Supplementary Information

Synthesis of highly condensed phospholes by the Lewis acid-assisted dehydrogenative Mallory reaction under visible light irradiation

Ikki Kamiyoshi,[†] Yuki Kojima,[†] Shibo Xu,[‡] Kosuke Yasui,^{†,‡} Yuji Nishii,^{†,‡} and Koji Hirano^{*,†,‡} [†]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan [‡]Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan

E-mail: k_hirano@chem.eng.osaka-u.ac.jp (K.H.)

Contents

Instrumentation and Chemicals	S2–S3
Experimental Procedures and Characterization Data for Products	S4–S19
X-Ray Analysis	S20–S21
Detailed Optimization Studies	S22–S23
Unsuccessful Substrates	S24
Detection of Evolved H ₂	S25
Deuterium-Labeling Experiments	S26–S28
NMR Studies	S29
UV-vis Absorption Spectra Studies	S30
Computational Studies	S31–S54
Photoluminescence Properties	S55-S56
Electrochemical Properties	S57–S60
Copies of NMR spectra	S61–S98
References	S99

Instrumentation and Chemicals

¹H, ¹³C{¹H}, ¹⁹F{¹H} and ³¹P{¹H} NMR spectra were recorded at 400 MHz, 100 MHz, 376 MHz, and 162 MHz respectively, for CDCl₃ or DMSO-d₆ solutions. HRMS data were obtained by APCI using TOF. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). TLC analyses were performed on commercial glass plates bearing a 0.25 mm layer of Merck silica gel 60F₂₅₄. Silica gel (60 N, spherical neutral, Kanto Chemical Co.) was used for column chromatography. Gel permeation chromatography (GPC) was performed by LC-20AR (pump, SHIMADZU, 7.5 mL/min CHCl₃) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line YMC-GPC T2000 (20 x 600 mm, particle size: 10 µm) (preparative columns, YMC). LED irradiation was performed by Kessil KSPR160L (456 nm, 40 W) UV-vis spectra were acquired with JASCO V-750 spectrometer. at ambient temperature. Photoluminescence spectra and quantum yield measurements were conducted with JASCO FP-8500 spectrometer equipped with an integration sphere system. The crystal measurement was performed with XtaLAB Synergy-S/Cu (Rigaku). Cyclic voltammograms and differential pulse voltammograms were recorded on ALS Electrochemical Analyzer Model 600E equipped with SVC-3 Voltammetry cell. Counter and working electrodes were made of Pt, and the reference electrode was Ag/Ag⁺. The

working electrodes were polished on a cloth polishing pad in an alumina slurry and then washed in H_2O under sonication before use. The measurements were conducted in MeCN solvent (degassed by N_2 gas bubbling) containing tetrabutylammonium hexafluorophosphate as a supporting electrolyte at an indicated scan rate. All the potentials were calibrated with the standard ferrocene/ferrocenium (Fc/Fc⁺) redox couple measured in identical conditions.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Bi(OTf)₃ was purchased from Thermo Fischer Scientific. The benzophospholes **1a–h**,^{S1} **1i**,^{S2} **1j–m**,^{S3} and **1n–o**^{S4} were prepared according to the literature. Unless otherwise noted, all reactions were performed under nitrogen atmosphere.

Experimental Procedures and Characterization Data for Products

Bi(OTf)₃-assisted dehydrogenative Mallory reaction of benzophospholes: General Procedure A

The benzophosphole oxide **1** (1.0 equiv) and NaHCO₃ (1.0 equiv) were placed in a 2–5 mL (for 0.030– 0.11 mmol scale reactions) or 10–20 mL (for 1.0 mmol scale reactions) microwave vial (Biotage). The vial was introduced into a nitrogen-filled glove box, and Bi(OTf)₃ (1.0 equiv) and MeCN were added. The vial was capped with an aluminum cap and taken out from the glove box. The resulting mixture was stirred under blue LED irradiation at ambient temperature (40–50 °C by the light irradiation) (one or two Kessil KSPR160L, 456 nm, 40 W, see Figure S1). After 22 h, Et₃N (3.0 mL) was added to scavenge Bi(OTf)₃ from the phosphole. The reaction mixture was filtered through a short pad of silica gel (60 N, spherical neutral) and then concentrated in vacuo. The residue was purified by column chromatography on silica gel (60 N, spherical neutral) and/or GPC to give the corresponding condensed dibenzophosphole oxide **2**.

Figure S1. Pictures for reaction set-up with Kessil KSPR160L (456 nm, 40 W). The distance between the light source and reaction vessel was 2.0 cm. left: with one light source, right: with two light sources.

9-Phenyltribenzo[*b,e,g*]phosphindole 9-oxide (2a)

On a 0.050 mmol scale, synthesized from 1a (19 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with one Kessil KSPR160L lamp, according to General Procedure A, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 19 mg (quant, 0.050 mmol scale); on a 1.0 mmol scale, synthesized from 1a (380 mg, 1.0 mmol, 1.0 equiv), NaHCO₃ (360 mg, 1.0 mmol, 1.0 equiv), Bi(OTf)₃ (660 mg, 0.050 mmol, 1.0 equiv), and MeCN (20 mL), with two Kessil KSPR160L lamps, according to General Procedure A, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 324 mg (89%, 1.0 mmol scale); white solid; m.p. 174.5-175.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.99-8.97 (m, 1H), 8.82-8.78 (m, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.53 (dd, J = 8.0, 3.5 Hz, 1H), 8.31 (d, J = 8.0 Hz, 1H), 7.86-7.72 (m, 5H), 7.69-7.62 (m, 2H), 7.57-7.53 (m, 1H), 7.47-7.42 (m, 2H), 7.37-7.33 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.5 (d, J = 23.2 Hz, 1C), 139.5 (d, J = 20.0 Hz, 1C), 134.6 (d, J = 105.8 Hz, 1C), 133.9 (d, J = 1.8 Hz, 1C), 133.1 (d, J = 1.9 Hz, 1C), 132.2 (d, J = 2.8 Hz, 1C), 131.1 (d, J = 10.9 Hz, 2C), 130.8 (d, J = 102.0 Hz, 1C), 130.7 (d, J = 8.2 Hz, 1C), 130.1 (d, J = 9.7 Hz, 1C), 130.0 (d, J = 102.0 Hz, 1C), 120.0 Hz, 120.0 102.4 Hz, 1C), 129.3 (d, J = 8.8 Hz, 1C), 128.94 (d, J = 11.1 Hz, 1C), 128.88 (d, J = 12.4 Hz, 2C), 128.6 (1C), 128.0 (1C), 127.99 (d, J = 13.2 Hz, 1C), 127.8 (1C), 127.4 (1C), 127.0 (d, J = 5.4 Hz, 1C), 125.8 (1C), 125.6 (d, J = 10.9 Hz, 1C), 124.1 (1C), 123.0 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.1; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₆H₁₈OP: 377.1090, found: 377.1093.

3,6-Dimethyl-9-phenyltribenzo[*b*,*e*,*g*]phosphindole 9-oxide (2b)

Synthesized from 1b (20 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv),

Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with one Kessil KSPR160L lamp, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 21 mg (quant, 0.050 mmol scale); yellow solid; m.p. 254.7-256.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.83 (d, *J* = 8.6 Hz, 1H), 8.57 (s, 1H), 8.47 (dd, *J* = 8.0, 3.5 Hz, 1H), 8.43 (s, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.83-7.78 (m, 1H), 7.75-7.69 (m, 2H), 7.66-7.61 (m, 1H), 7.58-7.56 (m, 1H), 7.45-7.30 (m, 5H), 2.66 (s, 3H), 2.56 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.8 (d, *J* = 23.4 Hz, 1C), 138.5 (d, *J* = 19.6 Hz, 1C), 138.6 (1C), 137.6 (1C), 134.6 (d, *J* = 105.7 Hz, 1C), 133.8 (d, *J* = 1.6 Hz, 1C), 133.0 (d, *J* = 1.9 Hz, 1C), 132.0 (d, *J* = 2.8 Hz, 1C), 131.1 (d, *J* = 10.8 Hz, 2C), 131.0 (d, *J* = 115.1 Hz, 1C), 130.6 (d, *J* = 4.8 Hz, 1C), 130.0 (d, *J* = 9.6 Hz, 1C), 129.6 (1C), 128.9 (1C), 128.84 (d, *J* = 103.0 Hz, 1C), 128.80 (d, *J* = 12.1 Hz, 2C), 128.6 (d, *J* = 11.2 Hz, 1C), 127.4 (d, *J* = 8.9 Hz, 1C), 122.8 (1C), 22.2 (1C), 22.1 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.0; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₂₂OP: 405.1403, found: 405.1420.

3,6-Di*tert*-butyl-9-phenyltribenzo[*b,e,g*]phosphindole 9-oxide (2c)

Synthesized from **1c** (25 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with one Kessil KSPR160L lamp, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 25 mg (quant, 0.050 mmol scale); yellow solid; m.p. 137.8-140.1 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (d, *J* = 8.9 Hz, 1H), 8.83-8.82 (m, 1H), 8.67 (s, 1H), 8.52 (dd, *J* = 8.0, 3.4 Hz, 1H), 8.22 (d, *J* = 8.6 Hz, 1H), 7.86-7.72 (m, 4H), 7.66-7.62 (m, 2H), 7.45-7.31 (m, 4H), 1.55 (s, 9H), 1.46 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 151.2 (1C), 150.6 (1C), 142.8 (d, *J* = 23.4 Hz, 1C), 138.6 (d, *J* = 19.8 Hz, 1C), 134.7 (d, *J* = 105.6 Hz, 1C), 133.9 (1C), 132.0 (d, *J* = 2.5 Hz, 1C), 131.1 (d, *J* = 10.8 Hz, 2C), 131.0 (d, *J* = 111.4 Hz, 1C), 130.6 (1C), 130.0 (d, *J* = 8.9 Hz, 1C), 128.9 (d, *J* = 103.0 Hz, 1C), 128.8 (d, *J* = 12.4 Hz, 2C),

128.6 (1C), 128.5 (1C), 127.4 (d, J = 9.2 Hz, 1C), 126.7 (d, J = 5.4 Hz, 1C), 126.4 (1C), 126.1 (d, J = 12.1 Hz, 1C), 125.6 (d, J = 5.5 Hz, 1C), 125.4 (d, J = 10.7 Hz, 1C), 119.4 (1C), 118.4 (1C), 35.4 (2C), 31.3 (6C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.1; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₄H₃₄OP: 489.2342, found: 489.2342.

