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1. Materials and Methods.

All materials were used as received from commercial sources without further purification unless otherwise noted. 2,5-di(pyridin-4-yl)thiazolo[5,4-
d]thiazole was synthesized according to literature.! The white LEDs were purchased from Philips. *H NMR and 3C NMR spectra were recorded on a
Bruker Avance Il 400 or Bruker Avance NEO 600M NMR Spectroscopy, and chemical shifts were recorded in parts per million (ppm, 8). Chemical
shifts were referenced to residual solvent peaks. The powder X-ray diffraction (PXRD) diffractograms were obtained on a Rigaku Smart Lab XRD
instrument with Cu Ko radiation (A = 1.54056 A). FTIR spectra were recorded from KBr pellets on JASCO FT/IR-430. Thermogravimetric analyses
(TGA) were performed at a ramp rate of 10 °C/min up to 800 °C in a nitrogen flow with Mettler-Toledo TGA/SDTA851 instrument. Scanning electron
microscopy (SEM) images were taken using a Plus Field Emission Scanning Electron Microscopy 7610. Solid UV-vis spectra were recorded on Hitachi
U-4100 UV-vis-NIR spectrophotometer. Fluorescent spectra and photoluminescence decay profiles were recorded on Edinburgh FLS 920
stable/transient fluorescence spectrometer.

Photoelectrochemical Measurements: Solid-state cyclic voltammogram (CV) tests and electrochemical impedance spectroscopy (EIS)
measurements were carried out on a ZAHNER ENNIUM Electrochemical Workstation. Transient photocurrent tests were performed on a CHI 650E
electrochemical workstation. Typically, 2 mg catalysts were added into ethanol/H,0 (0.2 mL/0.2 mL) and 10 uL 5 wt% Nafion mixed solution. The
fluoride-tin oxide (FTO) glass plate coated 1 cm? mixed solution was utilized as working electrodes. The Ag/AgCl electrode is used as the reference
electrode and a platinum plate as a counter electrode. 1.0 M KCl solution was used as the electrolyte. The three-electrode system was used for all
electrochemical tests. The Mott-Schottky measurements were performed at frequencies of 500 Hz, 1000 Hz, and 1500 Hz.

Fs-TA Measurements: The fs-TA measurements were performed in a Helios Fire spectrometer (Ultrafast Systems LLC) with pump and probe beams
derived from an amplified Ti: sapphire laser system (Coherent Astrella, 800 nm, 5.5 mJ pulse™, 35 fs, and 1 kHz repetition rate) at room temperature.
A custom-designed fibre-coupled alignment-free spectrometer with a 1024-pixel CMOS sensor (spectral response: 200-1000 nm) was used as the
vis/UV-vis detector. Spectral acquisition rate up to 2400 spectra-s~t. ADC resolution was 16-bit. Preparation of the sample: Cd-TzBDP was finely
ground and dispersed in DMSO, the suspension was transferred into a quartz cuvette and its UV-visible absorbance was adjusted to 0.5 before
further characterization.

EPR Detection: Electron paramagnetic resonance (EPR) measurements were performed on Bruker E500. To verify the viologen radical, we have
tested the spectra of Cd-TzBDP under the irradiation of a Xenon lamp and without light, respectively. The ROS generated by radiated Cd-TzBDP
has been detected by EPR in the presence of DMPO. ESR measurements were carried out during the light irradiation with a 300 W Xenon lamp

(A >400 nm) under air conditions.

2. Supplementary Demonstration of the Segregated D-A Stacking in Photocatalysis.
a Classic Segregated Stacking b oOffset Segregated Stacking
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Scheme S1. Schematic demonstration of the segregated stacking for photocatalysis. (a) Classic segregated stacking and (b) offset segregated

stacking in this work.



3. Preparation of Materials.
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Scheme S2. Synthetic steps of ligand TzBDP.

Synthesis of 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(2,4-dinitrophenyl)pyridin-1-ium) chloride

This compound was synthesized according to the previously reported literature with slight modifications.* 2,5-di(pyridin-4-yl)thiazolo[5,4-d]thiazole
(2 mmol, 0.59 g) and 1-chloro-2,4-dinitrobenzene (8 mmol, 1.61 g) were added into a 250 mL flask containing 100 mL ethanol. The solution was
reflux for 24 h. After cooling to room temperature, the solution was evaporated. The resulting residue was dissolved in CH;CN (100 mL) and the
precipitate was filtered off, then washed with ethyl acetate and dried in a vacuum oven. Yield: 65%. *H NMR (600 MHz, d,-MeOH) 6 9.44 (s, 4H),
9.32 (d, J = 2.3 Hz, 2H), 9.06 (d, J = 5.4 Hz, 4H), 8.96 (dd, J = 8.6, 2.4 Hz, 2H), 8.36 (d, J = 8.6 Hz, 2H). The NMR data were inconsistent with the

reported data.!
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Synthesis of 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(3,5-dicarboxyphenyl)pyridin-1-ium) chloride

