Supporting Information

Synthesis of Chiral α-Amino Acids via Pd(II)-Catalyzed

Enantioselective C-H Arylation of *a*-Aminoisobutyric Acid

Zi-Yu Zhang,^{1†} Tao Zhang,^{1†} Yuxin Ouyang,¹ Peng Lu,¹ Jennifer X. Qiao² and Jin-

Quan Yu¹*

¹The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.

²Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early

Development, Cambridge, Massachusetts 02140, USA.

[†]These authors contributed equally to this work.

*yu200@scripps.edu

Table of Contents

1. General Information	3
2. General procedure of the preparation of thioether ligands	3
3. Ligands investigation	7
4. Enantioselective Arylation of 2-Aminoisobutyric Acid	8
5. Enantioselective Arylation of Cylcopropanecarboxylic acid	.42
6. Sequential diarylation of 2-Aminoisobutyric Acid	.62
7. Synthesis of Metyrosine	.63
8. Synthesis of BIRT-377	.64
9. Synthesis of Boc-amino acid	.64
10. Reference	.65
11. NMR	.66

1. General Information

Commercially available reagents were purchased at the highest commercial quality and used without further purification, unless otherwise stated. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. ¹H NMR spectra were recorded on Bruker AMX-400 or Bruker DRX-600 instruments. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Coupling constants, J, were reported in Hertz unit (Hz). ¹³C NMR spectra were recorded on Bruker DRX-600 or JEOL instruments (100 MHz) and were fully decoupled by broad band proton decoupling. ¹⁹F NMR Spectra were recorded on Bruker AMX-399 spectrometer (376 MHz) or JEOL-400 (376 MHz) and were fully decoupled by broad band proton decoupling. Chemical shifts were referenced to the appropriate residual solvent peaks. Column chromatography was carried out automated using Biotage Isolera One with Biotage SNAP Ultra Column.

2. General procedure of the preparation of thioether ligands¹

To the 'BuOH (10.0 mL) solution of 'BuOK (1.23 g, 11.0 mmol) was added thiophenol (1.54 mL, 15.0 mmol), and the mixture was stirred at room temperature for 10 min. Then Evans oxazolidone chiral auxiliary (10.0 mmol) in 'BuOH (5 mL) was added and the mixture was stirred under 80 °C for 12 h. After being allowed to cool to room temperature, the reaction was quenched by sat. NH4Cl (5 mL). The aqueous phase was extracted with EA (15 mL×3) and the combined organic phase was dried with anhydrous Na₂SO₄, concentrated under reduced pressure. The residue was used without purification.

To a stirred solution of substrate in dry DCM (30 mL) was added Boc₂O (2.6 g, 12 mmol) and TEA (2.0 g, 20 mmol) at 0 °C. After stirring at room temperature for 1 h, then the mixture was concentrated in vacuo, diluted with ethyl acetate, and washed

with sat. NH₄Cl and NaHCO₃. The organic layer was dried over MgSO₄, concentrated in vacuo, and purified by column with ethyl acetate/n-hexane (1/10) as the eluent to afford thioether ligand **L8**.

tert-butyl (S)-(3-methyl-1-(phenylthio)butan-2-yl)carbamate (L8)

White solid. ¹H NMR (600 MHz, CDCl₃) δ 7.45 – 7.35 (m, 2H), 7.32 – 7.27 (m, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 4.59 (d, *J* = 7.8 Hz, 1H), 3.74 – 3.73 (m, 1H), 3.10 (d, *J* = 5.4 Hz, 2H), 2.04 – 1.85 (m, 1H), 1.45 (s, 9H), 0.94 (dd, *J* = 14.8, 6.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 155.75, 136.60, 129.82, 129.06, 126.33, 79.30, 55.30, 37.67, 30.95, 28.49, 19.57, 17.98. HRMS (ESI-TOF) Calcd for C₁₆H₂₄NO₂S [M-H]⁻: 294.1528; found: 294.1523.

$$R \underbrace{Ar}_{NH_2} SPh \xrightarrow{Ar}_{TEA, DCM, 1 h} Ar \underbrace{Ar}_{H} \underbrace{Ar}_{H} \underbrace{R}_{H} SPh$$

To a stirred solution of substrate (10 mmol) in dry DCM (30 mL) was added benzoyl chloride (12 mmol) and TEA (2.0 g, 20 mmol) at 0 °C. After stirring at room temperature for 1 h, then the mixture was concentrated in vacuo, diluted with ethyl acetate, and washed with sat. NH₄Cl and NaHCO₃. The organic layer was dried over MgSO₄, concentrated in vacuo and purified by column with ethyl acetate/*n*-hexane (1/10) as the eluent to afford thioether ligand.

(S)-N-(3-methyl-1-(phenylthio)butan-2-yl)benzamide (L9)

White solid. ¹H NMR (600 MHz, CDCl₃) δ 7.68 – 7.62 (m, 2H), 7.53 – 7.48 (m, 1H), 7.45 – 7.39 (m, 4H), 7.28 (d, *J* = 6.2 Hz, 2H), 7.21 – 7.16 (m, 1H), 6.15 (d, *J* = 8.7 Hz, 1H), 4.25 (dq, *J* = 9.2, 5.6 Hz, 1H), 3.27 (d, *J* = 5.4 Hz, 2H), 2.12 (dq, *J* = 13.6, 6.8 Hz, 1H), 1.02 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.33, 136.27, 134.77, 131.51, 129.89, 129.23, 128.62, 126.94, 126.52, 54.60, 37.18, 30.89, 19.58, 18.60. HRMS (ESI-TOF) Calcd for C₁₈H₂₀NOS [M-H]⁻: 298.1266; found: 298.1253.

(*S*)-mesityl((3-methyl-1-(phenylthio)butan-2-yl)-l2-azaneyl)methanone (L10) White solid. ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 7.6 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.22 (t, *J* = 7.4 Hz, 1H), 6.87 (s, 2H), 5.76 (d, *J* = 8.7 Hz, 1H), 4.28 (dq, *J* = 11.9, 5.9 Hz, 1H), 3.22 (d, *J* = 5.7 Hz, 2H), 2.34 (s, 6H), 2.30 (s, 3H), 2.15 – 2.05 (m, 1H), 1.01 (dd, *J* = 13.1, 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.51, 138.56, 136.16, 135.15, 134.36, 129.79, 129.16, 128.32, 126.49, 53.86, 37.15, 30.39, 21.17, 19.46, 19.41, 18.38. HRMS (ESI-TOF) Calcd for C₂₁H₂₆NOS [M-H]⁻: 340.1735; found: 340.1722.

(S)-2,6-difluoro-N-(3-methyl-1-(phenylthio)butan-2-yl)benzamide (L11)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.40 (m, 2H), 7.40 – 7.33 (m, 1H), 7.32 – 7.25 (m, 2H), 7.21 – 7.14 (m, 1H), 7.01 – 6.91 (m, 2H), 5.99 (d, *J* = 8.4 Hz, 1H) 4.25 (dq, *J* = 9.4, 5.8 Hz, 1H), 3.29 – 3.15 (m, 2H), 2.09 (h, *J* = 6.8 Hz, 1H), 1.02 (dd, *J* = 6.8, 5.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.27, 160.04 (dd, *J* = 275.3, 6.8 Hz), 136.0, 131.69 (t, *J* = 10.1 Hz), 130.13, 129.15, 126.60, 112.09 (d, *J* = 25.0 Hz), 112.09 (dd, *J* = 18.2, 3.0 Hz), 54.59, 37.22, 30.53, 19.54, 18.05. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.58. HRMS (ESI-TOF) Calcd for C₁₈H₁₈F₂NOS [M-H]⁻: 334.1077; found: 334.1065.

$$\overbrace{I }^{F } \overbrace{R}^{O } \underset{H}{\overset{Bn}{\overset{Bn}{\overset{N}{\overset{N}{\overset{N}}}}}} S_{Ph}$$

(S)-2,6-difluoro-N-(1-phenyl-3-(phenylthio)propan-2-yl)benzamide (L12)

White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 2H), 7.39 – 7.17 (m, 9H), 6.94 (t, *J* = 8.1 Hz, 2H), 6.12 (d, *J* = 7.6 Hz, 1H), 4.61 (h, *J* = 6.2 Hz, 1H), 3.24 – 3.03 (m, 4H). ¹³C NMR NMR (100 MHz, CDCl₃) δ 160.10 (dd, *J* = 252.4, 7.3 Hz), 160.08, 136.94, 135.49, 131.82 (t, *J* = 10.0 Hz), 129.95, 129.57, 129.23, 128.73, 126.90, 126.64, 112.12 (dd, *J* = 17.9, 2.8 Hz), 112.11 (d, *J* = 24.8 Hz), 50.68, 38.76, 37.23. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.46. HRMS (ESI-TOF) Calcd for C₂₂H₁₈F₂NOS [M- H]: 382.1077; found: 382.1062.

