3)

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-705.935340	-705.955002
Sum of electronic and thermal Energies	-705.926138	-705.945512
Sum of electronic and thermal Enthalpies	-705.925194	-705.944568
Sum of electronic and thermal Free Energies	-705.968559	-705.989111

010101

C(Fragment=1)	-0.99558500	0.48201500	1.52725700
H(Fragment=1)	-1.22198100	-0.41069200	2.11512900
H(Fragment=1)	-0.03934900	0.88832600	1.85720700
H(Fragment=1)	-1.77461300	1.22343500	1.72510400
C(Fragment=1)	-0.97905500	0.18103100	0.02920700
C(Fragment=1)	-2.25324300	-0.52819900	-0.44050800
H(Fragment=1)	-2.20633200	-0.78825400	-1.50005700
H(Fragment=1)	-2.45347200	-1.43328700	0.13706500
H(Fragment=1)	-3.09759200	0.15362400	-0.29942100
C(Fragment=1)	-0.67084900	1.43215800	-0.80532300
H(Fragment=1)	0.31004600	1.83691300	-0.55045400
H(Fragment=1)	-0.69075600	1.21173900	-1.87530100
H(Fragment=1)	-1.43668000	2.18455300	-0.59966000
S(Fragment=1)	0.44169800	-0.99683600	-0.34249700
H(Fragment=1)	0.16094400	-1.91216400	0.60812000
O(Fragment=2)	1.84249800	-0.23620300	0.51980500
O(Fragment=2)	2.50437800	0.68534800	-0.27000200

RSOOH rearrangement TS

Imaginary frequency: -426.33 (CBS-QB3), -415.92 (PCM CBS-QB3)

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-706.007064	-706.009723
Sum of electronic and thermal Energies	-705.997461	-705.999870
Sum of electronic and thermal Enthalpies	-705.996517	-705.998926
Sum of electronic and thermal Free Energies	-706.041165	-706.044230

01

С	-0.93160300	0.15117300	0.06630700
С	-0.64471100	0.56796600	1.50598500
Н	-0.55949000	-0.29732600	2.16612600
Н	0.29011800	1.12678600	1.55185700
Н	-1.46425900	1.19797200	1.86552900
С	-2.14855200	-0.78172000	-0.05251000
Н	-3.05373900	-0.23190100	0.22391200
Н	-2.28633700	-1.14603600	-1.07532000
Н	-2.05960800	-1.64520300	0.61046300
С	-1.07547100	1.36814700	-0.86223600
Н	-0.19790800	2.00875300	-0.77764100
Н	-1.18434900	1.06985300	-1.90950800
Н	-1.97104300	1.93322000	-0.58383900
S	0.53326700	-0.82502000	-0.57356800
0	1.53915800	-0.91987700	0.52371500
0	2.19428100	0.89681800	-0.14114600
Н	2.88885800	1.53527600	0.09968500

Thiyl peroxyl HAT from thiol TS

Imaginary frequency: -1590.45 (CBS-QB3), -1695.82 (PCM CBS-QB3)

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-1261.210326	-1261.215305
Sum of electronic and thermal Energies	-1261.192416	-1261.197395
Sum of electronic and thermal Enthalpies	-1261.191471	-1261.196450
Sum of electronic and thermal Free Energies	-1261.259545	-1261.264524

Λ	2
υ	2

0	0.98820400	-0.98358100	0.81453400
0	0.01076900	-0.00560800	0.74436800
S	-2.29702500	-1.16400900	-0.26088200
Н	-1.07684300	-0.61467300	0.47252200
С	-3.41063800	0.32251200	-0.05757700
С	-3.51577600	0.69584900	1.42650700
Н	-2.54218500	0.97300900	1.83712200
Н	-4.18839400	1.55195400	1.54438300
Н	-3.91217000	-0.13459500	2.01438200
С	-2.84727000	1.49064200	-0.88011600
Н	-2.77675200	1.23023200	-1.93803000
Н	-3.50976300	2.35721400	-0.78157600
Н	-1.85456500	1.78212400	-0.53048400
С	-4.78025500	-0.10955200	-0.60694700
Н	-5.47926100	0.72811600	-0.51824900
Н	-4.71790100	-0.39011500	-1.66083000
Н	-5.18979700	-0.95240900	-0.04521900
S	2.07900600	-0.98586700	-0.51308900
С	3.28462100	0.36289700	-0.06095800
С	2.61269500	1.73852000	-0.11297700
н	1.81691400	1.82073900	0.62878300
н	3.35880700	2.51051600	0.10155300
н	2.18727300	1.93528100	-1.09894100