3,6-Dimethoxy-9-phenyltribenzo[*b,e,g*]**phosphindole 9-oxide (2d)**

Synthesized from 1d (22 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 21.6 mg (98%, 0.050 mmol scale); yellow solid; m.p. 208.0-211.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.84 (d, *J* = 9.3 Hz, 1H), 8.40 (dd, *J* = 8.0, 3.5 Hz, 1H), 8.18 (d, *J* = 8.9 Hz, 1H), 8.00 (d, *J* = 2.6 Hz, 1H), 7.89-7.88 (m, 1H), 7.78-7.69 (m, 3H), 7.64-7.59 (m, 1H), 7.46-7.32 (m, 5H), 7.16 (dd, *J* = 8.9, 2.5 Hz, 1H), 4.03 (s, 3H), 3.95 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 159.1 (d, *J* = 29.0 Hz, 1C), 142.8 (d, *J* = 23.4 Hz, 1C), 137.1 (d, *J* = 20.1 Hz, 1C), 135.2 (d, *J* = 1.9 Hz, 1C), 134.5 (d, *J* = 101.8 Hz, 1C), 133.0 (d, *J* = 1.8 Hz, 1C), 132.0 (d, *J* = 2.7 Hz, 1C), 131.7 (d, *J* = 8.7 Hz, 1C), 131.2 (d, *J* = 101.8 Hz, 1C), 121.1 (d, *J* = 10.8 Hz, 2C), 129.9 (d, *J* = 9.9 Hz, 1C), 125.0 (d, *J* = 10.7 Hz, 1C), 128.5 (1C), 128.4 (1C), 122.8 (d, *J* = 12.3 Hz, 1C), 117.7 (1C), 116.9 (1C), 105.8 (1C), 105.2 (1C), 55.54 (1C), 55.52 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.1; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₂₂O₃P: 437.1301, found: 437.1313.

9-Phenyl-3,6-bis(trifluoromethyl)tribenzo[*b*,*e*,*g*]phosphindole 9-oxide (2e)

Synthesized from **1e** (26 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 24.3 mg (95%, 0.050 mmol scale); white solid; m.p. 238.3-240.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.14 (d, *J* = 8.8 Hz, 1H), 9.06 (s, 1H), 8.93 (s, 1H), 8.52 (dd, *J* = 8.0, 3.5 Hz, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.06-8.04 (m, 1H), 7.90-7.69 (m, 5H), 7.56-7.48 (m, 2H), 7.41-7.37 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.4, 141.2, 140.9, 140.7, 134.9, 133.8, 133.59, 133.58, 133.3, 132.71, 132.68, 132.5, 132.0, 131.9, 131.5, 131.4, 131.3, 131.0, 130.93, 130.87, 130.6, 130.54, 130.50, 130.18, 130.16, 130.0, 129.94, 129.90, 129.8, 129.5, 129.20, 129.16, 129.07, 128.02, 127.96, 127.0, 125.9, 125.8, 125.4, 125.3, 124.9, 124.8, 124.20, 124.17, 122.7, 122.6, 121.40, 121.36 (All signals cannot be completely assigned because of complexity associated with C–F coupling and C–P coupling. Thus, the observed signals were simply drawn.); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 33.3; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.2, -62.4; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₁₆F₆OP: 513.0837, found: 513.0851.

3,6-Dibromo-9-phenyltribenzo[*b,e,g*]phosphindole 9-oxide (2f)

Synthesized from **1f** (26 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column

chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 24.9 mg (93%, 0.050 mmol scale); white solid; m.p. 271.7-273.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.81-8.79 (m, 2H), 8.68 (s, 1H), 8.43-8.41 (m, 1H), 8.16 (d, J = 8.6 Hz, 1H), 7.87-7.81 (m, 2H), 7.72-7.64 (m, 4H), 7.48-7.45 (m, 2H), 7.39-7.34 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.6 (d, J = 22.8 Hz, 1C), 139.3 (d, J = 20.0 Hz, 1C), 134.3 (d, J = 106.2 Hz, 1C), 134.1 (d, J = 1.5 Hz, 1C), 133.4 (d, J = 1.8 Hz, 1C), 132.4 (d, J = 2.8 Hz, 1C), 131.8 (1C), 131.2 (1C), 131.0 (d, J = 10.8 Hz, 2C), 130.8 (d, J = 8.4 Hz, 1C), 130.23 (d, J = 9.8 Hz, 1C), 130.22 (d, J = 102.2 Hz, 1C), 130.1 (d, J = 101.6 Hz, 1C), 129.3 (d, J = 11.4 Hz, 1C), 129.0 (d, J = 12.1 Hz, 1C), 126.0 (1C), 125.5 (d, J = 10.6 Hz, 1C), 123.7 (1C), 122.8 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 33.4; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₆H₁₆Br₂OP: 532.9300, found: 532.9280.

A 1:1.16 Diastereomixture of 11-phenylbenzo[b]dinaphtho[2,1-e:1',2'-g]phosphindole 11-oxide (2g)

Synthesized from **1g** (24 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with one Kessil KSPR160L lamp, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 24 mg (quant, 0.050 mmol scale); yellow solid; m.p. 243.0-246.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.90 (t, *J* = 9.7 Hz, 1H), 8.56 (dd, *J* = 8.0, 3.4 Hz, 1H), 8.38-8.34 (m, 1H), 8.28-8.25 (m, 1H), 8.16-8.08 (m, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.94-7.68 (m, 7H), 7.60-7.56 (m, 1H), 7.52-7.41 (m, 4H), 7.39-7.32 (m, 2H), 7.27-7.20 (m, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.7, 142.5, 142.4, 142.3, 139.2, 139.0, 138.9, 138.8, 135.1, 134.8, 134.6, 134.1, 133.3, 132.8, 132.6, 132.5, 132.4, 132.3, 132.2, 131.5, 131.2, 131.1, 131.0, 130.9, 130.6, 130.5, 130.43, 130.36, 130.26, 130.2, 130.1, 129.5, 129.2, 129.12, 129.07, 128.99, 128.9, 128.8, 128.5, 128.4, 128.1, 128.0, 127.7, 127.6, 127.4, 127.2, 127.1, 126.9, 126.9, 125.84, 125.79, 125.74, 125.68, 125.1, 125.0, 124.9, 123.6, 123.5, 122.92, 122.86, 121.8, 121.7 (All signals cannot be

completely assigned because of complexity associated with diastereomers and C–P coupling. Thus, the observed signals were simply drawn.); ${}^{31}P{}^{1}H$ NMR (162 MHz, CDCl₃) δ 33.6, 32.8; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₄H₂₂OP: 477.1403, found: 477.1417.

2h

Synthesized from **1h** (15 mg, 0.030 mmol, 1.0 equiv), NaHCO₃ (2.5 mg, 0.030 mmol, 1.0 equiv), Bi(OTf)₃ (20 mg, 0.030 mmol, 1.0 equiv), and MeCN (0.60 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 8.4 mg (57%, 0.030 mmol scale); yellow solid; m.p. 259.7-261.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.04 (d, *J* = 8.1 Hz, 1H), 8.95-8.93 (m, 1H), 8.37 (dd, *J* = 7.9, 3.4 Hz, 1H), 8.08-8.06 (m, 1H), 7.92-7.85 (m, 2H), 7.81-7.76 (m, 3H), 7.63-7.48 (m, 6H), 7.42-7.38 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.4 (d, *J* = 20.6 Hz, 1C), 141.0 (1C), 140.6 (1C), 138.5 (d, *J* = 7.9 Hz, 1C), 136.5 (1C), 134.8 (d, *J* = 21.4 Hz, 1C), 133.9 (d, *J* = 19.9 Hz, 1C), 131.7 (d, *J* = 1.9 Hz, 1C), 131.6 (d, *J* = 11.0 Hz, 2C), 131.0 (1C), 130.3 (d, *J* = 9.9 Hz, 1C), 129.3 (d, *J* = 11.3 Hz, 1C), 129.1 (d, *J* = 104.6 Hz, 1C), 128.8 (d, *J* = 12.8 Hz, 2C), 127.9 (1C), 127.2 (1C), 125.5 (1C), 123.1 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 32.7; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₀H₁₈0PS₂: 489.0531, found: 489.0550.

11-(*tert*-butyl)-9-(4-(*tert*-butyl)phenyl)tribenzo[*b*,*e*,*g*]phosphindole 9-oxide (2i)

Synthesized from **1i** (25 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with CHCl₃ and GPC (CHCl₃): 24 mg (quant, 0.050 mmol scale); white solid; m.p. 318.1-319.8 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, *J* = 7.8 Hz, 1H), 8.82 (d, *J* = 8.1 Hz, 1H), 8.66 (d, *J* = 8.3 Hz, 1H), 8.45 (dd, *J* = 8.3, 3.8 Hz, 1H), 8.36 (d, *J* = 7.9 Hz, 1H), 7.88 (dd, *J* = 11.5, 1.8 Hz, 1H), 7.83-7.76 (m, 2H), 7.70-7.55 (m, 5H), 7.38-7.35 (m, 2H), 1.36 (s, 9H), 1.24 (s, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 155.5 (d, *J* = 2.8 Hz, 1C), 152.3 (d, *J* = 10.2 Hz, 1C), 139.9 (d, *J* = 23.5 Hz, 1C), 139.2 (d, *J* = 20.0 Hz, 1C), 134.7 (d, *J* = 105.7 Hz, 1C), 133.8 (1C), 131.0 (d, *J* = 11.1 Hz, 2C), 130.40 (1C), 128.4 (1C), 128.10 (1C), 128.09 (d, *J* = 11.9 Hz, 1C), 128.0 (1C), 127.4 (d, *J* = 26.3 Hz, 1C), 127.1 (1C), 127.0 (d, *J* = 5.0 Hz, 1C), 125.88 (d, *J* = 12.7 Hz, 2C), 125.87 (1C), 125.2 (d, *J* = 11.4 Hz, 1C), 124.0 (1C), 123.0 (1C), 35.01 (1C), 34.96 (1C), 31.2 (3C), 31.0 (3C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.7; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₄H₃₄OP: 489.2342, found: 489.2361.

5,6,7-Trimethoxy-9-phenyltribenzo[*b*,*e*,*g*]phosphindole 9-oxide (2j)

Synthesized from **1j** (37 mg, 0.080 mmol, 1.0 equiv), NaHCO₃ (6.7 mg, 0.080 mmol, 1.0 equiv), Bi(OTf)₃ (53 mg, 0.080 mmol, 1.0 equiv), and MeCN (1.60 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column

chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 37 mg (quant, 0.080 mmol scale); yellow solid; m.p. 158.2-161.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.73-9.70 (m, 1H), 8.96-8.93 (m, 1H), 8.50 (dd, J = 8.1, 3.4 Hz, 1H), 7.84-7.65 (m, 6H), 7.55 (d, J = 0.8 Hz, 1H), 7.49-7.34 (m, 4H), 4.00 (s, 3H), 3.97 (s, 3H), 3.89 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 153.3 (1C), 152.4 (d, J = 2.0 Hz, 1C), 143.9 (1C), 142.6 (d, J = 23.2 Hz, 1C), 139.1 (d, J = 19.7 Hz, 1C), 134.2 (d, J = 106.0 Hz, 1C), 133.7 (1C), 133.1 (d, J = 1.7 Hz, 1C), 132.2 (d, J = 2.8 Hz, 1C), 131.1 (d, J = 10.8 Hz, 2C), 130.9 (d, J = 101.2 Hz, 1C), 130.1 (d, J = 9.8 Hz, 1C), 129.5 (d, J = 103.1 Hz, 1C), 127.2 (d, J = 9.2 Hz, 1C), 126.3 (1C), 125.6 (d, J = 10.8 Hz, 1C), 125.3 (1C), 119.5 (d, J = 8.0 Hz, 1C), 103.6 (d, J = 6.4 Hz, 1C), 61.4 (1C), 60.6 (1C), 55.9 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.0; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₉H₂₄O4P: 467.1407, found: 467.1415.