2,6-difluoro-*N*-((**2***S*,**3***S*)-**3-methyl-1-(phenylthio)pentan-2-yl)benzamide (L13)** White solid. ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.33 (m, 1H), 7.31 – 7.25 (m, 2H), 7.22 – 7.15 (m, 1H), 7.02 – 6.90 (m, 2H), 6.02 (d, *J* = 8.6 Hz, 1H), 4.38 – 4.25 (m, 1H), 3.31 – 3.13 (m, 2H), 1.87 (ddt, J = 13.4, 6.8, 3.6 Hz, 1H), 1.59 (dtt, *J* = 15.0, 7.4, 3.8 Hz, 1H), 1.25 – 1.10 (m, 1H), 0.99 (d, *J* = 6.8 Hz, 3H), 0.94 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.28, 160.08 (dd, *J* = 252.0, 6.2 Hz), 135.92, 131.72 (t, *J* = 8.8 Hz), 130.27, 129.15, 126.65, 112.10 (dd, *J* = 15.7, 1.8 Hz), 112.08 (d, *J* = 23.8 Hz), 53.63, 36.98, 36.89, 24.95, 15.48, 11.44. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.56. HRMS (ESI-TOF) Calcd for C₁₉H₂₀F₂NOS [M-H]⁻ :348.1234; found: 348.1223.

3. Ligands investigation

^{*a*}Conditions: **1a** (0.1 mmol), **2a** (0.2 mmol), Pd(OAc)₂ (10 mol%), ligand (12 mol%), Ag₂CO₃ (2.0 equiv.), NaHCO₃ (0.5 equiv.) in HFIP (0.5 mL) 70 °C, 24 h. Yields were determined by ¹H NMR using CH₂Br₂ as the internal standard. ^{*b*}Isolated yield

4. Enantioselective Arylation of 2-Aminoisobutyric Acid²

General procedure A for enantioselective arylation of 2-Aminoisobutyric Acid: $Pd(OAc)_2$ (2.2 mg, 0.01 mmol, 10 mol%), L11 (5.0 mg, 0.015 mmol, 15 mol%), 1a (0.1 mmol), Ag₂CO₃ (55 mg, 0.2 mmol, 2 equiv.), NaHCO₃ (4.2 mg, 0.05 mmol, 0.5 equiv.), and ArI (0.2 mmol, 2.0 equiv.) were weighed and placed in an 12 mL reaction tube. Subsequently, HFIP (0.5 mL) was injected, and the tube was capped and closed tightly. The reaction mixture was then stirred at 70 °C for 48 h. The mixture was allowed to cool to room temperature and acetic acid (0.05 ml) was added. Then, the mixture was passed through a pad of Celite with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution was concentrated.

For the compound isolated as an acid: The residual mixture was dissolved with minimal ethyl acetate and loaded onto a preparative TLC plate. The pure acid product was then isolated using preparative TLC with ethyl acetate/hexanes (2/1) with 1% w/w acetic acid as the eluent.

For the compound isolated as an ester: The residual mixture was dissolved in 0.5 ml DMF, and Cs₂CO₃ (99.7 mg, 0.3 mmol), MeI (71.0 mg, 0.50 mmol, 31 μ L) were added. The mixture was stirred at room temperature for 3 h and then was diluted with water followed by extraction with ethyl acetate. The organic layer was dried over Na₂SO₄, filtered, and concentrated in vacuo. The residual mixture was dissolved with minimal ethyl acetate and loaded onto a preparative TLC plate. The pure ester product was then isolated using preparative TLC with ethyl acetate/toluene (1/20) as the eluent.

Me

(S)-2-(1,3-dioxoisoindolin-2-yl)-3-(4-(methoxycarbonyl)phenyl)-2-methyl propanoic acid (3a)²

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3a** as acid was obtained (white solid, 25.1 mg, 68% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.373 min (minor) and 9.524 min (major), 4.5:95.5 er).

¹H NMR (600 MHz, CDCl₃) δ 8.90 (s, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.81 – 7.75 (m, 2H), 7.75 – 7.67 (m, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 3.92 – 3.79 (m, 4H), 3.27 (d, *J* = 13.8 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.78, 168.40, 167.05, 141.02, 134.40, 131.39, 130.62, 129.68, 129.08, 123.51, 63.67, 52.16, 40.96, 21.88. HRMS (ESI-TOF) Calcd for C₂₀H₁₆NO₆ [M-H]⁻: 366.0978; found: 366.0975.

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3b** as ester was obtained (yellow oil, 20.7 mg, 64% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.406 min (minor) and 9.467 min (major), 6:94 er). HRMS (ESI-TOF) Calcd for C₁₉H₁₆NO₄ [M-H]⁻: 322.1079; found: 322.1070.

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.73 – 7.68 (m, 2H), 7.21 – 7.14 (m, 3H), 7.04 (d, *J* = 6.8 Hz, 2H), 3.82 – 3.70 (m, 4H), 3.26 (d, *J* = 13.8 Hz, 1H), 1.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.01, 168.48, 135.74, 134.19, 131.64, 130.58, 128.29, 127.17, 123.30, 64.14, 52.77, 41.36, 21.92.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.386	MM	0.1725	1223.51050	118.20831	50.0102
2	9.418	BB	0.3203	1223.00989	58.88267	49.9898

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.406	MM	0.1596	591.02374	61.72735	5.8810
2	9.467	BV R	0.3319	9458.64551	441.69794	94.1190

Methyl (S)-2-(1,3-dioxoisoindolin-2-yl)-2-methyl-3-(p-tolyl)propanoate (3c)²

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3c** as ester was obtained (yellow oil, 21.3 mg, 63% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.244 min (minor) and 7.846 min (major), 4.5: 95.5 er).

¹H NMR (600 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H), 7.76 – 7.70 (m, 2H), 6.99 (d, J = 7.9 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 3.77 (s, 3H), 3.77 (d, J = 13.8 Hz, 1H), 3.24 (d, J = 13.8 Hz, 1H), 2.28 (s, 3H), 1.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.05, 168.52, 136.68, 134.17, 132.55, 131.69, 130.42, 129.04, 123.30, 64.24, 52.73, 40.93, 21.85, 21.17. HRMS (ESI-TOF) Calcd for C₂₀H₁₈NO₄ [M+H]⁺: 338.1392; found: 338.1385.

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	4.340	BB	0.2022	49.77608	3.57928	49.3677	
2	8.142	BB	0.2798	51.05114	2.25771	50.6323	

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 1 4.244 MM 0.2064 8.89885 7.18632e-1 4.4542 2 7.846 BB 0.3291 190.88802 8.46409 95.5458 NPhth MeC

(S)-2-(1,3-dioxoisoindolin-2-yl)-3-(4-methoxyphenyl)-2-methylpropanoic acid (3d)²

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3d** as acid was obtained (white solid, 23.3 mg, 69% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.373 min (minor) and 9.524 min (major), 4.5:95.5 er).

¹H NMR (600 MHz, CDCl₃) δ 7.84 – 7.75 (m, 2H), 7.73 – 7.66 (m, 2H), 6.97 (d, *J* = 8.2 Hz, 2H), 6.71 (d, *J* = 8.2 Hz, 2H), 3.78 – 3.64 (m, 4H), 3.17 (d, *J* = 14.1 Hz, 1H), 1.95 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.94, 168.47, 158.77, 134.24, 131.59, 131.52, 127.45, 123.38, 113.83, 64.05, 55.23, 40.08, 21.84. HRMS (ESI-TOF) Calcd for C₁₉H₁₆NO₅ [M-H]⁻: 338.1028; found: 338.1028.

(S)-3-(4-((tert-butyldimethylsilyl)oxy)phenyl)-2-(1,3-dioxoisoindolin-2-yl)-2 methyl propanoic acid (3e)²

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3d** as acid was obtained (white solid, 29.4 mg, 67% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 9.533 min (minor) and 10.648 min (major), 6:94 er).

¹H NMR (600 MHz, CDCl₃) δ 7.79 – 7.13 (m, 2H), 7.72 – 7.66 (m, 2H), 6.89 (d, J = 8.3 Hz, 2H), 6.62 (d, J = 8.4 Hz, 2H), 3.71 (d, J = 14.2 Hz, 1H), 3.12 (d, J = 14.2 Hz, 1H), 1.95 (s, 3H), 0.93 (s, 9H), 0.10 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 171.06, 161.40, 147.86, 127.15, 124.59, 124.46, 121.34, 116.31, 113.11, 57.02, 33.14, 18.78, 14.96, 11.30, -11.41. HRMS (ESI-TOF) Calcd for C₂₄H₂₈NO₅Si [M-H]⁻: 438.1737; found: 438.1737.