The syntheses of these compounds were similar to the literature-reported procedure.® A mixture of 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(2,4-
dinitrophenyl)pyridin-1-ium) chloride (2 mmol, 1.40 g) and dimethyl 5-aminoisophthalate (12 mmol, 2.5 g) in 200 mL ethanol/H,0 (v:v 2/1) were
reflux for 48 h. The mother liquor was evaporated and the residue was dissolved in ethyl acetate. The precipitate was filtered off, then washed
with diethyl ether and dried. Yield: 80%.*H NMR (600 MHz, D,0) § 9.27 (d, J = 6.8 Hz, 4H), 8.89 (s, 2H), 8.82 (d, / = 6.7 Hz, 4H), 8.62 (s, 4H), 3.96 (s,
12H). Furthermore, the 4,4'-(thiazolo[5,4-d]thiazole-2,5-diyl)bis(1-(3,5-bis(methoxycarbonyl)phenyl)pyridin-1-ium) chloride was hydrolyzed by
hydrochloric acid to produce the ligand TzBDP. Yield: 55%. 'H NMR (400 MHz, ds-DMSO) & 9.59 (d, J = 6.5 Hz, 4H), 8.92 (d, J = 6.6 Hz, 4H), 8.73 (s,

2H), 8.70 (s, 4H).
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Synthesis of Cd-TzBDP

Cd(NO3),-4H,0 (0.05 mmol) and ligand TzBDP (0.012 mmol) were dissolved in a mixed solution of CHsCN/H,0 (2.0 mL/1.0 mL), and then 20 pL of
HCI was added. The resulting solution was transferred to a Teflon-lined Parr bomb and heated at 130 2C for 48 hours. After cooling to room

temperature slowly, brown crystals of Cd-TzBDP were obtained. Further purification was carried out by washing the crystals with CH3CN three

times and the product was dried in a vacuum overnight. Yield: 80% (based on metal salt).



4. Single Crystal X-Ray Analyses.
Single-crystal X-ray diffraction data of Cd-TzBDP were collected on a Bruker SMART APEX CCD diffractometer equipped with a graphite-

monochromated Mo-Ka (A = 0.71073 A) radiation source using the SMART and SAINT programs.23 All structures were solved by the direct method
and refined with full-matrix least squares on F? using the SHELXTL-2014 program package.* All host-framework non-hydrogen atoms were refined
anisotropically. Hydrogen atoms were placed geometrically. The PLATON SQUEEZE treatment® was applied to Cd-TzBDP. Crystallographic data and

refinement parameters were provided in Table S1.

Table S1. Crystal data and structure refinement for Cd-TzBDP.

Compound Cd-TzBDP
Empirical formula C1sH,CdNsO5S
Formula weight 485.68
Temperature/K 260(2)
Crystal system triclinic
Space group p-1
a/A 7.7436(17)
b/A 9.132(2)
c/A 12.604(3)
a/° 108.398(4)
B/ 91.815(4)
v/° 108.545(4)
Volume/A3 793.1(3)
z 2
Peaicg/cm? 2.034
p/mm-t 1.557
F(000) 476.0
Radiation MoKa (A =0.71073)

o

20 range for data collection/

5.01 to 61.802

Reflections collected 4977
Data/restraints/parameters 4977/4/251
Goodness-of-fit on F? 1.082

Final R indexes [I1>=20 (1)]
Final R indexes [all data]
Largest diff. peak/hole / e A3

CCDC number

R1=0.0513, wR, =0.1016

R1=0.0755, wR; =0.1095

1.83/-1.36

2355405




5. Characterization of Coordination Polymer.
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Fig. S1 PXRD patterns of simulated and as-synthesized Cd-TzBDP.
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Fig. S2 Thermogravimetric analyses (TGA) of the as-synthesized (a) and recovered (b) Cd-TzBDP.
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Fig. S3 IR spectra of the as-synthesized and recovered Cd-TzBDP.
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Fig. S5 The EDS (a) and SEM images (b) of Cd-TzBDP and elemental mapping images of the block crystal for Cd (c), S (d), and N (e) elements.

Fig. S6 The coordination environment of Cd-TzBDP.



Fig. S7 The dinuclear motif of Cd-TzBDP.

Fig. $10 Windows in the Cd-TzBDP. The blue, purple, and green boxes represent the stacking columns of D, A, and m.
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Fig. S11 Tauc plot of Cd-TzBDP.
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Fig. S12 Tauc plot and Mott-Schottky plots of TzBDP.
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Fig. S13 Solid-state cyclic voltammetry curves of TzBDP and Cd-TzBDP
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Fig. S14 Cyclic voltammetry curves for TzBDP in the negative potential range with varying scan rates: 10, 20, 30, 40, 50, 60, and 70 mV-s’. The inset

shows the plot of peak current density vs. the square roots of the scan rate (u)¥2.
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Fig. S15 Cyclic voltammetry curves for TzBDP in the positive potential range with varying scan rates: 10, 20, 30, 40, and 50 mV:s™.. The inset shows

the plot of peak current density vs. the square roots of the scan rate (v)Y/2.
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Fig. $16 The PXRD patterns of Cd-TzBDP before and after irradiation.
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Fig. S17 Cd 3d core-level spectra of Cd-TzBDP before and after irradiation.