14-Phenylphosphindolo[3',2':9,10]phenanthro[3,4-d][1,3]dioxole 14-oxide (2k)

Synthesized from **1k** (21 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with one Kessil KSPR160L lamp, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 21 mg (quant, 0.050 mmol scale); yellow solid; m.p. 251.7-253.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (d, *J* = 7.9 Hz, 1H), 8.56 (d, *J* = 7.6 Hz, 1H), 8.48 (dd, *J* = 8.0, 3.4 Hz, 1H), 7.97 (s, 1H), 7.82-7.63 (m, 7H), 7.47-7.34 (m, 4H), 6.07 (s, 1H), 6.03 (s, 1H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.2 (1C), 148.6 (1C), 142.7 (d, *J* = 23.2 Hz, 1C), 137.4 (d, *J* = 19.8 Hz, 1C), 134.2 (d, *J* = 106.2 Hz, 1C), 133.6 (1C), 133.1 (d, *J* = 1.9 Hz, 1C), 132.2 (d, *J* = 2.8 Hz, 1C), 131.1 (d, *J* = 10.8 Hz, 2C), 130.8 (d, *J* = 101.4 Hz, 1C), 130.0 (d, *J* = 9.8 Hz, 1C), 129.5 (d, *J* = 101.7 Hz, 1C), 128.9 (d, *J* = 12.4 Hz, 2C), 128.5 (d, *J* = 11.2 Hz, 1C), 128.2 (1C), 125.3 (d, *J* = 10.8 Hz, 1C), 104.1 (d, *J* = 6.1 Hz, 1C), 101.7 (1C), 101.3 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.2; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₇H₁₈O₃P: 421.0988, found: 421.0996.

Α

1:1.07 Diastereomixture

of

5-phenylbenzo[b]phosphindolo[3',2':9,10]phenanthro[4,3-d]thiophene 5-oxide (21)

Synthesized from 11 (53 mg, 0.11 mmol, 1.0 equiv), NaHCO₃ (9.2 mg, 0.11 mmol, 1.0 equiv), Bi(OTf)₃ (73 mg, 0.11 mmol, 1.0 equiv), and MeCN (2.2 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 38.3 mg (72%, 0.11 mmol scale); yellow solid; m.p. 251.6-256.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.10 (d, *J* = 8.3 Hz, 1H), 8.96-8.86 (m, 0.49 × 1H, 0.51 × 1H), 8.63 (d, *J* = 8.0 Hz, 1H), 8.46-8.44 (m, 0.49 × 1H, 0.51 × 1H), 8.26-8.14 (m, 0.49 × 1H, 0.51 × 1H), 7.94-7.59 (m, 8H), 7.46-7.32 (m, 6H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.0, 141.8, 141.3, 141.1, 139.7, 139.0, 136.3, 133.1, 132.6, 132.3, 131.1, 131.0, 130.42, 130.37, 130.2, 130.1, 129.3, 128.9, 128.8, 128.3, 128.0, 127.9, 126.5, 126.4, 125.4, 125.3, 125.2, 124.9, 124.59, 124.55, 124.50, 124.4, 123.3, 123.1 (All observed signals cannot be completely assigned because of complexity associated with diastereomers and C–P coupling. Thus, the observed signals were simply drawn.); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 35.0, 33.9; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₂H₂₀OPS: 483.0967, found: 483.0969.

¹H NMR (<u>600 MHz, DMSO-d₆, 80°C</u>) δ 9.06-9.03 (m, 2H), 8.66-8.64 (m, 1H), 8.58 (d, J = 8.3 Hz, 1H), 8.22-8.13 (m, 3H), 7.91 (t, J = 7.6 Hz, 1H), 7.86-7.82 (m, 2H), 7.62 (d, J = 5.1 Hz, 1H), 7.68-7.64 (m, 2H), 7.59-7.50 (m, 3H), 7.45-7.41 (m, 3H); ¹³C {¹H} NMR (<u>150 MHz, DMSO-d₆, 80°C</u>) δ 141.3 (1C), 141.2 (1C), 141.1 (1C), 139.7 (1C), 138.7 (1C), 138.6 (1C), 136.0 (1C), 135.0 (d, J = 105.4 Hz, 1C), 134.0 (d, J = 1.8 Hz, 1C), 132.7 (d, J = 2.6 Hz, 1C), 132.1 (d, J = 1.8 Hz, 1C), 131.8 (d, J = 100.3 Hz, 1C), 131.0 (d, J = 10.6 Hz, 2C), 130.1 (d, J = 9.9 Hz, 1C), 129.9 (d, J = 101.5 Hz, 1C), 129.7 (d, J = 11.0 Hz, 1C), 129.6 (d, J = 12.1 Hz, 2C), 129.4 (1C), 129.1 (1C), 128.03 (1C), 127.95 (1C), 127.88 (1C), 127.82 (1C), 127.3 (d, J = 8.8 Hz, 1C), 126.3 (d, J = 10.3 Hz, 1C), 125.6 (1C), 125.2 (1C), 124.4 (d, J = 5.5 Hz, 1C), 124.2 (1C), 123.9 (d, J = 12.0 Hz, 1C); ³¹P {¹H} NMR (<u>243 MHz, DMSO-d₆, 80°C</u>) δ 32.1.

16-Phenylbenzo[b]phosphindolo[3',2':9,10]phenanthro[2,3-d]thiophene 16-oxide (2l')

Synthesized from **11** (53 mg, 0.11 mmol, 1.0 equiv), NaHCO₃ (9.2 mg, 0.11 mmol, 1.0 equiv), Bi(OTf)₃ (73 mg, 0.11 mmol, 1.0 equiv), and MeCN (2.2 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 14.7 mg (28%, 0.11 mmol scale); yellow solid; m.p. 273.4-276.7 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.11 (s, 1H), 9.03-9.00 (m, 2H), 8.88 (d, *J* = 8.1 Hz, 1H), 8.55 (dd, *J* = 8.0, 3.4 Hz, 1H), 8.26-8.22 (m, 1H), 7.90-7.79 (m, 6H), 7.72-7.68 (m, 1H), 7.52-7.42 (m, 4H), 7.40-7.35 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.8 (1C), 142.5 (1C), 140.0 (d, *J* = 6.9 Hz, 1C), 139.0 (1C), 138.8 (1C), 136.0 (1C), 134.9 (1C), 134.8 (1C), 133.3 (d, *J* = 2.5 Hz, 1C), 133.2 (d, *J* = 1.8 Hz, 1C), 129.7 (d, *J* = 8.5 Hz, 1C), 129.5 (d, *J* = 105.6 Hz, 1C), 129.0 (d, *J* = 12.3 Hz, 2C), 128.7 (d, *J* = 11.7 Hz, 1C), 125.9 (1C), 125.5 (d, *J* = 10.9 Hz, 1C), 126.43 (d, *J* = 11.7 Hz, 1C), 125.9 (1C), 125.5 (d, *J* = 10.9 Hz, 1C), 124.8 (1C), 124.2 (1C), 122.7 (d, *J* = 7.1 Hz, 1C), 119.2 (d, *J* = 5.5 Hz, 1C), 116.7 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.1; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₂H₂₀OPS: 483.0967, found: 483.0969.

15-Phenyldibenzo[2,3:4,5]phosphindolo[6,7-f]quinoline 15-oxide (2m)

Synthesized from 1m (13 mg, 0.030 mmol, 1.0 equiv), NaHCO₃ (2.5 mg, 0.030 mmol, 1.0 equiv), Bi(OTf)₃ (20 mg, 0.030 mmol, 1.0 equiv), and MeCN (0.60 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 3.2 mg (25%, 0.030 mmol scale);

yellow solid; m.p. 134.5-136.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.24 (d, J = 8.4 Hz, 1H), 9.07-9.04 (m, 1H), 9.00-8.99 (m, 1H), 8.95-8.91 (m, 1H), 8.51 (dd, J = 8.0, 3.4 Hz, 1H), 8.46 (d, J = 9.0 Hz, 1H), 8.11 (d, J = 8.9 Hz, 1H), 7.89-7.82 (m, 3H), 7.78-7.70 (m, 3H), 7.59 (dd, J = 8.5, 4.2 Hz, 1H), 7.52-7.45 (m, 2H), 7.40-7.35 (m, 2H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.8 (1C), 149.0 (1C), 141.8 (d, J = 22.3 Hz, 1C), 140.0 (d, J = 20.0 Hz, 1C), 135.8 (1C), 134.8 (d, J = 106.4 Hz, 1C), 133.7 (d, J = 1.3 Hz, 1C), 133.2 (d, J = 1.4 Hz, 1C), 132.4 (d, J = 2.8 Hz, 1C), 131.1 (d, J = 10.8 Hz, 2C), 130.5 (d, J = 102.2 Hz, 1C), 130.4 (1C), 129.5 (d, J = 101.7 Hz, 1C), 129.4 (1C), 129.2 (1C), 129.0 (d, J = 12.5 Hz, 2C), 128.8 (1C), 128.6 (1C), 128.4 (d, J = 8.9 Hz, 1C), 128.2 (d, J = 8.5 Hz, 1C), 127.6 (1C), 127.5 (1C), 125.6 (d, J = 10.7 Hz, 1C), 125.5 (1C), 125.0 (1C), 120.8 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 34.0; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₉H₁₉NOP: 428.1199, found: 428.1224.

5,7-Diphenyldibenzo[*b*,*e*]phosphindole 7-oxide (2n)

Synthesized from **1n** (20 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with two Kessil KSPR160L lamps, according to **General Procedure A**, Purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 14.4 mg (72%, 0.050 mmol scale); yellow solid; m.p. 199.5-201.2 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.94 (d, *J* = 8.6 Hz, 1H), 8.54 (dd, *J* = 8.0, 3.5 Hz, 1H), 8.03 (d, *J* = 7.9 Hz, 1H), 7.84-7.80 (m, 1H), 7.74-7.67 (m, 5H), 7.60-7.56 (m, 1H), 7.50-7.35 (m, 9H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.3 (1C), 143.1 (1C), 142.7 (d, *J* = 11.0 Hz, 1C), 139.8 (1C), 138.4 (1C), 138.2 (1C), 135.2 (d, *J* = 1.6 Hz, 1C), 134.2 (d, *J* = 104.4 Hz, 1C), 133.4 (d, *J* = 1.6 Hz, 1C), 132.2 (d, *J* = 2.8 Hz, 1C), 131.8 (d, *J* = 104.2 Hz, 1C), 131.3 (d, *J* = 10.8 Hz, 2C), 130.4 (d, *J* = 9.4 Hz, 1C), 127.8 (1C), 127.7 (1C), 127.6 (1C), 125.5 (d, *J* = 10.6 Hz, 1C), 125.2 (d, *J* = 10.0 Hz, 1C), 124.9 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 32.9; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₈H₂₀OP: 403.1246, found: 403.1253.