С	3.87805100	0.07859600	1.32206900
Н	4.38662000	-0.88722000	1.34500600
Н	4.60511500	0.85777700	1.57118500
Н	3.10341100	0.08163000	2.09120600
С	4.34743800	0.22659700	-1.16555200
Н	3.92383000	0.38937500	-2.15997500
Н	5.11556200	0.98787200	-1.00272600
Н	4.83343400	-0.75165900	-1.14449300

Tert-butanesulfinic acid

Ч^Вон

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-706.119032	-706.129097
Sum of electronic and thermal Energies	-706.109594	-706.119613
Sum of electronic and thermal Enthalpies	-706.108649	-706.118669
Sum of electronic and thermal Free Energies	-706.152246	-706.162389

0 1

С	-0.84682000	0.03011800	0.03875600
С	-1.39941900	1.28434500	-0.64356100
Н	-0.90528700	2.18558800	-0.27995900
Н	-1.27758900	1.23469800	-1.72965200
Н	-2.46959100	1.36724700	-0.43340700
С	-0.89122900	0.11271200	1.56459400
Н	-1.93339000	0.10130300	1.89633700
Н	-0.37937400	-0.74232200	2.01101700
Н	-0.42337900	1.02886000	1.92679300
С	-1.54601900	-1.23601400	-0.47598600
Н	-1.46484800	-1.32794000	-1.56303900
Н	-1.12629400	-2.13417900	-0.01939800
Н	-2.60831500	-1.18642900	-0.22273500

S	0.93515100	-0.16877700	-0.50972500
0	1.48098700	-1.31844000	0.25514100
0	1.45610200	1.25192300	0.23549900
н	2.22986800	1.55877900	-0.25830100

Tert-butanesulfonyl radical

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-705.500452	-705.508889
Sum of electronic and thermal Energies	-705.491383	-705.499673
Sum of electronic and thermal Enthalpies	-705.490439	-705.498729
Sum of electronic and thermal Free Energies	-705.534391	-705.543082

02

С	-0.88766100	-0.00000100	0.02506800
С	-1.44107100	1.27236200	-0.60618600
Н	-0.95956700	2.16114700	-0.19732000
Н	-1.31043300	1.27364400	-1.69113100
Н	-2.51428700	1.33387400	-0.39800700
С	-0.98454600	0.00003300	1.55053300
Н	-2.04220000	0.00000900	1.83515700
Н	-0.51386900	-0.88745300	1.97641200
Н	-0.51391900	0.88756700	1.97636700
С	-1.44105700	-1.27239800	-0.60612900
Н	-1.31037400	-1.27374700	-1.69106900
Н	-0.95957900	-2.16116300	-0.19719100
Н	-2.51428400	-1.33388100	-0.39799500
S	1.02117500	0.00000000	-0.35884600
0	1.55161000	-1.27339800	0.14666300
0	1.55160500	1.27340200	0.14666100
Tert-butanesulfonyl hydroperoxide			

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-781.168662	-781.177385
Sum of electronic and thermal Energies	-781.157907	-781.166576
Sum of electronic and thermal Enthalpies	-781.156963	-781.165632
Sum of electronic and thermal Free Energies	-781.204061	-781.212819