6. Photocatalytic Details.
General Procedure for Photocatalytic a-Cyanation of Tertiary Amine

A glass tube was filled with a magnetic stir bar, N,N-dimethylaniline 1 (1 equiv., 0.2 mmol), trimethylsilyl cyanide (0.6 mmol), Cd-TzBDP (5 mol%
based on ligand moiety, 0.01 mmol), DMF/CH3CN (2 mL /1 mL). The resulting mixture was stirred and irradiated with white LEDs in air condition for
24 hours (with circulating water to keep the reaction at room temperature). After the reaction finished, Cd-TzBDP was filtered and the filtrate was

concentrated. Further purification of the crude product was achieved to give the target product 2 by flash chromatography on silica gel.
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Fig.518 Luminescence quenching spectra of Cd-TzBDP suspension upon addition of N,N-dimethylaniline 1a.
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Fig. S19 Plausible mechanism for the photocatalytic a-C-H activation of tertiary amine 1 via Cd-TzBDP.



General Procedure for Photocatalytic a-Functionalization of Tertiary Amine

A glass tube was filled with a magnetic stir bar, N-aryl-tetrahydroisoquinoline 3 (1 equiv., 0.2 mmol), Cd-TzBDP (5 mol% based on ligand moiety,
0.01 mmol), nitroalkane (1.0 mL) or other specified nucleophile (2 mmol), and CH3OH (1 mL). The resulting mixture was stirred and irradiated with
a white LED in the air for 24 hours (with circulating water to keep the reaction at room temperature). Cd-TzBDP was filtered after the reaction was

finished. The filtrate was concentrated and further purified by silica gel column chromatography to obtain the target product 4.

Table S2. The photocatalytic a-functionalization of N-phenyl-tetrahydroisoquinoline 3a under different conditions.

+ Cd-TzBDP
N CH;NO, —————— N,
“Ph Ph

white LEDs , O,

3a RT 4a "NO,
Entry Variation from the standard Yield (%)
12 None 94
2b Cd(NO3),-4H,0 trace
3¢ TzBDP 40
4 Cd(NO3),-4H,0 and TzBDP 39
5 No light N.R.
6 No Catalyst N.R.

lalStandard conditions: substrate (1 equiv., 0.2 mmol), nitromethane (1 mL), Cd-TzBDP (5 mol% based on ligand moiety), CH;OH (1 mL), irradiation
by white LEDs for 24 h. Isolated yields. ! Cd(NO3),-4H,0 (0.02 mmol) or [ TzBDP (0.01 mol) was used in the amount equivalent to the corresponding

component of Cd-TzBDP. N.R.= no reaction.
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Fig. S20 Fluorescence quenching spectra of Cd-TzBDP upon the addition of N-phenyl-tetrahydroisoquinoline 3a.
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Fig. S21 Time-resolved fluorescence emission decay spectra of Cd-TzBDP suspension before and after the addition of N-phenyl

tetrahydroisoquinoline.
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Fig. S22 The EIS-MS of the reaction mixture of N-phenyl-tetrahydroisoquinoline 3a under the standard reaction condition (Table S2, entry 1) except

the absence of any nucleophiles, sampling (a) before and (b) after white LED irradiation for 3 hours.
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Fig. $S23 Proposed mechanism of photocatalytic a-functionalization of tertiary amine 3 by using Cd-TzBDP as the photocatalyst.



Table S3. Comparison of the catalytic performances in the oxidative a-functionalizations of tertiary amines.

Gram-
Reaction Value-Added
Catalyst Reaction Conditions  Yields (%) Scale Ref.
Scopes Applications
Synthesis
10 mg catalyst,
EY@UiO-66- visible household 22
63~96 6
NH, light, MeOH, examples
4 h, air
0.005 mmol catalyst,
28
In-TPBD-20 455 nm LED, CH5CN, 53~98 7
examples
12 h, O,
2.5 mg catalyst, 462 cyano-gramine,
TiO,-DHMIQ 8
nm LED, CH5;CN, 85~97 cyano-nicotine, 8
NPs examples
3/16/24 h, 0, cyano-atropine
10 mol% catalyst, 9
AUCIPPh; 92~98 9
MeOH, 5 h, 'tBuOOH examples
5 mol% catalyst, cyano corydaline,
White LED 24 cyano gramine,
Cd-TzBDP 70~99 Yes This work
DMF-CH3CN/MeOH, examples nitromethyl

24 h, 0,

corydaline




7. Biomimicking ETC-mediated Electron Leak by Photocatalytic Membrane Reactor.
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Scheme S3. Reaction scheme for the oxidation of 3,3’,5,5’-tetramethylbenzidine (TMB).

Fig. S24 lllustration of the photocatalytic reactions over Cd-TzBDP@Nafion membrane. (a) Cap of the vial inlaid with Cd-TzBDP@Nafion membrane.
The original Nafion membrane was placed in 2 mL ethanol for 30 minutes, then cut into a circle with a diameter of ca. 6 mm. The Cd-TzBDP (10
mg) was added to a mixed solution with 0.5 mL of 5 wt% Nafion and 0.5 mL of ethanol. Then one-quarter of the slurry was added to a piece of
swelling circular Nafion membrane by drop-casting and drying in air. (b) A nested double-layered photoreactor consisting of an interior vial (with a
degassed 1.5 mL CH3CN solution of 0.015 mmol TMB) and an outer sealed ampoule (with an air-saturated 4.0 mL CHsCN). (c) Diagram of the reaction

setup for membrane reactor with a 405 nm LED.