3,9-Dimethoxy-5,7-diphenyldibenzo[*b,e*]phosphindole 7-oxide (20)

Synthesized from **1o** (23 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with one Kessil KSPR160L lamp, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 3.6 mg (16%, 0.050 mmol scale); yellow solid; m.p. 176.3-179.6 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, *J* = 9.0 Hz, 1H), 8.39 (dd, *J* = 8.4, 4.1 Hz, 1H), 7.70 (dd, *J* = 12.8, 8.2 Hz, 2H), 7.60 (d, *J* = 9.7 Hz, 1H), 7.50-7.45 (m, 5H), 7.42-7.30 (m, 6H), 7.16 (d, *J* = 8.7 Hz, 1H), 3.86 (s, 3H), 3.78 (s, 3H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.8 (1C), 140.2 (1C), 137.2 (1C), 136.6 (d, *J* = 100.9 Hz, 1C), 135.7 (1C), 135.3 (1C), 132.1 (d, *J* = 2.0 Hz, 1C), 131.7 (d, *J* = 109.4 Hz, 1C), 131.3 (d, *J* = 10.7 Hz, 2C), 130.0 (d, *J* = 13.1 Hz, 1C), 129.8 (2C), 129.7 (d, *J* = 103.7 Hz, 1C), 128.8 (d, *J* = 12.4 Hz, 2C), 128.5 (1C), 127.8 (1C), 127.6 (1C), 127.4 (1C), 126.6 (1C), 126.5 (d, *J* = 9.6 Hz, 1C), 126.1 (1C), 125.9 (d, *J* = 10.3 Hz, 1C), 119.6 (1C), 118.9 (1C), 115.0 (1C), 106.4 (1C), 55.7 (1C), 55.2 (1C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 32.8; HRMS (APCI) m/z ([M+H]⁺) calcd for C₃₀H₂₄O₃P: 463.1458, found: 463.1475.

9-Hydroxy-3-methoxy-5,7-diphenyldibenzo[*b*,*e*]phosphindole 7-oxide (20-H)

Synthesized from **10** (23 mg, 0.050 mmol, 1.0 equiv), NaHCO₃ (4.2 mg, 0.050 mmol, 1.0 equiv), Bi(OTf)₃ (33 mg, 0.050 mmol, 1.0 equiv), and MeCN (1.0 mL), with one Kessil KSPR160L lamp, according to **General Procedure A**, purified by silica gel (60 N, spherical neutral) column chromatography with hexane/EtOAc (1/1, v/v) and GPC (CHCl₃): 6.3 mg (28%, 0.05 mmol scale);

yellow gum; ¹H NMR (400 MHz, CDCl₃) δ 8.37 (d, J = 9.3 Hz, 1H), 8.20 (dd, J = 8.8, 4.3 Hz, 1H), 7.70-7.64 (m, 2H), 7.52-7.47 (m, 1H), 7.40-7.32 (m, 3H), 7.28-7.24 (m, 1H), 7.20-7.17 (m, 6H), 7.14-7.10 (m, 2H), 3.84 (s, 3H); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 35.2; HRMS (APCI) m/z ([M+H]⁺) calcd for C₂₉H₂₂O₃P: 449.1301, found: 449.1321. (Any clear ¹³C{¹H} NMR spectra were not obtained because of small quantity of product.)

Double Buchwald-Hartwig amination of 2f: General Procedure B

To the Schlenk tube (10 mL), 3,6-dibromo-9-phenyltribenzo[b,e,g]phosphindole 9-oxide (**2f**, 0.050 mmol, 1.0 equiv), N-heterocycle (0.15 mmol, 3.0 equiv), [Pd(η^3 -C₃H₅)Cl]₂ (0.70 mg, 20 µmol, 4.0 mol%), MoPhos (1.4 mg, 40 µmol, 8.0 mol%), NaOtBu (11.5 mg, 0.12 mmol, 2.4 equiv), and *o*-xylene (0.50 mL) were added under nitrogen atmosphere. The resulting mixture was stirred at 130 °C for 16 h. After the reaction completed, EtOAc (20 mL) and water (20 mL) were added to the reaction mixture, and the organic layer was extracted with EtOAc three times, dried with Na₂SO₄, and filtered through a sort pad of activated alumina. The filtrate was concentrated under reduced pressure to give a solid. The resulting solid was dissolved in chloroform and purified by column chromatography on silica gel (). Further purification was conducted with GPC (CHCl₃) to form the corresponding aminated product **3**.

3,6-Di(9H-carbazol-9-yl)-9-phenyltribenzo[*b*,*e*,*g*]phosphindole 9-oxide (3fa)

Synthesized from **1f** (27 mg, 0.050 mmol, 1.0 equiv), carbazole (25 mg, 0.15 mmol, 3.0 equiv), $[Pd(\eta^3-C_3H_5)Cl]_2$ (0.70 mg, 20 µmol, 4.0 mol%), MoPhos (1.4 mg, 40 µmol, 8.0 mol%), NaOtBu (11.5 mg, 0.12 mmol, 2.4 equiv), and *o*-xylene (0.50 mL), according to **General Procedure B**, purified by silica gel (60 N, spherical neutral) column chromatography with CHCl₃ and GPC (CHCl₃): 29.4 mg (83%, 0.050 mmol scale); yellow solid; m.p. 235.1-236.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.29 (d, *J*

= 8.9 Hz, 1H), 8.93 (d, J = 2.0 Hz, 1H), 8.78 (s, 1H), 8.6 (dd, J = 8.0, 3.4 Hz, 1H), 8.60 (d, J = 8.6 Hz, 1H), 8.16-8.07 (m, 5H), 7.95-7.83 (m, 4H), 7.77 (t, J = 7.7 Hz, 1H), 7.59-7.52 (m, 4H), 7.48-7.44 (m, 4H), 7.42-7.27 (m, 8H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 142.2 (d, J = 23.0 Hz, 1C), 140.7 (2C), 140.6 (2C), 139.5 (d, J = 19.8 Hz, 1C), 138.3 (1C), 137.6 (1C), 135.0 (d, J = 1.5 Hz, 1C), 134.7 (d, J = 106.2 Hz, 1C), 133.4 (d, J = 2.1 Hz, 1C), 132.5 (d, J = 2.8 Hz, 1C), 131.5 (d, J = 8.3 Hz, 1C), 131.2 (d, J = 10.8 Hz, 2C), 130.5 (d, J = 102.1 Hz, 1C), 130.4 (d, J = 9.9 Hz, 1C), 130.3 (d, J = 101.7 Hz, 1C), 129.4 (d, J = 11.2 Hz, 1C), 129.1 (d, J = 12.4 Hz, 2C), 128.9 (d, J = 5.5 Hz, 1C), 128.6 (d, J = 8.9 Hz, 1C), 127.9 (1C), 127.6 (1C), 127.0 (d, J = 11.7 Hz, 1C), 126.6 (1C), 126.4 (2C), 126.2 (2C), 125.6 (d, J = 10.6 Hz, 1C), 123.8 (2C), 123.7 (2C), 121.7 (1C), 121.1 (1C), 120.7 (2C), 120.6 (2C), 120.4 (4C), 109.6 (4C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 33.8; HRMS (APCI) m/z ([M+H]⁺) calcd for C₅₀H₃₂N₂OP: 707.2247, found: 707.2243.

3,6-Di(10H-phenoxazin-10-yl)-9-phenyltribenzo[*b,e,g*]phosphindole 9-oxide (3fb)

Synthesized from **1f** (27 mg, 0.050 mmol, 1.0 equiv), phenoxazine (27 mg, 0.15 mmol, 3.0 equiv), $[Pd(\eta^3-C_3H_3)Cl]_2$ (0.70 mg, 20 µmol, 4.0 mol%), MoPhos (1.4 mg, 40 µmol, 8.0 mol%), NaO*t*Bu (11.5 mg, 0.12 mmol, 2.4 equiv), and *o*-xylene (0.50 mL), according to **General Procedure B**, purified by silica gel (60 N, spherical neutral) column chromatography with CHCl₃ and GPC (CHCl₃): 13.5 mg (27%, 0.050 mmol scale); orange solid; m.p. 213.2-215.4 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.27 (d, *J* = 8.8 Hz, 1H), 8.74 (s, 1H), 8.60-8.57 (m, 3H), 7.93-7.90 (m, 1H), 7.88-7.87 (m, 1H), 7.85-7.80 (m, 2H), 7.79-7.74 (m, 1H), 7.59-7.52 (m, 3H), 7.48-7.43 (m, 2H), 6.75-6.73 (m, 2H), 6.70-6.68 (m, 3H), 6.66-6.56 (m, 5H), 6.53-6.49 (m, 2H), 6.01-5.99 (m, 2H), 5.90-5.88 (m, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 144.0 (2C), 143.9 (2C), 141.9 (1C), 140.0 (1C), 139.8 (1C), 139.5 (1C), 138.8 (1C), 135.9 (1C), 134.5 (d, *J* = 107.1 Hz, 1C), 134.0 (d, *J* = 10.0 Hz, 2C), 133.5 (1C), 132.6 (d, *J* = 2.9 Hz, 1C), 132.0 (d, *J* = 103.3 Hz, 1C), 131.9 (d, *J* = 101.0 Hz, 1C), 131.3 (1C), 131.2 (d, *J* = 10.8 Hz, 1C), 130.6 (d, *J* = 13.2 Hz, 1C), 130.43 (d, *J* = 2.0 Hz, 1C), 130.39 (1C), 130.0 (d, *J* = 5.3 Hz, 1C), 129.6 (1C),

129.5 (1C), 129.2 (1C), 129.16 (1C), 129.13 (d, J = 12.3 Hz, 2C), 129.09 (1C), 127.7 (d, J = 12.2 Hz, 1C), 126.9 (1C), 126.0 (1C), 125.7 (d, J = 10.8 Hz, 1C), 123.4 (2C), 123.2 (2C), 121.9 (2C), 121.7 (2C), 115.8 (2C), 115.6 (2C), 113.33 (2C), 113.32 (2C); ³¹P{¹H} NMR (162 MHz, CDCl₃) δ 33.8; HRMS (APCI) m/z ([M+H]⁺) calcd for C₅₀H₃₂N₂O₃P: 739.2145, found: 739.2140.

X-Ray Analysis

The single X-ray quality crystals of 2g were grown from benzene by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S2. ORTEP drawing of 2g (CCDC 2377855, 50% thermal probability).

Crystal system	monoclinic
Space group IT number	14
Space group name H-M alt	P 1 21/c 1
Space group name Hall	-P 2ybc
Cell length a	8.3632(3)
Cell length b	11.8180(5)
Cell length c	28.4133(11)
Cell angle alpha	90
Cell angle beta	97.436(3)
Cell angle gamma	90
Cell volume	2784.65(19)
Cell formula units Z	4
Refine ls R factor all	0.1394
Refine ls R factor gt	0.0782
Refine ls wR factor gt	0.2035
Refine ls wR factor ref	0.2607
Refine ls goodness of fit ref	1.168

The single X-ray quality crystals of **2l**' were grown from CDCl₃ by slow evaporation at room temperature. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S3. ORTEP drawing of 2l' (CCDC 2377856, 50% thermal probability).