(S)-2-(1,3-dioxoisoindolin-2-yl)-2-methyl-3-(4-phenoxyphenyl)propanoic acid (3f) Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 3f as acid was obtained (white solid, 19.3 mg, 48% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.828 min (minor) and 8.750 min (major), 7:93 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.75 (m, 2H), 7.72 – 7.69 (m, 2H), 7.31 (t, J = 7.8 Hz, 2H), 7.10 – 7.01 (m, 3H), 6.94 (d, J = 7.8 Hz, 2H), 6.84 (d, J = 8.0 Hz, 2H), 3.80 (d, J = 13.8 Hz, 1H), 3.22 (d, J = 14.0 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 168.45, 157.55, 156.24, 134.27, 131.84, 131.56, 130.65, 129.75, 123.34, 123.09, 119.13, 118.63, 118.59, 40.35, 29.82, 21.97.

HRMS (ESI-TOF) Calcd for C₂₄H₁₈NO₅ [M-H]⁻: 400.1185; found: 400.1173.

Methyl (S)-2-(1,3-dioxoisoindolin-2-yl)-2-methyl-3-(4-(trifluoromethoxy)phenyl) propanoate (3g)

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3g** as ester was obtained (yellow oil, 29.7 mg, 73% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® AD-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.258 min (major) and 3.818 min (minor), 96:4 er).

1H NMR (600 MHz, CDCl₃) δ 7.80 – 7.75 (m, 2H), 7.72 – 7.69 (m, 2H), 7.09 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.2 Hz, 2H), 3.78 (d, J = 13.9 Hz, 1H), 3.74 (s, 3H), 3.27 (d, J = 13.9 Hz, 1H), 1.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.68, 168.40, 148.49, 134.57, 134.33, 131.89, 131.52, 123.36, 120.73, 120.49 (q, J = 255.0), 63.91, 52.83, 40.77, 22.10. ¹⁹F NMR (376 MHz, CDCl₃) δ -60.57. HRMS (ESI-TOF) Calcd for C₂₀H₁₅F₃NO₅ [M-H]⁻: 406.0902; found: 406.0894.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.258	MM	0.1930	159.22154	13.74660	95.8802
2	3.818	MM	0.1690	6.84151	6.74858e-1	4.1198

Methyl

(trifluoromethyl)phenyl)propanoate (3h)²

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3h** as ester was obtained (yellow oil, 20.3 mg, 52% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 5% i PrOH / CO₂, flow rate 2 mL/min, retention time 4.345 min (major) and 4.558 min (minor), 95.5:4.5 er).

¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.76 (m, 2H), 7.75 – 7.70 (m, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 3.84 (d, J = 13.8 Hz, 1H), 3.75 (s, 3H), 3.33 (d, J = 13.8 Hz, 1H), 1.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.58, 168.40, 139.98, 134.39, 131.48, 130.92, 129.47 (q, J = 31.5 Hz), 125.20 (q, J = 3.0 Hz), 123.42 (q, J = 270.0 Hz), 123.41, 63.81, 52.88, 41.27, 22.05. ¹⁹F NMR (376 MHz, CDCl₃) δ -65.16. HRMS (ESI-TOF) Calcd for C₂₀H₁₅F₃NO₄ [M-H]⁻: 390.0953; found: 390.0938.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.376	MM	0.1379	668.82922	80.82766	49.8564
2	4.578	MM	0.0972	672.68073	115.34596	50.1436

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.343	MM	0.1445	127.24140	14.67991	95.4131
2	4.558	MM	0.0738	6.11708	1.38096	4.5869
	_					

Methyl (S)-2-(1,3-dioxoisoindolin-2-yl)-3-(4-fluorophenyl)-2-methylpropanoate (3i)²

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3i** as ester was obtained (yellow oil, 21.5 mg, 63% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% iPrOH / CO₂, flow rate 2 mL/min, retention time 5.331 min (minor) and 6.543 min (major), 5:95 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.74 – 7.66 (m, 2H), 7.05 – 6.96 (m, 2H), 6.88 – 6.78 (t, J = 8.5 Hz, 2H), 3.84 – 3.64 (m, 4H), 3.23 (d, J = 14.0 Hz, 1H), 1.88 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.83, 168.44, 162.15 (d, J = 244.5 Hz), 134.29, 132.0 (d, J = 7.5 Hz), 131.55, 131.49 (d, J = 3.0 Hz), 123.36, 115.2 (d, J = 21.0 Hz), 64.01, 52.80, 40.61, 21.98. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.31. HRMS (ESI-TOF) Calcd for C₁₉H₁₅FNO₄ [M-H]⁻: 340.0985; found: 340.0974.

1 5.331 MM 0.3077 127.19695 6.88965 4.7437 2 6.543 BB 0.3059 2554.21558 118.31834 95.2563

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3g** as ester was obtained (yellow oil, 26.4 mg, 74% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.777 min (minor) and 12.523 min (major), 5:95 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.74 – 7.66 (m, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 7.02 (d, *J* = 8.4 Hz, 2H), 3.80 – 3.74 (m, 4H), 3.26 (d, *J* = 13.8 Hz, 1H), 1.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.75, 168.43, 134.32, 134.26, 133.19, 131.85, 131.53, 128.50, 123.40, 63.92, 52.84, 40.79, 21.98. HRMS (ESI-TOF) Calcd for C₁₉H₁₅ClNO₄ [M-H]⁻: 356.0690; found: 356.0677.

Methyl (S)-3-(4-bromophenyl)-2-(1,3-dioxoisoindolin-2-yl)-2-methylpropanoate (3k)²

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3k** as ester was obtained (yellow oil, 26.5 mg, 66% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% iPrOH / CO₂, flow rate 2 mL/min, retention time 3.521 min (minor) and 6.007 min (major), 1:99 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.75 (m, 2H), 7.75 – 7.69 (m, 2H), 7.29 (d, *J* = 8.2 Hz, 2H), 6.93 (d, *J* = 8.2 Hz, 2H), 3.76 – 3.70 (m, 4H), 3.22 (d, *J* = 13.9 Hz, 1H), 1.87 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.70, 168.41, 134.77, 134.32, 132.22, 131.51, 131.43, 123.39, 121.34, 63.83, 52.83, 40.85, 21.96. HRMS (ESI-TOF) Calcd for C19H19BrNO5 [M+H₃O]⁺: 420.0447; found: 420.0443.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	4.277	MM	0.1059	409.48337	64.43553	49.6488
2	6.729	MM	0.1811	415.27725	38.21263	50.3512

(S)-2-(1,3-dioxoisoindolin-2-yl)-2-methyl-3-(4-nitrophenyl)propanoic acid (3l) Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 3l as acid was obtained (yellow solid, 22.7 mg, 64% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.719 min (minor) and 7.519 min (major), 3.5:96.5er).

¹H NMR (600 MHz, CDCl₃) δ 8.10 (d, *J* = 8.5 Hz, 2H), 7.86 – 7.80 (m, 2H), 7.79 – 7.75 (m, 2H), 7.29 (d, *J* = 8.6 Hz, 2H), 3.93 (d, *J* = 13.6 Hz, 1H), 3.38 (d, *J* = 13.6 Hz, 1H), 1.96 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.22, 168.37, 147.34, 143.34, 134.66, 131.44, 131.26, 123.64, 123.62, 63.52, 41.04, 21.92. HRMS (ESI-TOF) Calcd for C₁₈H₁₃N₂O₆ [M-H]⁻: 353.0774; found: 353.0764.

Peak	RetTime Typ	be Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	5.719 BB	0.2358	414.32858	25.19997	96.5108
2	7.519 MM	0.2623	14.97943	9.51787e-1	3.4892
Ac	O Me NPhth				

(S)-3-(4-acetylphenyl)-2-(1,3-dioxoisoindolin-2-yl)-2-methylpropanoic acid (3m) Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3m** as acid was obtained (yellow solid, 21.8 mg, 62% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 10.580 min (minor) and 12.750 min (major), 5:95 er).

¹H NMR (600 MHz, CDCl₃) δ 7.86 – 7.77 (m, 4H), 7.77 – 7.71 (m, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 3.87 (d, *J* = 13.7 Hz, 1H), 3.31 (d, *J* = 13.7 Hz, 1H), 2.57 (s, 3H), 1.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 198.09, 177.06, 168.45, 141.36, 136.00, 134.44, 131.40, 130.83, 128.47, 123.51, 63.67, 41.02, 26.67, 21.93. HRMS (ESI-TOF) Calcd for C₂₀H₁₆NO₅ [M-H]⁻: 350.1028; found: 350.1027.