С	-0.84682000	0.03011800	0.03875600
С	-1.39941900	1.28434500	-0.64356100
Н	-0.90528700	2.18558800	-0.27995900
Н	-1.27758900	1.23469800	-1.72965200
Н	-2.46959100	1.36724700	-0.43340700
С	-0.89122900	0.11271200	1.56459400
Н	-1.93339000	0.10130300	1.89633700
Н	-0.37937400	-0.74232200	2.01101700
Н	-0.42337900	1.02886000	1.92679300
С	-1.54601900	-1.23601400	-0.47598600
Н	-1.46484800	-1.32794000	-1.56303900
Н	-1.12629400	-2.13417900	-0.01939800
Н	-2.60831500	-1.18642900	-0.22273500
S	0.93515100	-0.16877700	-0.50972500
0	1.48098700	-1.31844000	0.25514100
0	1.45610200	1.25192300	0.23549900
н	2.22986800	1.55877900	-0.25830100

Tert-butane sulfonyl methyl peroxide

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero-	-820.386367	
point Energies		
Sum of electronic and	-820.374247	
thermal Energies		
Sum of electronic and	-820.373302	
thermal Enthalpies		
Sum of electronic and	-820.423936	
thermal Free Energies		

С	0.96789000	-0.39419000	0.04173100
С	0.63755400	-1.79397200	-0.48276500
н	-0.23890500	-2.21802300	0.00744700
н	0.45966900	-1.79172300	-1.56200500
н	1.48712600	-2.45587500	-0.28972100
С	1.08583300	-0.33087800	1.56480400
н	1.97929600	-0.87752100	1.88133200
н	1.17827100	0.70330400	1.90168100
н	0.21810500	-0.77848800	2.05115600
С	2.21972200	0.17861200	-0.64378800
н	2.12202900	0.18326600	-1.73350000
н	2.42458300	1.19690300	-0.30855800
н	3.08139900	-0.44604000	-0.39062200
0	-2.51762100	-0.87949600	-0.23153700
0	-1.77660000	-0.14231500	0.51987200
S	-0.40674400	0.76871200	-0.50805100
0	-0.16448800	2.05023200	0.17313000

Tert-butane sulfonyl peroxyl rearrangement TS

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-780.470809	-780.468142
Sum of electronic and thermal Energies	-780.460180	-780.457472
Sum of electronic and thermal Enthalpies	-780.459236	-780.456527
Sum of electronic and thermal Free Energies	-780.507103	-780.504444

Imaginary frequency: -636.78 (CBS-QB3), -453.25 (PCM CBS-QB3)

0 2			
С	0.96789000	-0.39419000	0.04173100
С	0.63755400	-1.79397200	-0.48276500
н	-0.23890500	-2.21802300	0.00744700
Н	0.45966900	-1.79172300	-1.56200500
Н	1.48712600	-2.45587500	-0.28972100
С	1.08583300	-0.33087800	1.56480400
Н	1.97929600	-0.87752100	1.88133200
Н	1.17827100	0.70330400	1.90168100
Н	0.21810500	-0.77848800	2.05115600
С	2.21972200	0.17861200	-0.64378800
Н	2.12202900	0.18326600	-1.73350000
Н	2.42458300	1.19690300	-0.30855800
н	3.08139900	-0.44604000	-0.39062200
0	-2.51762100	-0.87949600	-0.23153700
0	-1.77660000	-0.14231500	0.51987200
S	-0.40674400	0.76871200	-0.50805100
0	-0.16448800	2.05023200	0.17313000

Tert-butanesulfonic acid

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-781.287942	-781.299667
Sum of electronic and thermal Energies	-781.277962	-781.289730
Sum of electronic and thermal Enthalpies	-781.277017	-781.288786
Sum of electronic and thermal Free Energies	-781.321987	-781.333640