Fig. $25 (a) Diagram of the reaction mixture in the outer sealed ampoule (containing the normoxic CH3CN with ROS-like peroxides), the interior vial
was taken out after photoirradiation. (b) Detecting H,0, from the reaction mixture of the outer ampoule bottle by KlI/Starch testing paper after

photocatalysis over Cd-TzBDP@Nafion membrane.
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Fig. S26 Schematic illustration of (a) the setup for photocatalytic membrane reactor, and (b) the transfer of electrons and protons across

TzBDP@Nafion membrane and the distal photooxidation and photoreduction in different compartments.



8. NMR Data of the Isolated Compounds
N-Methyl-N-phenylaminoacetonitrile (2a)

\N/\CN

14 NMR (400 MHz, CDCl3) § 7.24 (t, J = 7.9 Hz, 2H), 6.94 — 6.71 (m, 3H), 4.10 (s, 2H), 2.94 (s, 3H). 3C NMR (151 MHz, CDCl;) § 147.8, 129.5, 120.3,

115.5, 114.9, 42.3, 39.3. This compound has been reported by literature, and our spectra were consistent with the literature.®

N-Methyl-N-(4-methylphenyl)aminoacetonitrile (2b)

\N/\CN

1H NMR (400 MHz, CDCl3) 6 7.12 (d, J = 8.3 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 4.14 (s, 2H), 2.97 (s, 3H), 2.29 (s, 3H). 3C NMR (101 MHz, CDCl5) 6 145.7,
130.0, 129.9, 115.50 (overlapped), 115.47 (overlapped), 42.9, 39.5, 20.4. This compound has been reported by literature, and our spectra were

consistent with the literature.?

2-((4-Chlorophenyl)(methyl)amino)acetonitrile (2c)

\N/\CN

Cl

14 NMR (600 MHz, CDCl3) & 7.40 (d, J = 8.9 Hz, 2H), 6.73 (d, J = 8.9 Hz, 2H), 4.15 (s, 2H), 2.99 (s, 3H). 13C NMR (151 MHz, CDCls) & 146.8, 132.3,

116.5, 115. 1, 112.6, 42.2, 39.4. This compound has been reported by literature, and our spectra were consistent with the literature.°

2-((4-Bromophenyl)(methyl)amino)acetonitrile (2d)

\N/\CN

Br

14 NMR (600 MHz, CDCls) 6 7.25 — 7.08 (m, 2H), 6.72 (d, J = 9.0 Hz, 2H), 4.08 (s, 2H), 2.92 (s, 3H). 13C NMR (151 MHz, CDCl3) 6 146.4, 129.4, 125.4,

116.2, 115.2, 42.4, 39.4. This compound has been reported by literature, and our spectra were consistent with the literature.?

N-Methyl-N-(3-methylphenyl)aminoacetonitrile (2e)

\N/\CN

1H NMR (400 MHz, CDCl3) § 7.24 — 7.12 (m, 1H), 6.75 (d, J = 7.4 Hz, 1H), 6.72 — 6.55 (m, 2H), 4.17 (s, 2H), 2.99 (d, J = 11.8 Hz, 3H), 2.35 (s, 3H). 13C
NMR (151 MHz, CDCl3) 6 147.9, 139.3, 129.3, 121.2, 115.7, 115.5, 112.1, 42.4, 39.3, 21.8. This compound has been reported by literature, and our

spectra were consistent with the literature.!!

1-Phenylpyrrolidine-2-carbonitrile (2f)



Q\CN

14 NMR (600 MHz, CDCls) & 7.36 — 7.28 (m, 2H), 6.84 (t, J = 7.3 Hz, 1H), 6.70 (d, J = 7.9 Hz, 2H), 4.53 — 4.36 (m, 1H), 3.47 (td, J = 8.3, 2.8 Hz, 1H),
3.38 (dd, J = 15.7, 8.4 Hz, 1H), 2.46 — 2.39 (m, 1H), 2.36 — 2.16 (m, 3H). 13C NMR (151 MHz, CDCls) & 145.2, 129.5, 119.3, 118.3, 112.7, 49.1, 47.5,

31.6, 24.0. This compound has been reported by literature, and our spectra were consistent with the literature.!?

1-Phenylpiperidine-2-carbonitrile (2g)

(L

CN

14 NMR (400 MHz, CDCls) 6 7.39 — 7.27 (m, 2H), 7.00 (t, J = 8.1 Hz, 3H), 4.63 (d, J = 3.3 Hz, 1H), 3.45 (d, J = 12.1 Hz, 1H), 3.04 (ddd, J = 12.1, 9.5, 2.5
Hz, 1H), 2.03 (d, J = 3.5 Hz, 2H), 1.89 — 1.79 (m, 2H), 1.75 — 1.65 (m, 2H). 13C NMR (151 MHz, CDCl3) § 149.9, 129.4, 122.2, 118.3, 117.2, 52.0, 46.6,

29.3, 25.2, 20.2. This compound has been reported by literature, and our spectra were consistent with the literature.!?