(S)-3-(4-benzoylphenyl)-2-(1,3-dioxoisoindolin-2-yl)-2-methylpropanoic acid (3n)

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3n** as acid was obtained (white solid, 26.8 mg, 65% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.926 min (minor) and 6.450 min (major), 6:94 er).

¹H NMR (600 MHz, CDCl₃) δ 7.79 – 7.74 (m, 2H), 7.73 – 7.68 (m, 4H), 7.63 (d, J = 8.1 Hz, 2H), 7.57 – 7.52 (m, 1H), 7.47 – 7.40 (m, 2H), 7.20 (d, J = 8.2 Hz, 2H), 3.91 (d, J = 13.8 Hz, 1H), 3.33 (d, J = 13.7 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 196.59, 177.63, 168.40, 140.56, 137.69, 136.34, 134.42, 132.46, 131.40, 130.52, 130.22, 130.10, 128.31, 123.47, 63.71, 41.02, 21.97. HRMS (ESI-TOF) Calcd for C₂₅H₂₀NO₅ [M+H]⁺: 414.1341; found: 414.1344.

(S)-2-(1,3-dioxoisoindolin-2-yl)-3-(3-(methoxycarbonyl)phenyl)-2 methylpropa--noic acid (30)²

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3**o as acid was obtained (yellow oil, 20.7 mg, 57% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.465 min (minor) and 8.231 min (major), 4:96 er).

¹H NMR (600 MHz, CDCl₃) δ 7.91– 7.86 (m, 1H), 7.82 – 7.71 (m, 2H), 7.76 – 7.69 (m, 3H), 7.32 – 7.27 (m, 2H), 3.85 (d, *J* = 13.9 Hz, 1H), 3.76 (s, 3H), 3.29 (d, *J* = 13.9 Hz, 1H), 1.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.45, 168.43, 166.87, 135.98, 135.05, 134.29, 131.61, 131.50, 130.19, 128.58, 128.51, 123.43, 77.34, 52.12, 40.66, 21.84. HRMS (ESI-TOF) Calcd for C₂₀H₁₆NO₆ [M-H]⁻: 366.0978; found: 366.0963. The absolute stereochemistry was assigned based on comparing the specific rotation of **3k** with literature.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.468	BB	0.2507	50.70457	3.06945	50.2126
2	8.274	BB	0.2708	50.27514	2.83656	49.7874

OMe NPhth

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3p** as ester was obtained (yellow oil, 21.8 mg, 64% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% iPrOH / CO₂, flow rate 2 mL/min, retention time 4.963 min (minor) and 5.818 min (major), 4:96 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.74 – 7.66 (m, 2H), 7.17 – 7.08 (m, 1H), 6.88 (td, *J* = 8.4, 1.9 Hz, 1H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.80 – 6.75 (m, 1H), 3.80 – 3.72 (m, 4H), 3.26 (d, *J* = 13.8 Hz, 1H), 1.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.73, 168.45, 162.66 (d, *J* = 244.5 Hz), 138.26 (d, *J* = 7.5 Hz), 134.32, 131.55, 129.71 (d, *J* = 7.5 Hz), 126.26 (d, *J* = 3.0 Hz), 123.38, 117.5 (d, *J* = 21.0 Hz), 114.16 (d, *J* = 21.0 Hz) 63.92, 52.85, 41.15, 21.97. ¹⁹F NMR (376 MHz, CDCl₃) δ - 116.22. HRMS (ESI-TOF) Calcd for C₁₉H₁₅FNO [M-H]⁻: 340.0985; found: 340.0974. The absolute stereochemistry was assigned based on comparing the specific rotation of **3k** with literature.

Methyl (S)-3-(3-chlorophenyl)-2-(1,3-dioxoisoindolin-2-yl)-2-methylpropanoate (3q)²

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3q** as ester was obtained (yellow oil, 21.8 mg, 61% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% iPrOH / CO₂, flow rate 2 mL/min, retention time 8.111 min (minor) and 9.494 min (major), 4.5:95.5 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.74 – 7.66 (m, 2H), 7.20 – 7.16 (m, 1H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.07 – 7.05 (m, 1H), 6.96 (d, *J* = 7.6 Hz, 1H), 3.80 – 3.74 (m, 4H), 3.26 (d, *J* = 13.8 Hz, 1H), 1.90 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.66, 168.44, 137.80, 134.32, 134.10, 131.53, 130.71, 129.52, 128.71, 127.39, 123.38, 63.90, 52.84, 41.11, 21.94. HRMS (ESI-TOF) Calcd for C₁₉H₁₅ClNO₄ [M-H]⁻: 356.0690; found: 356.0677.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.988	MM	0.4283	1550.50964	60.34021	49.0725
2	9.433	MM	0.4570	1609.12183	58.68290	50.9275

Methyl (S)-3-(3-bromophenyl)-2-(1,3-dioxoisoindolin-2-yl)-2-methylpropanoate (3r)²

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3r** as ester was obtained (yellow oil, 26.1 mg, 65% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.462 min (minor) and 6.010min (major), 5:95 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.74 – 7.66 (m, 2H), 7.32 (d, J = 7.9 Hz, 1H), 7.19 – 7.16 (m, 1H), 7.05 (t, J = 7.8 Hz, 1H), 7.00 (d, J = 7.6 Hz, 1H), 3.78 – 3.71 (m, 4H), 3.22 (d, J = 13.8 Hz, 1H), 1.88 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 172.66, 168.45, 138.11, 134.33, 133.61, 131.52, 130.30, 129.82, 129.19, 123.40, 122.33, 63.91, 52.85, 41.09, 21.94. HRMS (ESI-TOF) Calcd for C₁₉H₁₅BrNO₄ [M-H]⁻: 400.0184; found: 400.0168.

(S)-2-(1,3-dioxoisoindolin-2-yl)-2-methyl-3-(3-nitrophenyl)propanoic acid (3s) Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 3s as acid was obtained (white solid, 21.9 mg, 62% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.835 min (minor) and 6.234 min (major), 5:95 er).

¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 1H), 7.96 – 7.92 (m, 1H), 7.80 –

7.74 (m, 2H), 7.74 – 7.66 (m, 2H), 7.45 – 7.41 (m, 1H), 7.38 (t, J = 7.8 Hz, 1H), 3.88 (d, J = 14.0 Hz, 1H), 3.36 (d, J = 14.0 Hz, 1H), 1.98 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.23, 168.40, 148.16, 137.65, 136.70, 134.62, 131.25, 129.36, 125.33, 123.59, 122.49, 63.45, 40.72, 21.96. HRMS (ESI-TOF) Calcd for C₁₈H₁₃N₂O₆ [M-H]⁻: 353.0774; found: 353.0764.

(S)-2-(1,3-dioxoisoindolin-2-yl)-3-(3-formylphenyl)-2-methylpropanoic acid (3t) Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1

with 1% v/v of acetic acid). The product of 3t as acid was obtained (white solid, 22.9 mg, 68% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 8.451 min (minor) and 14.604 min (major), 5.5:94.5 er).

¹H NMR (600 MHz, CDCl₃) δ 9.84 (s, 1H), 7.80 – 7.74 (m, 2H), 7.74 – 7.66 (m, 3H), 7.58 (s, 1H), 7.38 – 7.33 (m, 2H), 3.89 (d, *J* = 13.9 Hz, 1H), 3.34 (d, *J* = 13.9 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.34, 177.64, 168.43, 136.82, 136.66, 136.48, 134.51, 131.80, 131.38, 129.17, 128.82, 123.52, 63.69, 40.74, 21.91. HRMS (ESI-TOF) Calcd for C₁₉H₁₄NO₅ [M-H]⁻: 336.0872; found: 336.0869.

(S)-2-(1,3-dioxoisoindolin-2-yl)-3-(3-methoxyphenyl)-2-methylpropanoic acid (3u) Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 3u as acid was obtained (yellow oil, 19.0 mg, 56% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.810 min (minor) and 10.267 min (major), 6:94 er).

¹H NMR (600 MHz, CDCl₃) δ 7.81 – 7.75 (m, 2H), 7.74 – 7.68 (m, 2H), 7.08 (t, *J* = 7.9 Hz, 1H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.64 (d, *J* = 7.4 Hz, 1H), 6.56 (s, 1H), 3.76 (d, *J* = 13.8 Hz, 1H), 3.54 (s, 3H), 3.18 (d, *J* = 13.8 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.60, 168.44, 159.46, 137.02, 134.27, 131.60, 129.32, 123.39, 123.04, 115.93, 113.08, 63.86, 54.99, 40.91, 21.95. HRMS (ESI-TOF) Calcd for C₁₉H₁₆NO [M-H]⁻: 338.1028; found: 338.1015.