Table S2.	Crystal	data for 2l'	
-----------	---------	--------------	--

Crystal system	triclinic
Space group IT number	2
Space group name H-M alt	P -1
Space group name Hall	-P 1
Cell length a	14.4990(5)
Cell length b	15.0425(5)
Cell length c	15.7255(4)
Cell angle alpha	82.549(2)
Cell angle beta	69.415(3)
Cell angle gamma	81.710(3)
Cell volume	3165.65(18)
Cell formula units Z	2
Refine ls R factor all	0.1068
Refine ls R factor gt	0.0967
Refine ls wR factor gt	0.2769
Refine ls wR factor ref	0.2838
Refine ls goodness of fit ref	1.110

Detailed Optimization Studies

acid Ph'O 1a Acid MeCN, blue LED (456 nm), N ₂ Ph'O 2a					
entry	acid	yield of 2a (%) ^[b]	entry	acid	yield of 2a (%) ^[b]
1	none	0	12	Cu(OTf) ₂	4
2	Bi(OTf)3	33	13	AgOTf	6
3	Al(OTf)3	49	14	LiOTf	7
4	In(OTf)3	68	15	NaOTf	0
5	Sc(OTf) ₃	34	16	KOTf	0
6	Zn(OTf) ₂	17	17	TfOH	0
7	La(OTf) ₃	4	18	TFA	40
8	Y(OTf) ₃	15	19	PTSA	0
9	Yb(OTf) ₃	5	20	(PhO) ₂ P(O)(OH)	20
10	Ni(OTf) ₂	1	21	AcOH	0
11	Fe(OTf) ₂	0	22	HC1	0

Table S3. Condition optimization for the dehydrogenative Mallory reaction of **1a** under visible light irradiation: Screening of Lewis and Brønsted acid additives.^[a]

[a] Reaction conditions: **1a** (0.050 mmol), acid (0.050 mmol), MeCN (1.0 mL), 22 h, N₂, blue LED irradiation (456 nm, 40 W), ambient temperature. [b] Estimated by ${}^{31}P{}^{1}H$ NMR with P(O)(OEt)₃ as the internal standard.

Table S4. Condition optimization for the dehydrogenative Mallory reaction of **1a** under visible light irradiation: Screening of combinations of Lewis acid and Bronsted base additives.^[a]

3	In(OTf) ₃ /NaHCO ₃	31	9 ^[d]	Bi(OTf) ₃ / NaHCO ₃	0
4	Sc(OTf) ₃ /NaHCO ₃	8	10 ^[e]	Bi(OTf) ₃ / NaHCO ₃	0
5	InCl ₃ /NaHCO ₃	5	11 ^[f]	Bi(OTf) ₃ / NaHCO ₃	16
6	BF3•OEt2/NaHCO3[c]	8	12 ^[g]	Bi(OTf) ₃ / NaHCO ₃	7

[a] Reaction conditions: **1a** (0.050 mmol), additives (0.050 mmol), MeCN (1.0 mL), 22 h, N₂, blue LED irradiation (456 nm, 40 W), ambient temperature. [b] Estimated by ${}^{31}P{}^{1}H$ NMR with P(O)(OEt)₃ as the internal standard. Isolated yield is in parentheses. [c] With BF₃•OEt₂ (0.10 mmol) and NaHCO₃ (0.050 mmol). [d] In dark at 50 °C. [e] With **1c** instead of **1a** under green LED irradiation (525 nm). [f] With **1c** instead of **1a** under sunlight for 2 days. [g] With Bi(OTf)₃ (0.010 mmol) and NaHCO₃ (0.050 mmol).

 Table S5. Condition optimization for the dehydrogenative Mallory reaction of 1a under visible light

 irradiation: Screening of solvent.^[a]

$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $					
entry	solvent	yield of 2a (%) ^[b]	entry	additives	yield of 2a (%) ^[b]
1	MeCN	(>99)	7	PhCF ₃	37
2	1,4-dioxane	63	8	DMF	28
3	THF	45	9	DMSO	43
4	Et ₂ O	44	10	acetone	73
5	DME	79	11	MeOH	64
6	toluene	30			

Reaction conditions: **1a** (0.050 mmol), Bi(OTf)₃ (0.050 mmol), NaHCO₃ (0.050 mmol), solvent (1.0 mL), 22 h, N₂, blue LED irradiation (456 nm, 40 W), ambient temperature. [b] Estimated by ${}^{31}P{}^{1}H{}$ NMR with P(O)(OEt)₃ as the internal standard. Isolated yield is in parentheses.

Unsuccessful Substrates

The following substrates gave a complicated mixture or showed much lower conversion (<10%) under the standard conditions (Table S4, entry 1).

Figure S4. Unsuccessful substrates.

Detection of Evolved H2

According to **General Procedure A**, to a 2–5 mL microwave vial (Biotage) were added 1c (25 mg, 0.050 mmol), NaHCO₃ (4.2 mg, 0.050 mmol), Bi(OTf)₃ (33 mg, 0.050 mmol), and MeCN (1.0 mL) in a nitrogen-filled glove box. The vial was capped with an aluminum cap and taken out from the glove box. The resulting mixture was stirred under blue LED irradiation at ambient temperature (one or two Kessil KSPR160L, 456 nm, 40 W, see Figure S1). After 22 h, the gas component in the tube was sampled with a gas tight syringe and analyzed by GC. The result was shown in Figure S5.

Figure S5. Detection of H₂ by GC.

Deuterium-Labeling Experiments

Figure S6. Reaction progresses of 1a and $1a-d_{10}$ and their initial reaction rates.

We monitored the reaction progress by tracking the formation of Bi(OTf)₃-cooridinated **2a** or **2a**-*d*₈ using ³¹P{¹H} NMR in MeCN-*d*₃ solution. As the internal reference, P(O)(OEt)₃ was also used. According to the results in Figure S6, the kinetic isotope effect (KIE) value is calculated as follows.

 $\text{KIE} = k_{\text{H}}/k_{\text{D}} = 0.6670/0.2337 = 2.8540... \cong 2.90$

NMR Studies

Figure S7. ³¹P{¹H} and ¹H NMR spectra of 1a (upper) and 1a + 1.0 equiv of Bi(OTf)₃ (bottom) in CDCl₃.

UV-vis Absorption Spectra Studies

Figure S8. UV-vis Absorption spectra of 1a (orange line), 1a + 1 equiv of Bi(OTf)₃ (gray line), and 1a + 10 equiv of Bi(OTf)₃ (blue line) in MeCN (1.0×10^{-5} M).

Figure S9. Concentration effects in UV-vis absorption spectra of 1a + 10 equiv of Bi(OTf)₃ in MeCN: orange line (no Bi, 1.0 x 10⁻⁵ M), blue line (1.0 x 10⁻⁵ M), green line (1.0 x 10⁻⁴ M), and red line (1.0 x 10⁻³ M).

Computational Studies

All calculations were carried out using the Gaussian 16 program.^{S5} The ground-state (S_0) and exited-state (S₁) geometries were optimized by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods with M06-2X functional and a standard 6-31G(d) basis set (LanL2DZ basis set for Bi). The M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), with reliable performance for the thermochemistry, hydrogen bonding, kinetics, and weak interactions.^{S6} The optimized molecular structures were verified by vibrational analysis; equilibrium structures did not have imaginary frequencies and transition state structures had only one imaginary frequency. The intrinsic reaction coordinate (IRC) calculations were carried out to check whether the transition state leading to the reactant and the product. Single-point energies were calculated using the 6-311+G(d,p) basis set (SDD basis set for Bi), and the solvent effect of MeCN was taken account by the integral equation formalism PCM (IEF-PCM). HOMO, LUMO, and UV-Vis spectrum of 1a and Bi(OTf)₃-coordinated 1a were analyzed by TD-DFT at the M06-2X/6-311+G(d,p)&SDD/PCM(MeCN) level. The calculated structures and molecular orbitals of were visualized with Gauss View 6.1.1. Summary the level of theory: M06-2X/6-311+G(d,p)&SDD/PCM(MeCN)//M06-2X/6-31G(d)&LanL2DZ.

Figure S10. Calculated optimized molecular structure, HOMO/LUMO level, and UV-vis spectrum of **1a** [M06-2X/6-311+G(d,p)&SDD/PCM(MeCN)]

Figure S11. Calculated optimized molecular structure, HOMO/LUMO level, and UV-vis spectrum of Bi(OTf)₃-coordinated **1a** [M06-2X/6-311+G(d,p)&SDD/PCM(MeCN)]

Figure S12. Gibbs energy profile for Bi(OTf)₃-assisted dehydrogenative Mallory reaction.

		Number of	
	Correction [Hartroo]	Imaginany	Correction [Hertree]
		Inaginary	
	6-31G(d)&LanL2DZ	Frequency	6-311+G(d,p)&SDD
1a (P_s0)	-1418.0043	0	-1418.3201
Bi(OTf) ₃	-2889.01336	0	-2889.66803
intA_s0	-4307.0566	0	-4308.0327
intA_s1	-4306.9475	0	-4307.9275
tsAB_s0	-4306.9386	1	-4307.9166
intB_s1	-4306.9409	0	-4307.8935
intB_s0	-4306.9869	0	-4307.9635
intC_s0	-3345.1826	0	-3345.9308
TfOH	-961.76603	0	-961.99608
intD_s0	-4306.9777	0	-4307.9549
H ₂	-1.164864	0	-1.169701
intE	-4305.9029	0	-4306.8722

Table S6. Summary of the calculation

Cartesian Coordinates for Optimized Structures

1a (P_s0)

С	0.49412300	2.03062100	-0.34239000
С	-0.84409600	2.06744000	-0.76533500
С	-1.51200500	3.26613400	-0.94829000
С	-0.83265300	4.46201000	-0.69837000
С	0.49556600	4.43435700	-0.28331600
С	1.17026400	3.22382800	-0.10592400
С	1.05326000	0.65042400	-0.23689500
С	0.19244400	-0.33360300	-0.58952000
Н	-2.54331600	3.27487700	-1.28926800
Н	-1.33822100	5.41228000	-0.83659800
Н	1.02083400	5.36704100	-0.10173800
Н	2.21165800	3.21741700	0.20003400
С	2.45750900	0.44055400	0.19017500
С	3.33662800	-0.29087800	-0.61545800

С	2.91723900	0.95384100	1.40815700
С	4.64894000	-0.50472600	-0.20965200
Н	2.97777000	-0.69338600	-1.55817300
С	4.22942700	0.73188500	1.81667000
Н	2.23592700	1.51571200	2.04226600
С	5.09808100	0.00418700	1.00754300
Н	5.32265500	-1.07171100	-0.84439500
Н	4.57224200	1.12712400	2.76791100
Н	6.12233800	-0.16606000	1.32419700
С	0.37918100	-1.79461100	-0.54616900
С	-0.21070700	-2.58871300	-1.54012100
С	1.09128100	-2.41789300	0.48868900
С	-0.06490700	-3.97231300	-1.51194500
Н	-0.78026700	-2.10978400	-2.33246400
С	1.22913100	-3.79998800	0.51347500
Н	1.52801900	-1.81350200	1.27796100
С	0.65672400	-4.58131700	-0.48927900
Н	-0.52031900	-4.57520300	-2.29146400
Н	1.78010100	-4.27014300	1.32227600
Н	0.76688300	-5.66120700	-0.46725200
С	-2.53666800	-0.05609100	0.31702900
С	-2.17699100	0.14081200	1.65331200
С	-3.77662200	-0.60780900	-0.00324300
С	-3.06163700	-0.20981400	2.66587600
Н	-1.20562100	0.56607800	1.89771100
С	-4.66062400	-0.95887000	1.01529300
Н	-4.03000900	-0.75678800	-1.04906500
С	-4.30361500	-0.75929300	2.34547700
Н	-2.78549000	-0.05821600	3.70467600
Н	-5.62630500	-1.38942500	0.76941500
Н	-4.99271800	-1.03394900	3.13837400
Р	-1.42769300	0.37552100	-1.05304200