4-Phenylmorpholine-3-carbonitrile (2h)

(.

14 NMR (400 MHz, CDCls) 6 7.38 (t, J = 7.4 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 7.8 Hz, 2H), 4.44 (s, 1H), 4.19 (d, J = 11.5 Hz, 1H), 4.12 (d, J =
11.4 Hz, 1H), 3.94 (d, J = 11.5 Hz, 1H), 3.84 — 3.63 (m, 1H), 3.32 (d, J = 7.3 Hz, 2H). 3C NMR (151 MHz, CDCl3) § 148.4, 129.6, 122.7, 117.3, 116.0,

68.1, 66.9, 51.1, 45.5. This compound has been reported by literature, and our spectra were consistent with the literature.”
2-Phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2i)

N\
Ph

CN
14 NMR (400 MHz, CDCls) 6 7.41 = 7.17 (m, 6H), 7.07 (d, J = 7.9 Hz, 2H), 7.00 (t, J = 7.3 Hz, 1H), 5.50 (s, 1H), 3.74 (ddd, J = 5.8, 2.9, 0.9 Hz, 1H), 3.47

(ddd, J=12.4,10.8, 4.1 Hz, 1H), 3.14 (ddd, / = 16.5, 10.7, 6.0 Hz, 1H), 2.95 (dt, / = 16.3, 3.5 Hz, 1H).3C NMR (126 MHz, CDCl3) § 148.4, 134.7, 129.6,
129.6, 129.4, 128.8, 127.1, 126. 9, 121.9, 117.8, 117.6, 53.2, 44.2, 28.6. This compound has been reported by literature, and our spectra were

consistent with the literature.?

6,7-Dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2j)
MeO

MeO N‘Ph

CN
14 NMR (400 MHz, CDCls) 6 7.36 (dd, J = 8.5, 7.5 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 7.02 (t, J = 7.3 Hz, 1H), 6.72 (d, J = 25.3 Hz, 2H), 5.44 (s, 1H), 3.894

(s, 3H) (overlapped), 3.892 (s, 3H) (overlapped), 3.84 — 3.73 (m, 1H), 3.54 — 3.33 (m, 1H), 3.09 (ddd, J/ = 16.7, 11.1, 5.9 Hz, 1H), 2.94 — 2.78 (m,
1H).13C NMR (101 MHz, CDCl3) 6 149.4, 148.5, 148.1, 129.6, 126.9, 122.0, 121.1, 117.9, 117.8, 111.6, 109.3, 56.1, 56.0, 53.1, 44.2, 28.1. This

compound has been reported by literature, and our spectra were consistent with the literature.!3



2-(((1H-indol-3-yl)methyl)(methyl)amino)acetonitrile (2k)

I
N.__CN
N\
N
H

14 NMR (400 MHz, CDCls) 6 8.19 (s, 1H), 7.62 (d, J = 7.8 Hz, 1H), 7.25 (d, J = 8.1 Hz, 1H), 7.17 — 6.97 (m, 3H), 3.69 (d, J = 4.0 Hz, 2H), 3.33 (s, 2H),
2.38 (s, 3H). 3C NMR (101 MHz, CDCl5) & 136.5, 127.2, 124.2, 122.4, 119.8, 119.4, 114.9, 111.6, 111.3, 51.2, 43.6, 42.4. This compound has been

reported by literature, and our spectra were consistent with the literature.®

1-(Nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (4a)

Lo

14 NMR (600 MHz, CDCls) 6 7.27 (dd, J = 13.6, 6.1 Hz, 3H), 7.20 (dd, J = 15.9, 7.6 Hz, 2H), 7.13 (d, J = 7.5 Hz, 1H), 6.98 (d, J = 8.1 Hz, 2H), 6.85 (t, J =
7.3 Hz, 1H), 5.55 (t, J = 7.2 Hz, 1H), 4.87 (dd, J = 11.8, 7.8 Hz, 1H), 4.56 (dd, J = 11.9, 6.7 Hz, 1H), 3.69 — 3.57 (m, 2H), 3.13 — 3.05 (m, 1H), 2.79 (dt, J
= 16.3, 4.9 Hz, 1H). 13C NMR (151 MHz, CDCl) & 148.4, 135.3, 132.9, 129.5, 129.2, 128.1, 127.0, 126.7, 119.5, 115.1, 78.8, 58.2, 42.1, 26.5. This

compound has been reported by literature, and our spectra were consistent with the literature.'*

1-(Nitromethyl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4b)