С	0.99040100	0.03742300	-0.00632400
С	1.35656400	1.39437600	0.60615500
Н	0.95688000	2.21885900	0.01331900
Н	0.98517900	1.48006600	1.62828800
Н	2.44561400	1.49047900	0.62686500
С	1.41991500	-0.06325800	-1.47533900
Н	2.50915600	0.01981300	-1.52957700
Н	1.12375600	-1.01930400	-1.90783100
Н	0.98447600	0.73913700	-2.07278500
С	1.55925800	-1.12320100	0.82673900
Н	1.22042300	-1.07075500	1.86286900
Н	1.26571000	-2.08836600	0.41133200
Н	2.65063800	-1.06066200	0.81692200
S	-0.83821700	-0.16226800	0.07100900
0	-1.20948400	-1.35868900	-0.63186000
0	-1.30530000	0.09335700	1.41537800
0	-1.34359300	1.10445400	-0.83943800
Н	-1.82015900	1.70202000	-0.24557300

Tert-butane oxysulfonyl radical

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-780.619763	
Sum of electronic and thermal Energies	-780.609624	
Sum of electronic and thermal Enthalpies	-780.608680	
Sum of electronic and thermal Free Energies	-780.654961	

С	0.97378900	0.00002800	-0.00004600
С	1.42946700	1.16164900	-0.89473900
н	1.07380900	1.03791500	-1.91897300
н	1.07237800	2.12012000	-0.51443000
н	2.52232100	1.18484800	-0.91159500
С	1.42926100	-1.35572000	-0.55871400
н	2.52209700	-1.38225900	-0.56957500
н	1.07281800	-2.18093000	0.06003600
н	1.07291200	-1.50518100	-1.57925200
С	1.42935500	0.19399700	1.45335400
н	1.07327000	1.14261500	1.85855300
н	1.07269300	-0.61493100	2.09309800
н	2.52220500	0.19749900	1.48183500
S	-0.85928300	0.00006100	0.00005700
0	-1.32595200	-1.10752700	0.85209400
0	-1.32613900	1.29174600	0.53296900
0	-1.32631000	-0.18426900	-1.38503100

tert-butyl hydroperoxide

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-308.290544	-308.296595
Sum of electronic and thermal Energies	-308.282489	-308.288581
Sum of electronic and thermal Enthalpies	-308.281545	-308.287637
Sum of electronic and thermal Free Energies	-308.321510	-308.327519

С	-0.39096500	-0.00048200	0.03696200
С	-0.31734100	1.16330400	1.02926500
Н	0.56860600	1.07396200	1.66009700
Н	-0.27565200	2.11679900	0.49564000
Н	-1.19647400	1.17232400	1.67867100
С	-0.40706700	-1.35577400	0.74760800
н	-1.27416600	-1.43228600	1.40937000
Н	-0.45450400	-2.16495100	0.01542400
Н	0.49708900	-1.48325700	1.34393000
С	-1.58187100	0.14932400	-0.91311200
Н	-1.53888100	1.10534200	-1.43959400
Н	-1.58301200	-0.65391400	-1.65264400
Н	-2.51597800	0.10449900	-0.34824000
0	1.97295900	-0.10251000	-0.15111600
Н	2.35103100	0.77962800	-0.26250800
0	0.72771800	0.05796200	-0.88694500

tert-butyl alkoxyl radical

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-232.567582	-232.571848
Sum of electronic and thermal Energies	-232.560949	-232.565229
Sum of electronic and thermal Enthalpies	-232.560004	-232.564284
Sum of electronic and thermal Free Energies	-232.597235	-232.601477

 \downarrow°

С	0.00000500	-0.02692900	0.08045500
С	-1.27713000	-0.79264900	-0.31484700
Н	-1.30450200	-1.75954800	0.19372000
Н	-2.16163400	-0.22556700	-0.01834900
Н	-1.31455800	-0.97229500	-1.39300400
С	1.27733500	-0.79232800	-0.31483500
Н	1.31482100	-0.97196700	-1.39299300
Н	2.16169400	-0.22502200	-0.01833000
Н	1.30494600	-1.75921900	0.19373300
С	-0.00017300	1.38896500	-0.57814100
Н	-0.88898800	1.94647000	-0.28079400
Н	0.88849300	1.94670000	-0.28077900
Н	-0.00014700	1.26160400	-1.66352400
0	-0.00004300	0.26206200	1.42806600