Bi(OTf)₃

0

S	-0.02088300	2.55828700	-0.58341400
0	-1.28365100	1.87173500	-0.96455900
0	0.38750800	3.74328800	-1.28452700
0	1.00988700	1.40730300	-0.59028800
С	-0.14174700	2.97925400	1.20483200
F	-0.36834600	1.88578100	1.89893100
F	-1.14121900	3.83284900	1.35291700
F	0.99259600	3.53807400	1.57737800
S	2.23864900	-1.34077800	0.93221100
0	2.44936400	-2.64471600	1.50183800
0	1.70019100	-0.24047400	1.69685600
0	1.45578100	-1.48083500	-0.43652900
С	3.84270400	-0.78339000	0.23401700
F	3.64287900	0.28765300	-0.52248300
F	4.37115700	-1.74858800	-0.50025400
F	4.65820300	-0.47949700	1.22933100
0	-2.06848900	-2.50941900	1.80084800
0	-1.77275500	-2.24253600	-0.70909700
0	-1.08893600	-0.46152600	0.71071400
С	-3.66907800	-0.83125700	0.48129900
F	-3.59416100	-0.00084800	-0.55199800
F	-3.92249400	-0.15855300	1.58454600
F	-4.60789700	-1.73284900	0.26578800
Bi	-0.11448200	-0.35102300	-1.18127400
S	-2.04757300	-1.68072800	0.63341600

intA_s0

С	3.27478700	2.42922200	0.18086900
С	1.90319000	2.25961600	0.44505900

С	1.04416900	3.33396900	0.60617600
С	1.57631500	4.62430600	0.51693500
С	2.93122200	4.80591300	0.26367600
С	3.79060900	3.71552500	0.08958300
С	4.01659800	1.15295200	-0.03629100
С	3.25142600	0.03283600	-0.00554400
Н	-0.01676200	3.17814600	0.77572200
Н	0.92099800	5.48158400	0.62329400
Н	3.33043800	5.81184800	0.18232600
Н	4.84031000	3.87437200	-0.13384300
С	5.47356500	1.16411100	-0.29788600
С	5.99070600	0.51804900	-1.42600800
С	6.34826800	1.80388100	0.58783800
С	7.36020400	0.51463300	-1.66396600
Н	5.31089000	0.02010900	-2.11084500
С	7.72002900	1.78889200	0.35241600
Н	5.95108800	2.29658900	1.47123600
С	8.22725800	1.14723100	-0.77471100
Н	7.75185200	0.01592500	-2.54453000
Н	8.39185200	2.27826500	1.05023700
Н	9.29648200	1.14005400	-0.96043600
С	3.64709300	-1.38519000	-0.10185400
С	2.81199100	-2.28867900	-0.77233200
С	4.80777900	-1.86326700	0.52203400
С	3.12744800	-3.64310100	-0.81594700
Н	1.90344700	-1.93261000	-1.24686300
С	5.12528100	-3.21482300	0.46461600
Н	5.44926200	-1.17453600	1.06286200
С	4.28680700	-4.10826000	-0.20147600
Н	2.45603600	-4.32996200	-1.32052200
Н	6.02364500	-3.57518700	0.95550800
Н	4.53314000	-5.16479300	-0.23164700
С	1.06175700	-0.13021400	1.99252400
---	-------------	-------------	-------------
С	0.64460700	0.75312400	2.99300000
С	0.93109000	-1.51587800	2.16496500
С	0.06507900	0.25009700	4.15200400
Н	0.74557700	1.82501900	2.85736500
С	0.34517600	-2.00664700	3.32442300
Н	1.23878400	-2.20589500	1.38588700
С	-0.09721200	-1.12455700	4.30904800
Н	-0.27751900	0.93297800	4.92256600
Н	0.20368000	-3.07577300	3.43523400
Н	-0.57813400	-1.51160900	5.20161500
Р	1.55630400	0.50575500	0.39752800
0	0.55106400	0.09675200	-0.72289500
S	-1.63821700	2.54090600	-1.76632800
0	-1.44199900	1.52697500	-2.81467800
0	-0.83896400	3.74307600	-1.76050600
0	-1.66359500	1.79748800	-0.43322000
С	-3.38659000	3.06564600	-1.92295500
F	-4.16794500	2.00562300	-1.76647400
F	-3.58277800	3.58866500	-3.12427300
F	-3.67050600	3.96803500	-0.99649300
S	-3.18155300	-0.04167000	1.59411100
0	-3.67683700	-0.79908100	2.71073400
0	-3.87566300	-0.02403000	0.29999700
0	-1.69825800	-0.34118500	1.26144700
С	-3.12439500	1.73713400	2.16603500
F	-1.87003700	2.14590400	2.31553900
F	-3.74217000	1.81984900	3.33324200
F	-3.74121000	2.50666200	1.28809900
0	-0.99231000	-4.14066300	1.23219500
0	-0.37520100	-2.40428200	-0.45379700
0	-2.70991800	-2.77611500	-0.03332900

С	-1.37127100	-4.63406500	-1.32973800
F	-1.66424800	-4.00368900	-2.46493300
F	-2.26398200	-5.58419500	-1.11130400
F	-0.16443700	-5.17815200	-1.43714300
Bi	-1.50066700	-0.44127700	-0.87475400
S	-1.39166200	-3.42357200	0.04456600
intA_s1			
С	-3.37580300	-2.28592100	0.31841700
С	-1.99153800	-2.10056700	0.68449600
С	-1.16200800	-3.19354100	0.94658000
С	-1.68284900	-4.47189600	0.83170900
С	-3.02386500	-4.67414100	0.42837700
С	-3.85572000	-3.61009100	0.15981500
С	-4.07563900	-1.07281500	0.07533300
С	-3.23349200	0.09430800	0.22368300
Н	-0.11453400	-3.04153900	1.18924900
Н	-1.03916700	-5.32854500	0.99922400
Н	-3.39174300	-5.68665900	0.30073200
Н	-4.86610000	-3.78126300	-0.19452500
С	-5.45037200	-1.00432400	-0.39800300
С	-5.80284900	-0.12436600	-1.44325400
С	-6.46314400	-1.78700500	0.19178900
С	-7.11482900	-0.05307900	-1.89354800
Н	-5.02912900	0.46934200	-1.91931500
С	-7.77363500	-1.69800300	-0.25402100
Н	-6.21691300	-2.42515200	1.03487200
С	-8.10400100	-0.83540800	-1.30177600
Н	-7.36507500	0.61560600	-2.71071800
Н	-8.54533000	-2.29274700	0.22399400
Н	-9.12990600	-0.77136100	-1.64951500
С	-3.64254900	1.46925300	0.22102800

С	-2.71508400	2.47229000	-0.17103500
С	-4.93842800	1.88133700	0.63982300
С	-3.06354200	3.80879700	-0.14625300
Н	-1.73375200	2.18304100	-0.53622200
С	-5.27266700	3.22511300	0.66248500
Н	-5.64488700	1.14012700	0.99528100
С	-4.34452400	4.19204800	0.26921300
Н	-2.33728800	4.55273900	-0.45796400
Н	-6.25796500	3.52633300	1.00261300
Н	-4.61557300	5.24278300	0.29062900
С	-0.92556500	0.26165000	2.12314400
С	-0.81711800	-0.58817300	3.23042100
С	-0.50461400	1.59443300	2.22448700
С	-0.26116200	-0.11547300	4.41415500
Н	-1.15023100	-1.61937600	3.16412000
С	0.04148000	2.06154400	3.41260700
Н	-0.55012800	2.26044800	1.37173000
С	0.17137300	1.20559300	4.50444800
Н	-0.15919900	-0.78330700	5.26331900
Н	0.39793100	3.08481300	3.46080100
Н	0.61814100	1.56652900	5.42535200
Р	-1.56077000	-0.39230100	0.57387800
0	-0.57382800	0.01285000	-0.59197000
S	1.34978400	-2.71206800	-1.63593600
0	1.08934700	-1.77082200	-2.73646800
0	0.52127400	-3.88344900	-1.47257000
0	1.52000300	-1.87907600	-0.36917300
С	3.05710600	-3.31265200	-1.91721300
F	3.87650500	-2.27141100	-1.97655700
F	3.10372300	-3.97723600	-3.06335100
F	3.42448400	-4.11309300	-0.92879000
S	3.33569300	-0.03094000	1.40703500

0	3.98036000	0.77084300	2.41113100
0	3.94115000	-0.25287000	0.09108500
0	1.87045100	0.39860500	1.13698800
С	3.10545400	-1.72031200	2.17112700
F	1.82145900	-1.95186400	2.41838400
F	3.77458800	-1.75960400	3.31246100
F	3.57579900	-2.64865200	1.35746600
0	1.40978200	4.09228200	1.04997700
0	0.58165800	2.43252000	-0.61144800
0	2.96638900	2.69206900	-0.37142100
С	1.59289800	4.63665400	-1.51609300
F	1.76412400	4.04093500	-2.69183400
F	2.52887200	5.55609800	-1.34801000
F	0.39652500	5.21791100	-1.49645000
Bi	1.46322100	0.32997500	-0.96379900
S	1.69001000	3.38750400	-0.18091600

tsAB_s0

С	-3.03141700	-2.80507000	0.21487500
С	-1.69030700	-2.46781000	0.48947300
С	-0.68983200	-3.42550600	0.56843700
С	-1.03743100	-4.76461900	0.38650100
С	-2.35546000	-5.11446200	0.09836500
С	-3.35136700	-4.14501500	-0.01197600
С	-3.90514100	-1.62614800	0.03596100
С	-3.18166400	-0.38692100	0.10929900
Н	0.34615000	-3.13769300	0.72403900
Н	-0.26602400	-5.52607700	0.42227800
Н	-2.60685700	-6.15496100	-0.07943100
Н	-4.35070900	-4.43315300	-0.31528200
С	-0.92780200	-0.03529000	2.02235400
С	-0.35059000	-0.90472700	2.95271600