L
NO

2

1H NMR (400 MHz, CDCl3) 6 7.32 - 6.96 (m, 6H), 6.87 (d, J = 7.9 Hz, 2H), 5.48 (t, / = 6.9 Hz, 1H), 4.82 (dd, / = 11.3, 8.4 Hz, 1H), 4.53 (dd, /= 11.6, 6.3
Hz, 1H), 3.71 — 3.44 (m, 2H), 3.03 (d, / = 6.8 Hz, 1H), 2.73 (d, J = 16.3 Hz, 1H), 2.25 (s, 3H). 3C NMR (101 MHz, CDCl3) 6 146.4, 135.4, 133.0, 130.0,
129.3, 129.1, 128.0, 127.0, 126.8, 115.9, 78.9, 58.4, 42.3, 26.2, 20.4. This compound has been reported by literature, and our spectra were

consistent with the literature.#

2-(4-Methoxyphenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4c)

L
NO OCH;,

2

14 NMR (400 MHz, CDCls) 6 7.31 - 7.13 (m, 4H), 6.95 (d, J = 9.0 Hz, 2H), 6.85 (d, J = 9.0 Hz, 2H), 5.42 (dd, J = 8.5, 6.0 Hz, 1H), 4.86 (dd, J = 11.9, 8.7
Hz, 1H), 4.59 (dd, J = 11.9, 5.8 Hz, 1H), 3.78 (s, 3H), 3.65 — 3.56 (m, 2H), 3.05 (ddd, J = 16.2, 9.1, 6.9 Hz, 1H), 2.72 (dt, J = 16.5, 3.9 Hz, 1H). 13C NMR
(101 MHz, CDCl3) 6 154.0, 143.1, 135.5, 132.9, 129.5, 127.9, 126.9, 126.6, 118.9, 114.7, 79.0, 58.9, 55.6, 43.1, 25.8. This compound has been

reported by literature, and our spectra were consistent with the literature.®

2-(4-Chlorophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4d)

L
NO Cl

2



1H NMR (600 MHz, CDCls) 6 7.20 — 7.00 (m, 6H), 6.86 — 6.72 (m, 2H), 5.40 (dd, J = 14.8, 7.5 Hz, 1H), 4.76 (dd, J = 12.0, 8.2 Hz, 1H), 4.49 (dd, J = 12.0,
6.3 Hz, 1H), 3.60 — 3.43 (m, 2H), 3.04 — 2.91 (m, 1H), 2.70 (dt, J = 16.4, 4.7 Hz, 1H). 13C NMR (151 MHz, CDCl3) & 147.1, 135.1, 132.5, 129.34 (two
peaks overlapped), 128.3, 127.0, 126.8, 124.4, 116.5, 78.7, 58.2, 42.2, 26.2. This compound has been reported by literature, and our spectra were

consistent with the literature.®

2-(4-Bromophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4e)

RO
NO Br

2
1H NMR (400 MHz, CDCl3) & 7.37 (d, J = 8.9 Hz, 2H), 7.30 — 7.12 (m, 4H), 6.87 (d, J = 8.9 Hz, 2H), 5.51 (t, J = 7.2 Hz, 1H), 4.87 (dd, J = 11.9, 8.1 Hz,
1H), 4.59 (dd, J = 11.9, 6.4 Hz, 1H), 3.64 (dd, J = 8.8, 4.1 Hz, 2H), 3.19 — 3.01 (m, 1H), 2.81 (dt, J = 16.4, 4.7 Hz, 1H). 3C NMR (101 MHz, CDCls) &
147.5,135.1,132.5,132.2,129.3,128.3, 127.0, 126.9, 116.8, 111.6, 78.6, 58.1, 42.1, 26.2. This compound has been reported by literature, and our

spectra were consistent with the literature.'®

2-(4-Fluorophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4f)

L
NO F

2
14 NMR (600 MHz, CDCls) 6 7.38 — 7.02 (m, 4H), 6.91 — 6.69 (m, 4H), 5.35 (dd, J = 8.4, 6.1 Hz, 1H), 4.75 (dd, J = 12.0, 8.7 Hz, 1H), 4.49 (dd, J = 12.0,
5.9 Hz, 1H), 3.58 — 3.38 (m, 2H), 2.95 (ddd, J = 16.0, 9.1, 6.5 Hz, 1H), 2.64 (dt, J = 16.5, 4.1 Hz, 1H). 3C NMR (101 MHz, CDCls) 6 157.2 (d, J = 239.2
Hz), 145.3 (d,J = 2.3 Hz), 135.3, 132.6, 129.5, 128.1, 127.0, 126.8, 117.95 (d, J = 7.7 Hz), 115.89 (d, J = 22.1 Hz), 78.9, 58.7, 42.8, 25.8. This compound

has been reported by literature, and our spectra were consistent with the literature.'*

1-(Nitromethyl)-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinoline (4g)

L
NO CF,

2
IH NMR (600 MHz, CDCl3) 6 7.42 (d, J = 8.7 Hz, 2H), 7.16 (ddd, J = 19.4, 13.4, 7.3 Hz, 3H), 7.06 (d, J = 7.5 Hz, 1H), 6.93 (d, / = 8.7 Hz, 2H), 5.53 (t, J =
7.2 Hz, 1H), 4.78 (dd, J = 12.0, 7.7 Hz, 1H), 4.51 (dd, J/ = 12.0, 6.8 Hz, 1H), 3.66 —3.41 (m, 2H), 3.09 — 2.95 (m, 1H), 2.78 (dt, / = 16.2, 5.3 Hz, 1H). 3C
NMR (101 MHz, CDCl5) 6 150.5, 134.9, 132.4, 129.2, 128.5, 127.05 (overlapped), 127.00 (overlapped), 126.9 (q, J = 3.6 Hz), 124.7 (q, J = 270.8 Hz),
113.4 (two peaks overlapped), 78.5, 57.8, 41.8, 26.6. This compound has been reported by literature, and our spectra were consistent with the

literature.®

1-(Nitromethyl)-2-(m-tolyl)-1,2,3,4-tetrahydroisoquinoline (4h)