RS(O)OOH rearrangement TS

Imaginary frequency: -480.01 (CBS-QB3), -435.13 (PCM CBS-QB3)

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-781.141203	-781.140647
Sum of electronic and thermal Energies	-781.130554	-781.129472
Sum of electronic and thermal Enthalpies	-781.129609	-781.128528
Sum of electronic and thermal Free Energies	-781.175934	-781.176206

01

С	1.08157000	0.16168500	0.02061400
С	1.07633900	1.45020100	-0.78840800
Н	1.01399300	1.25795200	-1.86131600
Н	0.24796500	2.08898100	-0.48630000
Н	2.02462900	1.96319500	-0.59264200
С	2.10906300	-0.86223900	-0.46654900
Н	3.10770500	-0.45549700	-0.28269500
Н	2.02765400	-1.80737900	0.07443600
Н	2.01727400	-1.05704000	-1.53677500
С	1.14333700	0.37969500	1.53110200
Н	0.41747500	1.13407700	1.82678900
Н	0.94135900	-0.54166900	2.07866000
Н	2.16105800	0.70423600	1.77667400
S	-0.64097600	-0.67452400	-0.33976900
0	-1.54236500	0.13234000	-1.13693600
0	-1.61081100	1.39168400	0.62532700
Н	-2.45694400	1.18502500	1.04576600
0	-1.06037500	-1.58096700	0.71325400

Singlet oxygen

0=0

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-150.118992	-150.119835
Sum of electronic and thermal Energies	-150.116628	-150.117472
Sum of electronic and thermal Enthalpies	-150.115684	-150.116528
Sum of electronic and thermal Free Energies	-150.137921	-150.138764

01

0	0.00000000	0.00000000	0.60329800
0	0.00000000	0.00000000	-0.60329800

Triplet oxygen

.0-0.

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-150.164558	-150.164646
Sum of electronic and thermal Energies	-150.162195	-150.162283
Sum of electronic and thermal Enthalpies	-150.161250	-150.161339
Sum of electronic and thermal Free Energies	-150.184523	-150.184611

03

0	0.00000000	0.00000000	0.60259800
0	0.00000000	0.00000000	-0.60259800

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero-	-150.181199	-150.295826
point Energies		
Sum of electronic and	-150.178820	-150.293448
thermal Energies		
Sum of electronic and	-150.177876	-150.292504
thermal Enthalpies		
Sum of electronic and	-150.201000	-150.315622
thermal Free Energies		

-1 2

0	0.00000000	0.00000000	0.67407800
0	0.00000000	0.00000000	-0.67407800

Hydroperoxyl radical

но-о•

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero-	-150.741092	
Sum of electronic and	-150 738232	
thermal Energies	1001100202	
Sum of electronic and	-150.737287	
thermal Enthalpies		
Sum of electronic and	-150.763268	
thermal Free Energies		

02

0	0.05528600	-0.60965600	0.00000000
н	-0.88457100	-0.87073400	0.00000000
0	0.05528600	0.71849800	0.00000000

Hydroxyl radical

•он

	CBS-QB3	PCM CBS-QB3
Sum of electronic and zero- point Energies	-75.649713	-75.654400
Sum of electronic and thermal Energies	-75.647353	-75.652040
Sum of electronic and thermal Enthalpies	-75.646408	-75.651096

Sum of electronic and	-75.666640	-75.671329
thermal Free Energies		

0	0.00000000	0.00000000	0.10835600
Н	0.00000000	0.00000000	-0.86685200

NMR spectra

Figure S10. ¹H NMR spectrum (400 MHz, CDCI₃) of 3.

Figure S11. 13 C NMR spectrum (101 MHz, CDCl₃) of 3.

Figure S14. ¹H NMR spectrum (600 MHz, CDCl₃) of 5a + 5b.

Figure S15. ¹³C NMR spectrum (151 MHz, CDCl₃) of 5a + 5b.

