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Sphere Stacking

The initial graph used in the graph translation module for topology generation is derived using a 
face-centered cubic (FCC) stacking model. This model is employed to fill a defined space, 
connecting the first and second nearest neighbors to simulate potential molecular structures. 
Given the fixed positioning and edge angles in this model, questions arise regarding its capability 
to accurately reflect the geometric diversity of molecules, which exhibit a wide range of bond 
lengths and angles.

To ascertain the suitability of FCC stacking as an approximation for molecular geometry, we 
designed a molecular graph restoration task. We selected a sample of 20,000 molecules with 3D 
conformations from the PubChem dataset, representing their shapes using van der Waals (VDW) 
radii. These shapes were then filled using FCC stacking, incorporating random orientations and 
slight positional perturbations. The assignment of atoms to their nearest spheres was evaluated to 
determine if bonds could be accurately formed with the first or second nearest neighbors. This 
procedure was repeated ten times for each stacking instance. A restoration was deemed 
successful if, in at least ten attempts, a molecular graph could be accurately reconstructed from 
the stacked spheres.

Out of the 20,000 molecules analyzed, only 15 failed this restoration task, providing strong 
evidence that FCC stacking is a sufficiently accurate method for generating basic patterns in 
graph translation.

Model Architecture

The core of TopMT-GAN's efficiency lies in its distinctive approach to both topology generation 
and molecular assignment, where each module is trained through adversarial loss exclusively. 
The foundational elements of this architecture are the Node-Edge Co-evolution Translation 
(NECT) layers. These NECT blocks are designed to not only aggregate node (atom) information 
but also integrate edge (bond) information, facilitating a comprehensive representation of the 
relationship between atoms and bonds within a molecule.

For the topology generation module, a deeper generator architecture is employed to encapsulate 
global molecular structures effectively. This depth is crucial for accurately predicting the 
overarching shape and connectivity of potential ligands, ensuring that the generated topologies 
are viable for further refinement. Conversely, the molecular assignment module utilizes 
shallower layers in its generator design. This strategic simplification prioritizes the identification 
and incorporation of local substructures, aiming to foster diversity within the generated 
molecules. The topology generation module is depicted in Figure S1, while the molecular 
assignment module can be seen in Figure S2.  
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Figure S1. Model architecture of topology generation GAN.

Figure S2. Model architecture of molecular assignment GAN.



Evaluations

The five protein targets chosen for evaluation with TopMT-GAN are detailed in Table S1. The 
pockets in PDB IDs 7d3i, 1e3g, and 7wf5 are orthosteric pockets, whereas those in 3jvs and 
5vew are identified as allosteric. Analysis based on the ratio of solvent-accessible surface area 
(SASA) to volume reveals that allosteric pockets tend to be shallower. The selection of 7wf5 and 
3jvs, both kinases with very similar structures, was deliberate, aimed at assessing the robustness 
of TopMT-GAN across different pocket types. The original ligands and detected pockets are 
shown in (7d3i: Figure 5; 1e3g, 5vew: Figure S3; 7wf5, 3jvs: Figure 3).

Known actives for these targets were collected from the Binding Database. It is important to note 
that these molecules might not bind to identical pocket locations. While many of these ligands 
don’t have crystal structure data, they sufficiently serve as a baseline for comparative analysis. 
The vina score histogram of generated molecules, enamine HTS and known actives are shown in 
Figure S4. The vina score distributions compared with other models are shown in Figure S6.

LogP and SAS properties are compared with the enamine HTS library, known actives and 1 
million molecules randomly selected from PubChem database and their distributions are shown 
in Figure S5. The distributions of maximum similarities to known actives are shown in Figure S7.

# ActivesRatioVolume(A3)SASA (A2)PDB IDTarget

1011.283654687d3i3C-like protease

1081.482273361e3gAndrogen Receptor

5,5651.464045917wf5Kinase (Orthosteric)

3,7251.123223603jvsKinase (Allosteric)

7961.164004645vewGLP-1 Receptor

Table S1. Summary of selected protein targets.



Figure S3. Ligands in crystal structure and detected pocket. a: 1e3g; b: 5vew

Figure S4. vina score distributions and QED-vina score scattering of molecules generated by TopMT-GAN compared to known 
active and PubChem molecules.



Figure S5. LogP and SAS distributions of molecules generated by TopMT-GAN compared to known active and PubChem molecules.

Figure S6. Comparison of Vina docking score distributions across different 3D structure-based generative models.
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Figure S7. Maximum similarity distributions of molecules generated by TopMT-GAN to known actives.



Table S2. Comparison of molecular properties across different 3D structure-based generative models.