N\©/
1H NMR (600 MHz, CDCl5) § 7.10 (ddt, J = 31.3, 15.5, 7.3 Hz, 5H), 6.70 (d, J = 9.3 Hz, 2H), 6.59 (d, J = 7.4 Hz, 1H), 5.45 (t, J = 7.2 Hz, 1H), 4.77 (dd, J =
11.8, 7.8 Hz, 1H), 4.46 (dd, J = 11.8, 6.7 Hz, 1H), 3.61 — 3.41 (m, 2H), 3.04 — 2.91 (m, 1H), 2.69 (dt, J = 16.3, 4.9 Hz, 1H), 2.24 (s, 3H). 13C NMR (151

MHz, CDCl3) 6 148.5, 139.3, 135.4, 133.0, 129.4, 129.2, 128.1, 127.0, 126.7, 120.4, 115.9, 112.2, 78.8, 58.2, 42.1, 26.6, 21.9. This compound has

been reported by literature, and our spectra were consistent with the literature.*



6,7-Dimethoxy-1-(nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (4i)
MeO

N,
MeO Ph

NO,
1H NMR (400 MHz, CDCl3) 6 7.26 (dd, J = 9.2, 6.4 Hz, 2H), 6.97 (d, J = 8.1 Hz, 2H), 6.85 (t, J = 7.2 Hz, 1H), 6.62 (d, J = 17.8 Hz, 2H), 5.46 (t, J = 7.1 Hz,
1H), 4.85 (dd, J=11.7, 8.0 Hz, 1H), 4.56 (dd, /= 11.8, 6.4 Hz, 1H), 3.856 (s, 3H, overlapped), 3.849 (s, 3H, overlapped), 3.67 (dt, J = 10.0, 4.9 Hz, 1H),
3.62 —3.47 (m, 1H), 3.10 - 2.92 (m, 1H), 2.67 (dt, J = 16.1, 4.3 Hz, 1H). 3C NMR (101 MHz, CDCl;) 6 148.8, 148.6, 147.7, 129.5, 127.4, 124.6, 119.6,

115.5, 111.7, 109.6, 78.8, 58.0, 56.1, 55.9, 42.1, 25.8. This compound has been reported by literature, and our spectra were consistent with the

literature.'’

1-(2-Phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (4j)

N,
Ph
Me

o]
14 NMR (400 MHz, CDCl3) 6 7.28 — 7.15 (m, 6H), 6.93 (d, J = 8.2 Hz, 2H), 6.77 (t, J = 7.4 Hz, 1H), 5.40 (t, J = 6.3 Hz, 1H), 3.69 — 3.61 (m, 1H), 3.57 —
3.48 (m, 1H), 3.10 = 3.00 (m, 2H), 2.87 — 2.77 (m, 2H), 2.07 (s, 3H). 13C NMR (101 MHz, CDCls) & 207.3, 148.9, 138.3, 134.4, 129.4, 129.3, 128.7,

126.9,126.8,126.3,118.3,114.8,54.8,50.2,42.1, 31.1, 27.2. This compound has been reported by literature, and our spectra were consistent with

the literature.®®

Dimethyl 2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)malonate (4k)

N,
Ph
MeO OMe
o o
1H NMR (400 MHz, CDCl3) 6 7.24 - 7.05 (m, 6H), 6.97 (t, J = 10.8 Hz, 2H), 6.76 (t, / = 7.3 Hz, 1H), 5.70 (d, / = 9.4 Hz, 1H), 3.96 (t, / = 9.4 Hz, 1H), 3.78
—3.59 (m, 5H), 3.55 (s, 3H), 3.07 (ddd, J = 15.6, 8.9, 6.4 Hz, 1H), 2.87 (dt, J = 16.5, 5.1 Hz, 1H). 3C NMR (101 MHz, CDCl;) 6 168.3, 167.4, 148.8,
135.7,134.8,129.1, 129.0,127.6, 127.1, 126.0, 118.6, 115.2, 59.1, 58.2, 52.5, 42.2, 29.7, 26.1. This compound has been reported by literature, and

our spectra were consistent with the literature.®

1-(1H-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (4l)

0.
Ph
AN
as!

14 NMR (400 MHz, CDCl3) 6 7.82 (s, 1H), 7.46 (dd, J = 15.5, 5.6 Hz, 1H), 7.23 — 7.07 (m, 7H), 6.95 (dd, J = 7.5, 4.6 Hz, 3H), 6.70 (t, J = 7.3 Hz, 1H), 6.55
(d,J=1.7 Hz, 1H), 6.10 (s, 1H), 3.55 (dd, J = 7.6, 4.6 Hz, 2H), 2.99 (dt, J = 15.6, 7.7 Hz, 1H), 2.73 (dt, J = 16.2, 4.4 Hz, 1H). 13C NMR (101 MHz, CDCl;)