Реак	Retlime	туре	ωιατη	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	5.874	MM	0.2172	30.61133	2.34860	50.0430	
2	10.498	BB	0.2644	30.55867	1.42368	49.9570	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.810	MM	0.1973	23.91954	2.02035	5.8183
2	10.267	BB	0.3172	387.18930	18.27238	94.1817
Ŷ	Me NPhth					

Methyl (S)-3-(3,5-dimethylphenyl)-2-(1,3-dioxoisoindolin-2-yl)-2-

methylpropanoate (3v)

Following the general arylation procedure A (eluent: toluene/ethyl acetate = 20/1). The product of **3v** as ester was obtained (yellow oil, 22.1 mg, 63% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% i PrOH / CO₂, flow rate 2 mL/min, retention time 5.174 min (major) and 6.513 min (minor), 96:4 er).
¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.75 (m, 2H), 7.74 – 7.66 (m, 2H), 6.80 (s, 1H), 6.61 (s, 2H), 3.76 (s, 3H), 3.68 (d, *J* = 13.8 Hz, 1H), 3.15 (d, *J* = 13.8 Hz, 1H), 2.09 (s, 6H), 1.88 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 173.12, 168.50, 137.59, 135.51, 134.11, 131.71, 128.69, 128.48, 123.19, 64.20, 52.69, 41.07, 21.86, 21.15. HRMS (ESI-TOF) Calcd for C₂₁H₂₀NO₄ [M-H]⁻: 350.1392; found: 350.1382.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.174	BB	0.2937	492 . 06659	22.63143	96.0303
2	6.513	MM	0.2068	20.34097	1.63942	3.9697

(S)-2-(1,3-dioxoisoindolin-2-yl)-2-methyl-3-(6-(trifluoromethyl)pyridin-2-yl)propanoic acid (3w)

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3w** as acid was obtained (yellow oil, 16.6 mg, 44% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 6.150 min (minor) and 9.558 min (major), 3:97 er).

¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, J = 8.5 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.73 – 7.68 (m, 2H), 7.29 (d, J = 8.4 Hz, 1H), 3.95 (d, J = 13.8 Hz, 1H), 3.39 (d, J = 13.8 Hz, 1H), 1.96 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.28, 168.64, 157.30, 147.52, 137.76, 134.08, 131.77, 128.37, 121.07 (q, J = 273.0 Hz), 112.07 (q, J = 34.5 Hz) 118.76 (q, J = 3.0 Hz), 62.49, 42.10, 22.49. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.19. HRMS (ESI-TOF) Calcd for C₁₈H₁₄F₃N₂O₄ [M+H]⁺: 379.0906; found: 379.0907.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.411	MM	0.2371	107.44058	7.55196	50.2941
2	9.346	MM	0.3654	106.18389	4.84345	49.7059

(S)-2-(1,3-dioxoisoindolin-2-yl)-2-methyl-3-(2-(trifluoromethyl)pyridin-4-yl) propanoic acid (3x)

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 3x as acid was obtained (yellow solid, 17.4 mg, 46% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 15% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 7.627 min (major) and 10.286 min (minor), 97:3 er).

¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 4.4 Hz, 1H), 7.89 – 7.71 (m, 4H), 7.40 (s, 1H), 7.32 (d, J = 4.0 Hz, 1H), 3.87 (d, J = 13.6 Hz, 1H), 3.36 (d, J = 13.6 Hz, 1H), 1.99 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 176.02, 168.35, 149.85, 148.06 (q, J = 34.5 Hz), 147.36, 134.69, 131.17, 128.61, 123.62, 122.59 (q, J = 3.0 Hz), 121.35 (q, J = 273 Hz), 63.11, 40.78, 22.22. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.87. HRMS (ESI-TOF) Calcd for C₁₈H₁₄F₃N₂O4 [M+H]⁺: 379.0906; found: 379.0905.

(S)-3-(2,6-difluoropyridin-4-yl)-2-(1,3-dioxoisoindolin-2-yl)-2-methylpropanoic acid (3y)

Following the general arylation procedure A (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **3y** as acid was obtained (yellow oil, 15.6 mg, 45% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 10% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 6.498 min (major) and 8.282 min (minor), 99:1 er).

¹H NMR (600 MHz, CDCl₃) δ 7.80 – 7.74 (m, 2H), 7.76 – 7.67 (m, 3H), 6.78 – 6.72 (m, 1H), 3.77 (d, J = 14.4 Hz, 1H), 3.30 (d, J = 14.4 Hz, 1H), 1.97 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 176.84, 168.44, 161.28 (dd, J = 90.0, 15.0 Hz), 159.65 (dd, J = 36.0, 13.5 Hz), 147.59 (dd, J = 4.5, 1.5 Hz), 134.53, 131.37, 123.57, 114.06 (dd, J = 22.5, 6.0 Hz), 106.43 (dd, J = 28.5, 6.0 Hz), 63.05, 33.80, 21.89. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.38. HRMS (ESI-TOF) Calcd for C₁₇H₁₃F₂N₂O₄ [M+H]⁺: 347.0843; found: 347.0848.

Peak	RetTime Type	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
		-			
1	6.539 MM	0.5128	1932.90076	62.81881	50.3142
2	8.624 BB	0.4638	1908.75732	55.69393	49.6858

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.498	BV R	0.4219	1527.13245	48.42899	99.1186
2	8.282	BV	0.1366	13.57988	1.38241	0.8814

5. Enantioselective Arylation of Cylcopropanecarboxylic acid

General procedure B for enantioselective arylation of cyclopropanecarboxylic acid:

Pd(OAc)₂ (2.2 mg, 0.01 mmol, 10 mol%), L11 (5.0 mg, 0.015 mmol, 15 mol%), carboxylic acid 1 (0.1 mmol), Ag₂CO₃ (55 mg, 0.2 mmol, 2 equiv.), NaHCO₃ (12.6 mg, 0.15 mmol, 1.5 equiv.), and Iodoheterocycle (0.2 mmol, 2.0 equiv.) were weighed and placed in an 12 mL reaction tube. Subsequently, HFIP (1.0 mL) was injected, and the tube was capped and closed tightly. The reaction mixture was then stirred at 80 °C for 48 h. The mixture was allowed to cool to room temperature and acetic acid (0.05 ml) was added. Then, the mixture was passed through a pad of Celite with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution was concentrated and the residual mixture was dissolved with a minimal amount of ethyl acetate and loaded onto a preparative TLC plate. The pure product was then isolated

using preparative TLC with ethyl acetate and hexanes (1/3 to 1/1) as the eluent and 1% v/v of acetic acid as the additive.

(1*S*,2*R*)-1-(1,3-dioxoisoindolin-2-yl)-2-(4-(methoxycarbonyl)phenyl)cyclopropane -1-carboxylic acid (5a)

Following the general arylation procedure A at 100 °C and K₂CO₃ (1.0 equiv) instead of NaHCO₃ (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5a as ester was obtained (yellow oil, 17.8 mg, 47% yield)

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 4.225 min (minor) and 6.324 min (major), 97.5:2.5 er).

¹H NMR (500 MHz, Chloroform-*d*) δ 8.02 (d, *J* = 8.2 Hz, 1H), 7.92 (dd, *J* = 5.4, 3.0 Hz, 1H), 7.79 (dd, *J* = 5.4, 3.0 Hz, 1H), 7.67 (d, *J* = 8.1 Hz, 1H), 3.92 (s, 1H), 3.35 (s, 1H), 3.17 (t, *J* = 9.5 Hz, 1H), 2.52 (dd, *J* = 9.2, 6.3 Hz, 0H), 1.95 (dd, *J* = 9.8, 6.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.1, 168.0, 167.1, 140.1, 134.6, 131.8, 129.8, 129.5, 129.3, 123.8, 52.6, 52.2, 33.7, 29.8, 19.5. HRMS (ESI-TOF) Calculated for C₂₁H₁₈NO₆ [M+H]⁺: 380.1134, Found: 380.1147.

(1*S*,2*R*)-1-(1,3-dioxoisoindolin-2-yl)-2-(p-tolyl)cyclopropane-1-carboxylic acid (5b) Following the general arylation procedure A at 100 °C and K₂CO₃ (1.0 equiv) instead of NaHCO₃ (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5b as acid was obtained (yellow oil, 12.8 mg, 40% yield)

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.879 min (minor) and 6.600 min (major), 99.5:0.5 er).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.75 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.43 (d, *J* = 7.8 Hz, 2H), 7.13 (d, *J* = 7.8 Hz, 2H), 3.14 (s, 1H), 2.42 (dd, *J* = 9.4, 6.1 Hz, 1H), 2.35 (s, 3H), 1.90 (dd, *J* = 9.9, 6.1 Hz, 1H). The NMR data matches the reported data (5). HRMS (ESI-TOF) Calculated for C₁₉H₁₆NO₄ [M+H]⁺: 322.1079, Found: 322.1088.