С	-0.93998800	1.34433400	2.27025300
С	0.24941400	-0.39355700	4.09871500
Н	-0.34478300	-1.97511200	2.77605600
С	-0.33520500	1.84722700	3.41432100
Н	-1.37256700	2.03641000	1.55771400
С	0.27191900	0.98026200	4.32117500
Н	0.71718800	-1.07060900	4.80624600
Н	-0.30837500	2.91992700	3.57024600
Н	0.76862100	1.37844700	5.20000400
Р	-1.49508700	-0.68540700	0.44637900
0	-0.48528000	-0.26910100	-0.68557200
S	2.02870100	-2.40530800	-1.72490700
0	1.63306100	-1.47643000	-2.79471600
0	1.43387900	-3.71918300	-1.64627100
0	1.98462100	-1.61964000	-0.41700400
С	3.83096500	-2.65360100	-1.94365600
F	4.44104900	-1.48072400	-1.84335600
F	4.05914500	-3.17161800	-3.14215300
F	4.29082700	-3.47597500	-1.01359400
S	3.29400800	0.48686500	1.49891900
0	3.70304400	1.33429100	2.58611800
0	3.94190400	0.54673900	0.18443400
0	1.77127700	0.55518900	1.22141400
С	3.52689000	-1.26748900	2.10238400
F	2.35920900	-1.86383700	2.30260600
F	4.18901600	-1.22864300	3.24832100
F	4.22912200	-1.95051200	1.21574300
0	0.41168000	4.16726800	1.23519500
0	0.07099500	2.32550600	-0.40892500
0	2.30989600	3.17091500	-0.11352800
С	0.52847500	4.68475500	-1.33832000
F	0.89285500	4.13046400	-2.49116100

F	1.17885100	5.82354100	-1.17216700
F	-0.78118000	4.92783800	-1.37492100
Bi	1.43645100	0.54077700	-0.89606700
S	0.89732300	3.52871700	0.03304200
С	-3.84724500	0.87931100	0.05542300
С	-3.20370700	2.05540500	-0.36455500
С	-5.97571900	2.17208700	0.09605500
С	-3.93285900	3.21346800	-0.58158200
Н	-2.13830900	2.04459300	-0.58052300
С	-5.33406000	3.27944000	-0.39203300
Н	-7.04045400	2.20004000	0.31540900
Н	-3.40273500	4.09337000	-0.93614300
Н	-5.86929000	4.19832000	-0.60017500
С	-5.26941300	-1.63648800	-0.23991300
С	-6.16456900	-2.62380400	0.28228800
С	-5.83783100	-0.39012600	-0.83532400
С	-7.51700800	-2.51158700	0.16573300
Н	-5.74364700	-3.43893900	0.86192400
С	-7.29149000	-0.38255600	-1.01799100
С	-8.06653800	-1.38651000	-0.54074800
Н	-8.17677400	-3.25608300	0.59430600
Н	-7.73228000	0.44257300	-1.56866000
Н	-9.13876200	-1.35180800	-0.71546800
С	-5.28444100	0.93237400	0.31495200
Н	-5.62115200	0.38533500	1.19627700
Н	-5.28900700	-0.04585900	-1.71587800

intB_s1

С	-3.06321500	-2.72761600	0.15754100
С	-1.70370100	-2.44608300	0.40567800
С	-0.74052900	-3.43952200	0.48543100
С	-1.14319200	-4.76797300	0.32812800

С	-2.47854700	-5.06301900	0.07328700
С	-3.44214000	-4.05547700	-0.02389500
С	-3.90605300	-1.51706200	0.00542300
С	-3.19812700	-0.32205300	0.03561900
Н	0.30516600	-3.18894500	0.63780300
Н	-0.40508600	-5.56098000	0.37034200
Н	-2.77890800	-6.09511700	-0.07722400
Н	-4.46464500	-4.30995100	-0.27777300
С	-1.00307400	-0.05833600	2.01801100
С	-0.46284200	-0.94277600	2.95663800
С	-1.00832000	1.32170000	2.26429400
С	0.10860300	-0.44242100	4.12100400
Н	-0.46353600	-2.01141900	2.76887200
С	-0.42970600	1.81181500	3.42727300
Н	-1.41866200	2.01564600	1.53887500
С	0.13962400	0.93155500	4.34640400
Н	0.54716500	-1.12537500	4.84123900
Н	-0.39392100	2.88273400	3.59178800
Н	0.61459300	1.32065100	5.24121500
Р	-1.47782900	-0.67202000	0.40638800
0	-0.50299200	-0.17648800	-0.70652000
S	1.91711000	-2.36000600	-1.83130700
0	1.59876900	-1.34880400	-2.85183500
0	1.24945600	-3.63978500	-1.84271800
0	1.88386700	-1.64716900	-0.48082400
С	3.70845500	-2.69439100	-2.02382700
F	4.37746300	-1.56234200	-1.85227600
F	3.93803400	-3.16592800	-3.24042900
F	4.09985500	-3.58341600	-1.12421700
S	3.23927700	0.28674100	1.57156000
0	3.67074400	1.06365600	2.70124900
0	3.91104600	0.37300200	0.26867500

0	1.72848600	0.44305000	1.26626200
С	3.37340400	-1.50218200	2.09816300
F	2.17096900	-2.04240200	2.25248900
F	4.01435300	-1.54777400	3.25499000
F	4.05360300	-2.18179800	1.19315200
0	0.63980600	4.12866100	1.39593400
0	0.17258800	2.37366400	-0.31732100
0	2.45971700	3.02862100	0.01977900
С	0.82672000	4.72781700	-1.16312100
F	1.15499300	4.17374000	-2.32789100
F	1.58167900	5.79252000	-0.95409600
F	-0.45064700	5.09177400	-1.20324400
Bi	1.47935000	0.56602600	-0.86205800
S	1.07691300	3.49961600	0.17214700
С	-3.80697700	0.97016800	-0.10068200
С	-3.09554200	2.07388300	-0.57922700
С	-5.88294300	2.32845900	-0.25560100
С	-3.73751200	3.26222600	-0.88847300
Н	-2.02432200	1.98778200	-0.74390100
С	-5.14659300	3.37166000	-0.73146500
Н	-6.95224800	2.43897900	-0.09975700
Н	-3.16116700	4.10335300	-1.25692600
Н	-5.63486100	4.31140900	-0.97097900
С	-5.33197500	-1.49393200	-0.19525800
С	-6.19690300	-2.40051800	0.42621800
С	-5.88700700	-0.29463100	-0.87331000
С	-7.57259100	-2.24517000	0.36985100
Н	-5.77786400	-3.20938600	1.01638400
С	-7.34717600	-0.25372000	-0.98403700
С	-8.14245000	-1.16511200	-0.35972800
Н	-8.21714300	-2.95021600	0.88285600
Н	-7.78573800	0.55209300	-1.56548500

Н	-9.22258100	-1.08458000	-0.43308600
С	-5.27611600	1.03901800	0.08322000
Н	-5.60317700	0.67910500	1.06639800
Н	-5.39051300	-0.07175500	-1.82321000
intB_s0			
С	-3.24480300	-2.48669800	0.51776100
С	-1.85205800	-2.26289900	0.56723100
С	-0.93626300	-3.29689700	0.74115900
С	-1.41633300	-4.59110500	0.91606300
С	-2.79132800	-4.81679000	0.96679900
С	-3.70422500	-3.78153100	0.78062300
С	-4.04558100	-1.27667400	0.21031700
С	-3.22062900	-0.06287200	0.21296600
Н	0.13023900	-3.09235200	0.74241900
Н	-0.72110000	-5.41455400	1.03545100
Н	-3.16307200	-5.81850800	1.15834400
Н	-4.76328800	-3.98504300	0.87233500
С	-0.88565100	0.03503600	2.10398700
С	-0.40404000	-0.90755400	3.01867000
С	-0.74290600	1.40348700	2.37535100
С	0.25609600	-0.48434500	4.16722600
Н	-0.52299200	-1.96871000	2.83253800
С	-0.07910000	1.81759800	3.52217500
Н	-1.10618000	2.15328700	1.68402500
С	0.43285100	0.87433600	4.41090300
Н	0.64518200	-1.22078700	4.86277400
Н	0.06464500	2.87795200	3.69624500
Н	0.97243100	1.20066100	5.29409600
Р	-1.51220800	-0.50990200	0.50704500
0	-0.57040700	-0.03746200	-0.64488400
S	1.52288700	-2.42561700	-1.90630700

0	1.28293700	-1.37296600	-2.90625700
0	0.68794500	-3.60263600	-1.87722300
0	1.66449300	-1.72442600	-0.55631000
С	3.23855300	-2.99786400	-2.20221500
F	4.06559300	-1.97113200	-2.06764300
F	3.33111000	-3.48551400	-3.43066500
F	3.55400100	-3.94122800	-1.32785700
S	3.35916200	0.04284100	1.38137600
0	3.95829800	0.76345100	2.47094300
0	3.92900900	0.07383600	0.02765400
0	1.85160000	0.34813500	1.19984600
С	3.35787800	-1.75449700	1.89445500
F	2.12376800	-2.17339500	2.14607500
F	4.08261600	-1.87413800	2.99513300
F	3.89135800	-2.49132900	0.93697200
0	1.11604200	4.07959600	1.48672500
0	0.38127800	2.43286100	-0.23768000
0	2.73723400	2.87791600	-0.04468600
С	1.17976200	4.74943700	-1.05855500
F	1.38452000	4.21616400	-2.26018300
F	2.03016600	5.74329800	-0.86724100
F	-0.06420900	5.21517500	-0.99930200
Bi	1.45721800	0.51983400	-0.90695600
S	1.41514700	3.45780600	0.21818600
С	-3.71800000	1.17798600	-0.02987800
С	-2.89481900	2.34140000	-0.26258300
С	-5.70706100	2.62994800	-0.59643400
С	-3.44522200	3.51726300	-0.63672000
Н	-1.81429300	2.24092700	-0.23536900
С	-4.87795700	3.65203000	-0.84811900
Н	-6.77026300	2.73273500	-0.79334400
Н	-2.79770300	4.36237800	-0.84883600

Н	-5.26006500	4.58563000	-1.24810100
С	-5.33185100	-1.21551000	-0.23032800
С	-6.15907900	-2.36741000	-0.56717600
С	-5.95051400	0.12072300	-0.60220100
С	-7.50014100	-2.24837100	-0.65513500
Н	-5.68377700	-3.31922700	-0.77295200
С	-7.43067900	0.13951300	-0.27811600
С	-8.15593700	-0.98256000	-0.34106200
Н	-8.10772800	-3.10730700	-0.92238200
Н	-7.89963100	1.09001900	-0.04072100
Н	-9.22573500	-0.97010400	-0.15852100
С	-5.22707000	1.33490700	-0.00045800
Н	-5.49144800	1.35389400	1.07657100
Н	-5.86741300	0.19288500	-1.70781800

intC_s0

С	1.27274200	0.41376300	2.02994600
С	0.50834700	-0.71983100	1.67987600
С	-0.62229100	-1.12072500	2.38210300
С	-1.00963000	-0.37823200	3.49333300
С	-0.24784900	0.72197500	3.88492600
С	0.88610500	1.11473300	3.17528400
С	2.42131200	0.63833800	1.11087600
С	2.58361200	-0.47015700	0.16973800
Н	-1.18691300	-1.99608900	2.07208700
Н	-1.89057300	-0.66301300	4.05879100
Н	-0.53315200	1.28232600	4.76988800
Н	1.47399100	1.94242700	3.54619200
С	1.45999000	-3.26051300	0.38218500
С	2.69994900	-3.74470800	0.80932600
С	0.39721100	-4.14285700	0.16108500
С	2.87803100	-5.11103600	1.00236600