6 149.8, 137.4, 136.6, 135.6, 129.2, 128.8, 128.1, 126.7, 126.5, 125.7, 124.2, 122.1, 120.1, 119.7, 119.3, 118.1, 115.8, 111.0, 56.7, 42.3, 26.6. This

compound has been reported by literature, and our spectra were consistent with the literature.®

Diethyl (2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-yl) phosphonate (4m)



N
“Ph

EtO—I-;’=0
OEt
1H NMR (400 MHz, CDCl3) § 7.40 — 7.35 (m, 1H), 7.30 — 7.09 (m, 5H), 6.97 (d, J = 8.3 Hz, 2H), 6.78 (t, J = 7.2 Hz, 1H), 5.18 (d, J = 20.0 Hz, 1H), 4.16 —
3.85 (m, 5H), 3.62 (dt, J = 11.9, 6.0 Hz, 1H), 3.18 — 2.92 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.13 (t, / = 7.1 Hz, 3H). 13C NMR (126 MHz, CDCls) & 149.4 (d,
J=6.0Hz), 136.5 (d, J = 5.5 Hz), 130.7, 129.2, 128.8 (d, J = 2.1 Hz), 128.2 (d, J = 4.6 Hz), 127.4 (d, J = 3.4 Hz), 125.9 (d, J = 2.7 Hz), 118.5, 114.8, 63.3
(d, J=7.3Hz),62.4 (d, J=7.6 Hz), 58.8 (d, J = 159.1 Hz), 43.5, 26.8, 16.5 (d, J = 5.4 Hz), 16.4 (d, J = 5.6 Hz). This compound has been reported by

literature, and our spectra were consistent with the literature.®



9. NMR Spectra of the Isolated Compounds.

1H and 3C NMR Spectra of N-Methyl-N-phenylaminoacetonitrile (2a)
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1H and 3C NMR Spectra of N-Methyl-N-(4-methylphenyl)aminoacetonitrile (2b)
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1H and 3C NMR Spectra of 2-((4-Chlorophenyl)(methyl)amino)acetonitrile (2c)
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1H and 3C NMR Spectra of 2-((4-Bromophenyl)(methyl)amino)acetonitrile (2d)
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1H and 3C NMR Spectra of N-Methyl-N-(3-methylphenyl)aminoacetonitrile (2e)
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1H and 3C NMR Spectra of 1-Phenylpyrrolidine-2-carbonitrile (2f)
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1H and 3C NMR Spectra of 1-Phenylpiperidine-2-carbonitrile (2g)
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1H and 3C NMR Spectra of 4-Phenylmorpholine-3-carbonitrile (2h)
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1H and 3C NMR Spectra of 2-Phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2i)

62

oo

560

Fooe

Fuoi
Fu

Fare

[ae0
V6L
Ly
ries

0.0

0.5

1.0

1.5

20

25

3.0

3.5

4.0

45

5.0

5.5

6.0

6.5

7.0

7.5

1 (ppm)

99'82—

[44 4 4

2ees—

[4:WATS
08'LLL
L6'keh
68'9Z1
oLzl
61821~

orezh
1962}
r9°624 \
99'¥E}

Lrevi—

N‘Ph

10

20

140 130 120 110 100 90 80 70 60
1 (ppm)

150



1H and 3C NMR Spectra of 6,7-Dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinoline-1-carbonitrile (2j)
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1H and 3C NMR Spectra of 2-(((1H-indol-3-yl)methyl)(methyl)amino)acetonitrile (2k)
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1H and 3C NMR Spectra of 1-(Nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (4a)
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1H and 3C NMR Spectra of 1-(Nitromethyl)-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinoline (4b)
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1H and 3C NMR Spectra of 2-(4-Methoxyphenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4c)
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1H and 3C NMR Spectra of 2-(4-Chlorophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4d)
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1H and 3C NMR Spectra of 2-(4-Bromophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4e)
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1H and 3C NMR Spectra of 2-(4-Fluorophenyl)-1-(nitromethyl)-1,2,3,4-tetrahydroisoquinoline (4f)
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1H and 3C NMR Spectra of 1-(Nitromethyl)-2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinoline (4g)
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1H and 3C NMR Spectra of 1-(Nitromethyl)-2-(m-tolyl)-1,2,3,4-tetrahydroisoquinoline (4h)
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1H and 3C NMR Spectra of 6,7-Dimethoxy-1-(nitromethyl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (4i)
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1H and 3C NMR Spectra of 1-(2-Phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one (4j)
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1H and 3C NMR Spectra of Dimethyl 2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)malonate (4k)
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1H and 3C NMR Spectra of 1-(1H-indol-3-yl)-2-phenyl-1,2,3,4-tetrahydroisoquinoline (4l)
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1H and 3C NMR Spectra of Diethyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl) phosphonate (4m)
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