PoseCheck was used to evaluate the quality of generated poses across different structure-based 
generative models. We assessed both steric clashes and strain energy for molecules generated by 
TopMT-GAN, PMDM, PocketFlow, and Pocket2Mol. For each model, we analyzed 100 
generated molecules per target across five protein targets (total 500 molecules) from our 
benchmark dataset. The results are summarized in Table S3.

Redock scores compared with generated pose scores are summarized in Table S4. If the 
difference in docking score is less than 0.5 kcal/mol, we assume the scores are similar or equally 
good. For each system, the average percentages of redocked poses that were equally good or 
better than the generated poses are 94.5% for 3C-Like Protease, 78% for Androgen Receptor, 82% 
for c-SRC kinase, 88.5% for CHK1 kinase, and 94% for GLP-1 receptor. Overall, an average of 
87.4% of redocked poses across all systems were either equally good or better than the generated 
poses.

Table S3. Comparison of Steric Clashes and Strain Energy Across Different Structure-Based Molecular Generative models.



Table S4. Redock scores compared with vina scores of generated poses.

Molecular generation efficiency of TopMT-GAN is summarized in Table S5, and its comparison 
to other models is shown in Table S6.  

The hit rates from virtual high-throughput screening for each target are summarized in Table S7 
for reference.

Total Sample time
Topology + assign & score

(days)

Scoring
(CPU-core-time/mol)

Molecule assignment
(CPU-core-time/mol) 

Topology Sampling
(GPU-time/topology)ModePDB

0.97+0.17=1.141.83s0.37s1.67sScaffold-hopping
7d3i

0.21+0.21=0.422.30s0.40s0.36sPocket-mapping

0.11+0.14=0.251.64s0.33s0.19sScaffold-hopping
1e3g

0.99+0.18=1.172.08s0.32s1.70sPocket-mapping

1.20+0.20=1.402.25s0.43s2.06sScaffold-hopping
7wf5

1.68+0.21=1.892.33s0.39s2.90sPocket-mapping

0.08+0.17=0.251.68s0.37s0.12sScaffold-hopping
3jvs

1.66+0.16=1.821.61s0.33s2.87sPocket-mapping

0.28+0.20=0.482.26s0.40s0.49sScaffold-hopping
5vew

1.21+0.20=1.412.16s0.36s2.04sPocket-mapping

Table S5. TopMT-GAN generation speed.



HardwareEfficiencyBaseline#Systems#Gen MolsModel

Tesla V100906s /100 molsNA100
CrossDock100 for each targetPMDM

2*Tesla P100~345s/100 molsNA10 CrossDock
2 case studies 

10,000 for each target
& 100,000 for two casesPocketFlow

NANA200 random
BindingDB actives100 CrossDockNot mentionedResGen

Tesla V100874s/100 mols100 ligands CrossDock101 DUD-E~100 for each targetLingo3DMol

NANA200 random
BindingDB actives18 CrossDock100 for each targetSurfGen

GTX 30903428s/100 molsNA100 CrossDock100 for each targetTargetDiff

Tesla V100~4 hours/100 
molsNA10 CrossDock100 for each targetDESERT

NANANA10 CrossDock100 for each targetGraphBP

Tesla V1002503s/100 molsNA10 CrossDock100 for each targetPocket2Mol

RTX 30703-4hours/100 
molsNA

1 
(SARS-Cov-2 main 

protease)
19,014 (MCTS)DeepLigBuilder

NANANA10 CrossDock100 for each targetSBDD

Mixed
Tesla A5000

& CPUs
~330s/100 mols

1.3 million
Enamine HTVS

100-5000
BindingDB actives

5 diverse protein50,000 for each targetTopMT

Table S6. Performance comparison of TopMT-GAN with other 3D structure-based generative models (values are obtained from 
original papers).

HR < -12HR < -11HR < -10HR < -9HR < -8HR < redock Redock score
Kcal/molTarget

N/AN/A0.00023%0.036%2.1%0.72%-8.33C-Like Protease
PDB: 7d3i

N/A0.00015%0.012%0.63%11.0%0..000075%-11.7Androgen Receptor
PDB: 1e3g

0.013%0.28%3.3%18.8%52.8%0.00023%-13.2c-SRC kinase
PDB: 7wf5

N/AN/AN/A0.0019%0.23%0.15%-8.1CHK1 kinase
PDB: 3jvs

N/AN/AN/A0.00038%0.030%0.86%-7.2GLP-1 receptor
PDB: 5vew

Table S7. Hit Rate of HTVS for the 5 benchmark systems at different vina score levels.