Figure S16. ¹H NMR spectrum (600 MHz, CDCl₃) of 1a.

Figure S17. ¹³C NMR spectrum (151 MHz, CDCl₃) of **1a**.

Figure S18. ¹⁹F NMR spectrum (471 MHz, D₂O/THF) of **1a**.

Figure S19. ¹H NMR spectrum (600 MHz, CDCl₃) of 1a + 1b.

Figure S20. ¹³C NMR spectrum (151 MHz, CDCl₃) of **1a** + **1b**. * = CH₃OH.

Figure S21. ¹⁹F NMR spectrum (471 MHz, D_2O/THF) of 1a + 1b.

Figure S22. ¹H NMR spectrum (600 MHz, CD₃OD) of **6a**. * = CH_2CI_2 .

Figure S23. ¹³C NMR spectrum (151 MHz, CD₃OD) of 6a.

-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -23 (ppm)

Figure S24. ¹⁹F NMR spectrum (471 MHz, D₂O/THF) of 6a.

Figure S25. ¹H NMR spectrum (600 MHz, CD₃OD) of 6a + 6b.

Figure S26. ¹³C NMR spectrum (151 MHz, CD₃OD) of 6a + 6b. * = artefact, ** = CH₂Cl₂.

Figure S27. ¹⁹F NMR spectrum (471 MHz, D₂O/THF) of **6a + 6b**.

Figure S28. ¹H NMR spectrum (500 MHz, CD₃OD) of 7a.

Figure S29. ¹³C NMR spectrum (126 MHz, CD₃OD) of 7a.

-70 -90 -140 -80 -100 -110 -120 -130 -150 -160 -170 -180 -190 -200 -210 (ppm)

Figure S30. ¹⁹F NMR spectrum (471 MHz, D_2O/THF) of **7a**. * = **8a** formed as a result of autoxidation of **7a** under ambient conditions.

Figure S31. ¹H NMR spectrum (600 MHz, CD₃OD) of **7a** + **7b**. * = CH₂Cl₂. **8a** and **8b** are formed as a result of autoxidation of **7a/b** under ambient conditions.

Figure S32. ¹³C NMR spectrum (151 MHz, CD₃OD) of **7a** + **7b**. * = artefact.

Figure S33. ¹⁹F NMR spectrum (471 MHz, D₂O) of **7a** + **7b**. **●** = peaks corresponding to **8a** and **8b**.

Figure S34. ¹H NMR spectrum (600 MHz, CD₃OD) of 8a.

Figure S35. ¹³C NMR spectrum (151 MHz, CD₃OD) of 8a.

Figure S36. ¹⁹F NMR spectrum (471 MHz, D₂O) of 8a.

Figure S37. ¹H NMR spectrum (600 MHz, CD₃OD) of 8a + 8b.

Figure S38. ¹³C NMR spectrum (126 MHz, CD₃OD) of 8a + 8b. * = unknown impurity.

Figure S39. ¹⁹F NMR spectrum (471 MHz, D₂O) of 8a + 8b.

Figure S40. ¹H NMR spectrum (500 MHz, CDCl₃) of **13a**. * = unknown impurities.

Figure S41. ¹³C NMR spectrum (151 MHz, CDCl₃) **13a**. * = artefact, ** = unknown impurities.

Figure S42. ¹⁹F NMR spectrum (471 MHz, D₂O/THF) of **13a**.

Figure S43. ¹H NMR spectrum (500 MHz, CDCI₃) of **14a**. * = N-hydroxysuccinimide, ** = unknown impurity.

Figure S44. ¹³C NMR spectrum (151 MHz, CDCl₃) of 14a.

Figure S45. ¹⁹F NMR spectrum (471 MHz, D₂O/THF) of 14a.

Figure S46. ¹H NMR spectrum (600 MHz, CDCl₃) of 15.

References

1. J.-P. R. Chauvin and D. A. Pratt, *Angewandte Chemie International Edition*, 2017, **56**, 6255–6259.