(1*S*,2*R*)-1-(1,3-dioxoisoindolin-2-yl)-2-(3-fluorophenyl)cyclopropane-1-carboxylic acid (5c)

Following the general arylation procedure A at 100 °C and K_2CO_3 (1.0 equiv) instead of NaHCO₃ (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5c as acid was obtained (yellow oil, 9.7 mg, 30% yield)

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.333 min (minor) and 3.849 min (major), 97.5:2.5 er).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.88 (dd, J = 5.4, 3.0 Hz, 2H), 7.75 (dd, J = 5.4, 3.0 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.30 – 7.26 (m, 2H), 6.96 – 6.90 (m, 1H), 3.14 (t, J = 9.6 Hz, 1H), 2.40 (dd, J = 9.2, 6.3 Hz, 1H), 1.92 (dd, J = 9.7, 6.2 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ173.1, 168.0, 162.7 (d, J = 246.1 Hz), 136.7, 136.6, 134.6, 131.7, 129.8 (d, J = 7.6 Hz), 125.5, 123.8, 116.7 (d, J = 22.7 Hz), 114.6 (d, J = 21.1 Hz) 37.7, 32.0, 29.8. 20.1 ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.27. HRMS (ESI-TOF) Calculated for C₁₈H₁₁FNO₄ [M-H]⁻: 324.0672, Found: 324.0674.

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	3.236	MF	0.1930	380.86530	32.89609	48.2837	
2	3.987	VB	0.1903	407.94235	32.53595	51.7163	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.333	BB	0.1324	11.85631	1.20942	2.3615
2	3.849	BB	0.1420	490.20306	51.98320	97.6385
CF ₃	O U NPhth					

methyl (1*S*,2*R*)-1-(1,3-dioxoisoindolin-2-yl)-2-(6-(trifluoromethyl)pyridin-3yl)cyclopropane-1-carboxylate (5d)

Following the general arylation procedure **B** (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **5d** as ester was obtained (yellow oil, 11.0 mg, 28% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 9.422 min (minor) and 11.552 min (major), 2:98 er).

¹H NMR (600 MHz, Chloroform-*d*) δ 8.93 (s, 1H), 8.09 (d, J = 7.8 Hz, 1H), 7.96 – 7.89 (m, 3H), 7.82 – 7.78 (m, 2H), 7.67 (d, J = 8.0 Hz, 1H), 3.43 (s, 3H), 3.11 (t, J = 9.4 Hz, 1H), 2.58 – 2.50 (m, 1H), 2.06 (dd, J = 9.7, 6.5 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.0, 167.7, 151.5, 138.7, 134.7, 133.8, 131.7, 123.9, 119.8 (q, J = 1.5 Hz), 53.0, 31.1, 29.8, 19.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.41. HRMS (ESI-TOF) Calculated for C₁₉H₁₄F₃N₂O₄ [M+H]⁺: 391.0906, Found: 391.0908.

(1*R*,2*S*)-2-(6-(trifluoromethyl)pyridin-3-yl)cyclopropane-1-carboxylic acid (5e) Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5e as acid was obtained (yellow oil, 15.7 mg, 68% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 5% i PrOH / CO₂, flow rate 2 mL/min, retention time 4.610 min (major) and 6.868 min (minor), 99:1 er).

¹H NMR (600 MHz, CDCl₃) δ 8.63 (s, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 2.65 (q, J = 8.5 Hz, 1H), 2.20 (q, J = 8.4 Hz, 1H), 1.80 – 1.69 (m, 1H), 1.55 (td, J = 8.2, 5.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 175.80, 151.09, 146.38 (q, J = 34.5 Hz), 138.17, 135.53, 121.70 (q, J = 273.0 Hz), 119.82 (q, J = 3.0 Hz), 23.43, 21.58, 12.24. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.19. HRMS (ESI-TOF) Calcd for C₁₀H₉F₃NO₂ [M+H]⁺:232.0585; found: 232.0588.

(1*R*,2*S*)-2-(6-(trifluoromethyl)pyridin-2-yl)cyclopropane-1-carboxylic acid (5f) Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5f as acid was obtained (white solid, 12.7 mg, 55% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 3.182 min (major) and 4.130 min (minor), 97:3 er).

¹H NMR (600 MHz, CDCl₃) δ 7.82 (t, J = 7.8 Hz, 1H), 7.54 (d, J = 7.8 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 2.72 (q, J = 8.7 Hz, 1H), 2.25 (td, J = 8.7, 6.5 Hz, 1H), 1.85 – 1.79 (m, 1H), 1.64 (td, J = 8.6, 5.3 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 174.77, 158.23, 147.16 (q, J = 34.5), 138.10, 126.95, 121.31 (q, J = 273.0 Hz), 118.64 (q, J = 3.0), 26.99, 23.59, 14.85. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.69. HRMS (ESI-TOF) Calcd for C₁₀H₉F₃NO₂ [M+H]⁺: 232.0585; found: 232.0591.

(1*R*,2*S*)-2-(2-(trifluoromethyl)pyridin-4-yl)cyclopropane-1-carboxylic acid (5g) Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5g as acid was obtained (yellow oil, 15.5 mg, 67% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® AD-3 column, 5% i PrOH / CO₂, flow rate 2 mL/min, retention time 5.771 min (major) and 8.463 min (minor), 95:5 er).

¹H NMR (600 MHz, CDCl₃) δ 8.57 (d, J = 4.8 Hz, 1H), 7.55 (s, 1H), 7.35 (d, J = 4.6

Hz, 1H), 2.61 (q, J = 8.4 Hz, 1H), 2.21 – 2.08 (m, 1H), 1.75 (dt, J = 7.6, 5.4 Hz, 1H), 1.52 (td, J = 8.2, 5.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 175.17, 149.46, 147.84, 147.78 (q, J = 33.0 Hz), 127.29, 121.62 (q, J = 271.5 Hz), 121.44 (q, J = 3.0 Hz), 25.27, 22.35, 12.33. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.63. HRMS (ESI-TOF) Calcd for C₁₀H₉F₃NO₂ [M+H]⁺: 232.0585; found: 232.0592.

(1R,2S)-2-(6-fluoropyridin-3-yl)cyclopropane-1-carboxylic acid (5h)

Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **5h** as acid was obtained (yellow oil, 9.8 mg, 54% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® As-3 column, 5% iPrOH / CO₂, flow rate 2 mL/min, retention time 5.365 min (minor) and 6334 min (major), 98.5:1.5 er).

¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, *J* = 1.8 Hz, 1H), 7.66 (td, *J* = 8.0, 2.4 Hz, 1H), 6.85 (dd, *J* = 8.4, 2.8 Hz, 1H), 2.57 (q, *J* = 8.6 Hz, 1H), 2.11 (td, *J* = 8.4, 5.6 Hz, 1H), 1.66 (dt, *J* = 7.4, 5.4 Hz, 1H), 1.48 (td, *J* = 8.2, 5.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 176.18, 162.68 (d, *J* = 238.6 Hz), 148.33 (d, *J* = 15.0 Hz), 142.14 (d, *J* = 9.0 Hz), 129.64 (d, *J* = 4.5 Hz), 108.78 (d, *J* = 36.0 Hz), 22.84, 21.18, 12.18. ¹⁹F NMR (376 MHz, CDCl₃) δ -73.84. HRMS (ESI-TOF) Calcd for C₉H₉FNO₂ [M+H]⁺:182.0617; found: 182.0614.

(1*R*,2*S*)-2-(6-chloropyridin-3-yl)cyclopropane-1-carboxylic acid (5i)

Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **5i** as acid was obtained (yellow oil, 7.5 mg, 38% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% i PrOH / CO₂, flow rate 2 mL/min, retention time 4.571 min (major) and 6.505 min (minor), 99:1 er).

¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J* = 5.2 Hz, 1H), 7.22 (s, 1H), 7.13 – 7.05 (m, 1H), 2.52 (q, *J* = 8.5 Hz, 1H), 2.22 – 2.10 (m, 1H), 1.70 (dt, *J* = 7.6, 5.6 Hz, 1H), 1.46 (td, *J* = 8.2, 5.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 174.83, 151.21, 149.20, 149.01, 125.17, 123.45, 24.93, 22.19, 12.14. HRMS (ESI-TOF) Calcd for C₉H₉ClNO₂ [M+H]⁺:198.0322; found: 198.0325.

(1R,2S)-2-(6-bromopyridin-3-yl)cyclopropane-1-carboxylic acid (5j)

Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **5j** as acid was obtained (yellow oil, 6.7 mg, 28% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® OJ-3 column, 5% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 5.989 min (major) and 8.926 min (minor), 96:4 er).

¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, *J* = 5.2 Hz, 1H), 7.39 (s, 1H), 7.16 – 7.01 (m, 1H), 2.50 (q, *J* = 8.5 Hz, 1H), 2.23 – 2.10 (m, 1H), 1.69 (dt, *J* = 7.4, 5.6 Hz, 1H), 1.46 (td, *J* = 8.2, 5.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 174.71, 149.46, 148.95, 141.83, 128.97, 123.82, 24.81, 22.21, 12.14. HRMS (ESI-TOF) Calcd for C₉H₂BrNO₂ [M-H]⁻:239.9660; found: 239.9649.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.988	MM	0.3085	96.24896	5.20043	50.5545
2	8.870	MM	0.4368	94.13744	3.59216	49.4455

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.989	MM	0.3437	291.04840	14.11437	96.0852
2	8.926	MM	0.3538	11.85824	5.58583e-1	3.9148

(1*R*,2*R*)-1-phenyl-2-(2-(trifluoromethyl)pyridin-4-yl)cyclopropane-1-carboxylic acid (5k)

Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **5k** as acid was obtained (yellow oil, 19.0 mg, 62% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® IC-3 column, 5% i PrOH / CO₂, flow rate 2 mL/min, retention time 7.835 min (major) and 9.558 min (minor), 98.5:1.5 er).

¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 5.0 Hz, 1H), 7.64 (s, 1H), 7.50 – 7.45 (m, 2H), 7.45 – 7.42 (m, 1H), 7.41 – 7.38 (m, 2H), 7.37 – 7.33 (m, 1H), 2.88 (t, J = 8.4 Hz, 1H), 2.35 (dd, J = 7.6, 5.2 Hz, 1H), 1.83 (dd, J = 8.8, 5.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 174.81, 149.58, 147.96, 147.90 (q, J = 34.5 Hz), 138.58, 130.12, 128.69, 128.14, 127.16, 121.59 (q, J = 273.0 Hz), 121.25 (q, J = 3.0 Hz), 38.77, 33.11, 19.12. ¹⁹F NMR (376 MHz, CDCl₃) δ -70.52. HRMS (ESI-TOF) Calcd for C₁₆H₁₁F₃NO₂ [M-H]⁻:239.9660; found: 239.9649.

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.946	MM	0.3555	220.71098	10.34793	49.2605
2	9.534	MM	0.3780	227.33720	10.02421	50.7395
D/ mAU 111111111111111111111111111111111111	ND1 A, Sig=250,4 Ref=3	360,100 (tzhang	zt-02-136-7-2 2022-	10-08 17-37-08\003-1-zt-02-136	-7-chiral.D)	hee to he
				·	<u> </u>	
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]	I.	[min]	[mAU*s]	[mAU]	%
1	7.835	BB	0.3048	1848.83484	90.33101	98.6582
2	9.558	MM	0.3786	25.14544	1.10706	1.3418
MeOOC,		OH NPhth				

Methyl 4-((1*R*,2*S*)-2-(1,3-dioxoisoindolin-2-yl)-2-(methoxycarbonyl)cyclobutyl) benzoate (5l)

Following the general arylation procedure A at 100 °C and K_2CO_3 (1.0 equiv) instead of NaHCO₃ (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of **51** as ester was obtained (yellow oil, 9.4 mg, 24% yield)

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® AD-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 9.487 min (major) and 11.215 min (minor), 74:26 er).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.98 (d, *J* = 8.3 Hz, 2H), 7.85 (dd, *J* = 5.3, 3.0 Hz, 2H), 7.74 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.53 (d, *J* = 8.3 Hz, 2H), 5.11 (t, *J* = 10.1 Hz, 1H), 3.90 (s, 3H), 3.14 (t, *J* = 10.3 Hz, 1H), 2.73 (p, *J* = 10.2, 9.7 Hz, 1H), 2.56 – 2.33

(m, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.0, 167.3, 144.9, 134.4, 131.9, 129.4, 128.8, 128.1, 128.1, 123.5, 52.2, 44.6, 31.7, 30.2, 23.0, 22.8. HRMS (ESI-TOF) Calculated for C₂₁H₁₈NO₆ [M+H]+: 380.1134, Found: 380.1142.

(1*R*,2*S*)-2-(4-(methoxycarbonyl)phenyl)cyclopropane-1-carboxylic acid $(5m)^2$ Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5i as acid was obtained (white solid, 12.3 mg, 56% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® As-3 column, 30% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 1.842 min (minor) and 2.764 min (major), 0.2:99.8 er).

¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 3.90 (s, 3H), 2.64 (q, J = 8.6 Hz, 1H), 2.14 – 2.08 (m, 1H), 1.71 (dt, J = 7.6, 5.4 Hz, 1H), 1.43 (td, J = 8.2, 5.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 175.1, 167.2, 141.5, 129.4, 129.4, 128.8, 52.2, 26.4, 21.7, 12.3.

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1.842 VB 0.0473 10.27485 3.39933 0.1300 1 2 2.764 MM 0.1298 7891.44434 1013.26868 99.8700 MeOOC

(1*R*,2*R*)-2-(4-(methoxycarbonyl)phenyl)-1-phenylcyclopropane-1-carboxylic acid (5n)²

Following the general arylation procedure B (eluent: hexane/ethyl acetate = 2/1 with 1% v/v of acetic acid). The product of 5j as acid was obtained (white solid, 14.8 mg, 50% yield).

The enantiomeric purity of the substrate was determined by SFC analysis (CHIRALPAK® Ad-3 column, 20% ^{*i*}PrOH / CO₂, flow rate 2 mL/min, retention time 6.306 min (major) and 7.842 min (minor), 99:1 er).

¹H NMR (500 MHz, CDCl₃) δ 7.97 (d, J = 8.3 Hz, 2H), 7.48 – 7.41 (m, 2H), 7.40 – 7.33 (m, 4H), 7.33 – 7.28 (m, 1H), 3.94 (s, 3H), 2.90 (t, J = 8.4 Hz, 1H), 2.28 (dd, J = 7.8, 5.0 Hz, 1H), 1.71 (dd, J = 9.0, 5.0 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 176.0, 167.2, 141.4, 139.4, 130.3, 129.5, 129.3, 128.8, 128.5, 127.8, 52.2, 37.9, 34.5, 19.4. The absolute stereochemistry was assigned based on comparing the specific rotation of **5i** with literature.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.698	BB	0.2132	431.89594	28.76545	50.3701
2	8.234	BB	0.2627	425.54874	23.11917	49.6299

6. Sequential diarylation of 2-Aminoisobutyric Acid

Pd(OAc)₂ (2.2 mg, 0.01 mmol, 10 mol%), Ac-Gly-OH (3.5 mg, 0.03 mmol, 30 mol%), carboxylic acid **3a** (36.7 mg, 0.1 mmol), Ag₂CO₃ (41.1 mg, 0.15 mmol, 1.5 equiv.), K_2CO_3 (6.9 mg, 0.05 mmol, 0.5 equiv.), and 1-iodo-4-methoxybenzene (35.1 mg, 0.15 mmol, 1.5 equiv.) were weighed and placed in an 12 mL reaction tube. Subsequently, HFIP (1.0 mL) was injected, and the tube was capped and closed tightly. The reaction mixture was then stirred at 100 °C for 18 h. The mixture was allowed to cool to room temperature and acetic acid (0.05 ml) was added. Then, the mixture was passed through a pad of Celite with ethyl acetate as the eluent to remove any insoluble precipitate. The resulting solution was concentrated and the residual mixture was dissolved with minimal ethyl acetate and loaded onto a preparative TLC plate. The

pure product was then isolated using preparative TLC with ethyl acetate and hexanes (1/2) as the eluent and 1% v/v of acetic acid as the additive.

(*R*)-2-(1,3-dioxoisoindolin-2-yl)-2-(4-methoxybenzyl)-3-(4 (methoxycarbonyl) phenyl) propanoic acid (6a)

The product of **6a** as acid was obtained (white solid, 30.7 mg, 65% yield).

¹H NMR (600 MHz, CDCl₃) δ 7.87 (d, *J* = 8.1 Hz, 2H), 7.76 – 7.65 (m, 4H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.18 (d, *J* = 8.5 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 2H), 3.95 (d, *J* = 14.0 Hz, 1H), 3.89 (d, *J* = 13.7 Hz, 1H), 3.86 (s, 3H), 3.74 (s, 3H), 3.46 (d, *J* = 13.8 Hz, 1H), 3.38 (d, *J* = 13.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 173.77, 168.36, 167.06, 158.93, 141.17, 134.32, 131.76, 131.30, 130.86, 129.64, 129.06, 127.01, 123.41, 113.96, 68.46, 55.25, 52.13, 39.08, 38.83. HRMS (ESI-TOF) Calcd for C₂₇H₂₃NO7 [M-H]⁻:472.1396; found: 472.1394.

7. Synthesis of Metyrosine⁴

To a stirred solution of **3d** (67.8 mg, 0.2 mmol) in dry DCM (5.0 mL) was added BBr₃ (1 mmol) at 0 °C under N₂. The solution was stirred at room temperature for 2 hours and was quenched by sat. NH₄Cl (5 mL). The aqueous phase was extracted with DCM (5 mL×3) and the combined organic phase were dried with anhydrous Na₂SO₄, concentrated under reduced pressure. The residue was used without purification.

To a stirred solution of 2 mL of glacial acetic acid and 4 mL of 5M HCl was added the substrate. The reaction was then heated to reflux with stirring for 4 hours, then cooled to room temperature and concentrated to dryness under reduced pressure. The crude solid was washed with 3:1 ether: ethyl acetate (5 mL \times 3) and then dried in vacuum to afford pure amino acid hydrochloride as a fine white powder.

(S)-2-carboxy-1-(4-hydroxyphenyl)propan-2-aminium chloride⁵

White solid (31.4 mg, 68% yield for two steps). ¹H NMR (600 MHz, D₂O) δ 7.12 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 3.26 (d, J = 14.6 Hz, 1H), 2.98 (d, J = 14.6 Hz, 1H), 1.58 (s, 3H). ¹³C NMR (150 MHz, D₂O) δ 174.24, 155.25, 131.45, 125.07, 115.78, 61.11, 41.53, 21.60.

8. Synthesis of BIRT-377

To a stirred solution of Methyl ester of 3k (80.2 mg, 0.2 mmol) in MeOH (1.0 mL) was added ethylenediamine (72 mg, 1.2 mmol) at 0 °C under N₂. The solution was stirred at 50 °C for 12 hours and was quenched by sat. NH₄Cl (5 mL). The solvents were removed under reduced pressure and the residue was purified by silica gel column chromatography to afford the desired product.

Methyl (S)-2-amino-3-(4-bromophenyl)-2-methylpropanoate⁶

Colorless oil (45.0 mg, 83%). ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.0 Hz, 2H), 7.03 (d, *J* = 7.0 Hz, 2H), 3.70 (s, 3H), 3.06 (d, *J* = 13.2 Hz, 1H), 2.75 (d, *J* = 13.2 Hz, 1H), 1.37 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 177.41, 135.67, 131.76, 131.53, 121.13, 58.79, 52.29, 46.33, 26.66.

9. Synthesis of Boc-amino acid

To a stirred solution of Methyl ester of 3k (80.2 mg, 0.2 mmol) in MeOH (1.0 mL) was added ethylenediamine (72 mg, 1.2 mmol) at 0 °C under N₂. The solution was stirred at room temperature for 24 hours and was quenched by sat. NH₄Cl (5 mL). The solvents were removed under reduced pressure and the residue was purified by silica gel column chromatography to afford the desired product **9** (31.6 mg, 58%).

To a stirred solution of 9 (27.1 mg, 0.1 mmol) in DCM (1.0 mL) was added TEA (20.2 mg, 0.2 mmol), and Boc₂O (43.6 mg, 0.2 mmol) at 0 °C under N₂. The solution was stirred at room temperature for 12 hours and was quenched by sat. NH₄Cl (5 mL). The solvents were removed under reduced pressure and the residue was purified by silica gel column chromatography to afford the desired product 10 (31.5 mg, 86%).

Methyl

(S)-3-(4-bromophenyl)-2-((tert-butoxycarbonyl)amino)-2methylpropanoate⁷

¹H NMR (600 MHz, Chloroform-*d*) δ 7.39 (d, J = 8.3 Hz, 2H), 6.94 (d, J = 8.3 Hz, 2H), 5.13 (s, 1H), 3.76 (s, 3H), 3.38 (d, J = 12.6 Hz, 1H), 3.17 (d, J = 13.6 Hz, 1H), 1.56 (s, 3H), 1.47 (s, 9H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 174.3, 154.4, 135.6, 131.8, 131.4, 121.0, 60.4, 52.7, 40.9, 28.5, 23.9.

10. Reference

- Ishibashi, H.; Uegaki, M.; Sakai, M.; Takeda, Y. Base-promoted aminoethylation 1. of thiols with 2-oxazolidinones: a simple synthesis of 2-aminoethyl sulfides. Tetrahedron 2001, 57, 2115–2120.
- 2. Shen. P.-X.: Hu. L.: Shao. Q.; Hong, K.; Yu, J.-Q. Pd(II)-Catalyzed Enantioselective C(sp³)-H Arylation of Free Carboxylic Acids. J. Am. Chem. Soc. 2018, 140, 6545–6549.
- 3. Alford, J. S.; Davies, H. M. L. Expanding the Scope of Donor/ Acceptor Carbenes to N-Phthalimido Donor Groups: Diastereoselective Synthesis of 1-Cyclopropane α-Amino Acids. Org. Lett. 2012, 14, 6020-6023.
- 4. Chenault, H. K.; Dahmer, J.; Whitesides, G. M. Kinetic Resolution of Unnatural and Rarely Occurring Amino Acids: Enantioselective Hydrolysis of N-Acyl Amino Acids Catalyzed by Acylase I. J. Am. Chem. Soc. 1989, 111, 6354-6364.
- 5. Chen, G.; Shigenari, T.; Jain, P.; Zhang, Z.; Jin, Z.; He, J.; Li, S.; Mapelli, C.; Miller, M. M.; Poss, M. A. et al. Ligand-Enabled β -C-H Arylation of Alpha-Amino Acids Using a Simple and Practical Auxiliary. J. Am. Chem.

Soc. **2015**, *137*, 3338–3351.

- Chowdari, N. S.; Barbas, C. F. Total Synthesis of LFA-1 Antagonist BIRT-377 via Organocatalytic Asymmetric Construction of a Quaternary Stereocenter. *Org. Lett.* 2005, 7, 867–870.
- Chen, G.; Zhuang, Z.; Li, G.-C.; Saint-Denis, T. G.; Hsiao, Y.; Joe, C. L.; Yu, J.-Q. Ligand-Enabled β-C–H Arylation of α-Amino Acids Without Installing Exogenous Directing Groups. *Angew. Chem.*, *Int. Ed.* 2017, *56*, 1506–1509.
- **11. NMR**

BocHN

7 134 7 172 7 173 7 172 7 173 7 172 7 173 7 172 7 173

S70

7,44 7,44 7,48 7,748 7,748 7,738 7,749 7,749 7,7

Me NPhth

$\begin{array}{c} 7.73 \\ 7.77 \\ 7.77 \\ 7.72 \\ 7.121 \\ 7.101 \\ 7.101 \\ 7.101 \\ 7.101 \\ 6.834 \\ 6.834 \\ 6.84 \\ 6.84 \\ 6.84 \\ 6.84 \\ 7.05 \\ 7.06 \\ 7.01 \\ 7$

-9.84 -7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.77 7.73

$\begin{array}{c} 7.78 \\ 7.77 \\ 7.77 \\ 7.77 \\ 7.78 \\ 7.71 \\ 7.$

$\begin{array}{c} -8.71\\ 7.79\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.77\\ 7.78\\ 7.77\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.78\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.48\\ 7.49\\ 7.48\\ 7.49\\ 7.49\\ 7.48\\ 7.49$

 $< \frac{3.78}{3.76} < \frac{3.78}{3.29} < \frac{3.31}{-1.97}$

2.867 2.865 2.865 2.865 2.865 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.863 2.865

8.23 7.21 7.23 7.23 7.23 7.24 7.23 7.24 7.23 7.24 7.24 7.25 7.25 7.26 7.27 7.27 7.27 7.26 7.27 7.27 7.26 7.26 7.27 7.27 7.27 7.26 7.26 7.27 7.27 7.27 7.27 7.27 7.27 7.26 7.27 7.27 7.26 7.26 7.27 7.27 7.27 7.27 7.27 7.27 7.26 7.46 7.47 7.47 7.47 7.48 7.49 7.49 7.49 7.49 7.49 7.40 <

$\begin{array}{c} 7.398\\ 7.137\\ 7.137\\ 7.138\\ 7.138\\ 7.137\\ 7.173\\ 7.733\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.753\\ 7.752\\ 7.$

C 238 C

S120

S121

$\begin{pmatrix} 7.41\\7.02\\7.02\\7.02\\-3.70\\-3.70\\7.2.76\\7.2.74\\-1.37 \end{pmatrix}$

S123