Н	3.51605900	-3.04648700	0.97578700
С	0.57789500	-5.50603000	0.37259500
Н	-0.56181500	-3.76084600	-0.17585100
С	1.81735500	-5.98899800	0.78860900
Н	3.84332000	-5.48939400	1.32234600
Н	-0.24661400	-6.19209800	0.20755800
Н	1.95665800	-7.05397500	0.94621400
Р	1.23578100	-1.47648800	0.24133100
0	0.13146600	-1.46932600	-0.99613300
S	-0.50821900	2.37327000	-0.43787600
0	0.06876600	1.89024300	-1.71187200
0	0.27912500	3.06656200	0.53926800
0	-1.29873200	1.15047400	0.08551900
С	-1.89235800	3.47277800	-0.93196600
F	-2.64990100	2.80180000	-1.79732200
F	-1.41028000	4.55659700	-1.51093100
F	-2.60597700	3.79919900	0.12672200
S	-4.02776800	-0.89094300	-0.14876700
0	-5.02126600	-1.91644000	-0.33219500
0	-4.02257700	0.30854100	-0.99517600
0	-2.57665400	-1.43336500	-0.18605500
С	-4.17373100	-0.33416100	1.59662000
F	-3.85010800	-1.34327200	2.39474300
F	-5.43000600	0.01888300	1.81526500
F	-3.37532700	0.68982700	1.82164600
Bi	-1.35664000	-0.26079800	-1.54200700
С	3.69283900	-0.50558300	-0.76776900
С	3.88514400	-1.56587500	-1.67176400
С	5.68201100	0.53074300	-1.67262600
С	4.95805500	-1.58163000	-2.55035400
Н	3.17627200	-2.39139800	-1.68521300
С	5.86855100	-0.52648300	-2.55659200

Н	6.37279500	1.37096800	-1.69307500
Н	5.07907800	-2.41445900	-3.23663500
Н	6.70538000	-0.52201900	-3.24733300
С	3.27407300	1.69696200	1.09879400
С	3.18812200	2.88008600	1.95257700
С	4.42463900	1.77478900	0.11154900
С	4.30601500	3.56267800	2.27808700
Н	2.21794100	3.22426500	2.29159300
С	5.69159300	2.18982700	0.84672700
С	5.61492800	3.07233900	1.85014500
Н	4.24682700	4.44984000	2.90140100
Н	6.64378200	1.78910100	0.51115400
Н	6.50745900	3.42360600	2.35949800
С	4.61512600	0.55714700	-0.77437800
Н	4.18635500	2.62669000	-0.55723400

TfOH

S	-0.84178400	0.14245300	0.07926100	
0	-1.24205200	-0.24155200	1.41134400	
0	-1.20033500	1.38644900	-0.53879300	
С	0.98957800	-0.00675500	-0.00099100	
F	1.33427600	-1.23808300	0.35050000	
F	1.52069100	0.86347500	0.83936700	
F	1.40478400	0.23912700	-1.22951600	
0	-1.22753400	-1.04243800	-0.93379800	
Н	-1.44731300	-1.83905600	-0.41540500	

intD_s0

С	-3.27074200	-2.46303800	0.54311600
С	-1.87492600	-2.25967700	0.59833500
С	-0.96486900	-3.31165700	0.65886200
С	-1.45196600	-4.61363400	0.70081700

С	-2.82908500	-4.83259900	0.73115600
С	-3.73517400	-3.77793600	0.66563900
С	-4.07214300	-1.22398100	0.43727900
С	-3.22592700	-0.01574100	0.46232000
Н	0.10320200	-3.11557300	0.66617700
Н	-0.76217000	-5.44968900	0.72587000
Н	-3.20802300	-5.84662400	0.81211100
Н	-4.79403400	-3.98788700	0.74221000
С	-0.80696000	-0.04040900	2.22528200
С	-0.24396900	-1.00524000	3.06487600
С	-0.67582400	1.32145600	2.52960300
С	0.48956200	-0.60521300	4.17672000
Н	-0.35555000	-2.06107600	2.84316700
С	0.06381900	1.71275300	3.63705700
Н	-1.10915200	2.08025200	1.88706200
С	0.65803800	0.74919900	4.45092600
Н	0.94433300	-1.35373200	4.81738500
Н	0.20148600	2.76897900	3.83910900
Н	1.25685800	1.05765300	5.30172300
Р	-1.51172900	-0.51532200	0.64588900
0	-0.61420700	-0.00755100	-0.52589200
S	1.43655600	-2.35457900	-1.98037300
0	1.12808800	-1.26510300	-2.91987900
0	0.62832600	-3.55016200	-1.96318200
0	1.63066200	-1.70956200	-0.60869600
С	3.14610400	-2.87498400	-2.38655600
F	3.95713400	-1.83520800	-2.25148500
F	3.18432600	-3.30855200	-3.63807500
F	3.52739000	-3.84601200	-1.57109900
S	3.40510400	-0.01947900	1.33328900
0	4.04303000	0.65551900	2.43039100
0	3.92392900	0.06837800	-0.03758700

0	1.89182000	0.29190900	1.22341000
С	3.42563400	-1.83696500	1.76932000
F	2.20340000	-2.27076900	2.05205900
F	4.19398500	-2.00123800	2.83421900
F	3.92084200	-2.53051700	0.76058200
0	1.18347600	4.08195900	1.62907300
0	0.38014200	2.43142400	-0.05940000
0	2.74225500	2.88204700	0.03218200
С	1.12928800	4.73757800	-0.92491000
F	1.33090700	4.20287000	-2.12788900
F	1.94628300	5.76273300	-0.75680000
F	-0.12999300	5.15581400	-0.84755500
Bi	1.40399900	0.54570700	-0.85392900
S	1.43168400	3.45827100	0.35069500
С	-3.66148900	1.20454000	0.05104800
С	-2.81120500	2.27653900	-0.44329600
С	-5.49110000	2.06532800	-1.40066600
С	-3.28381300	3.08109200	-1.42188300
Н	-1.77081100	2.34441300	-0.14394000
С	-4.60874300	2.87889000	-1.99920700
Н	-6.48493200	1.89971000	-1.80542800
Н	-2.62841100	3.83328800	-1.85035300
Н	-4.85865700	3.38791900	-2.92448000
С	-5.41071800	-1.08511000	0.20490000
С	-6.29184600	-2.10982500	-0.30428000
С	-7.59991300	-1.86375000	-0.54461500
Н	-5.87057000	-3.06071400	-0.60496100
С	-7.44524200	0.45036800	0.17012900
С	-8.19511100	-0.56247000	-0.28368200
Н	-8.21800900	-2.63777000	-0.98829000
Н	-7.87961900	1.43347000	0.33989100
Н	-9.25133500	-0.41986800	-0.48889200

С	-5.99131700	0.28963000	0.49484800
Н	-5.89919900	0.39596300	1.58758500
С	-5.14073600	1.47096900	-0.05858400
Н	-5.33124600	2.29042400	0.65771600
H_2			
Н	0.00000000	0.00000000	0.36847500
Н	0.00000000	0.00000000	-0.36847500
intE			
С	-3.22197000	-2.52510400	0.42056600
С	-1.82683200	-2.31039300	0.46399400
С	-0.91379100	-3.32931400	0.68797000
С	-1.39744300	-4.61968100	0.91049500
С	-2.76857400	-4.83514600	0.96989200
С	-3.68167000	-3.80150400	0.74134500
С	-4.00022600	-1.28864800	0.08471800
С	-3.23490900	-0.14988300	0.03696000
Н	0.15169600	-3.12128100	0.69535600
Н	-0.70442800	-5.43965400	1.06194100
Н	-3.14765200	-5.82576600	1.20005100
Н	-4.73597300	-4.01125100	0.85311300
С	-0.99439600	0.00848800	2.02780900
С	-0.54916700	-0.91896800	2.97660100
С	-0.88336100	1.38204000	2.28861200
С	0.03835400	-0.47391800	4.15538800
Н	-0.63985800	-1.98347300	2.79433800
С	-0.28970100	1.81695200	3.46592200
Н	-1.21737500	2.11782100	1.56797400
С	0.18222100	0.89011300	4.39289400
Н	0.39781600	-1.19690900	4.88028000
Н	-0.16887300	2.88084200	3.63535200

Н	0.66628400	1.23311500	5.30158200
Р	-1.52186200	-0.55049300	0.40228600
0	-0.56570300	-0.04297100	-0.71641700
S	1.57297400	-2.40985100	-1.91128500
0	1.36759600	-1.35299200	-2.91424400
0	0.73856800	-3.58759100	-1.91586400
0	1.66530900	-1.71453400	-0.55371000
С	3.29934000	-2.97711700	-2.14736500
F	4.11678100	-1.94669400	-1.98391500
F	3.43694400	-3.46462400	-3.37132300
F	3.58706000	-3.91855600	-1.26152500
S	3.27089800	0.05372600	1.45751400
0	3.82393800	0.77651700	2.56946400
0	3.89064900	0.09086200	0.12523200
0	1.76950900	0.34915300	1.21640100
С	3.26166400	-1.74432600	1.96710100
F	2.02082300	-2.16769700	2.17630000
F	3.94910900	-1.86246800	3.09121000
F	3.82943000	-2.47752400	1.02712600
0	1.02458800	4.05990500	1.49200500
0	0.35254000	2.43222300	-0.27738400
0	2.69745400	2.86883200	0.00836700
С	1.18672100	4.75918600	-1.04228500
F	1.43660100	4.23718900	-2.24011800
F	2.03450000	5.74552500	-0.80591300
F	-0.05570300	5.22964600	-1.02535700
Bi	1.47408300	0.53303500	-0.90647100
S	1.36755400	3.45251900	0.22803200
С	-3.76578300	1.15521700	-0.22396000
С	-5.17149200	1.29876800	-0.30294300
С	-2.92844300	2.27985600	-0.39080600
С	-5.69345300	2.60146600	-0.45744400

С	-3.46734100	3.53487600	-0.55970500
Н	-1.85074800	2.15282800	-0.41580000
С	-4.86298300	3.69640900	-0.57121000
Н	-6.76423700	2.75911800	-0.50052400
Н	-2.81087700	4.38918600	-0.68820400
Н	-5.29292800	4.68546700	-0.69102700
С	-5.41649000	-1.19017000	-0.20191500
С	-6.22897300	-2.32340600	-0.43627900
С	-6.00525300	0.10272900	-0.30339500
С	-7.58412400	-2.20582400	-0.64874600
Н	-5.77379000	-3.29983100	-0.51204800
С	-7.40204500	0.18749100	-0.48857900
С	-8.18224900	-0.93757400	-0.63796100
Н	-8.18177200	-3.09154100	-0.83657900
Н	-7.87975000	1.15786200	-0.54111500
Н	-9.25261600	-0.83737300	-0.78525200

Figure 13. UV-vis absorption spectra (dotted lines) and emission (solid lines) spectra of 1a, 2a, 2j, 2k, 2l, 2l', 3fa, and 3fb in CHCl₃ (1.0×10^{-5} M), and fluorescence images of 2j, 2k, 2l, 2l', 3fa, and 3fb.

compd	$\lambda_{ m abs}$ (nm)	$\lambda_{em} (nm)^b$	$arPhi_{F}{}^{c}$	$\Delta v / \text{cm}^{-1d}$
1a	249, 342	438	0.11	6409
2a ^e	254, 315, 364, 382	425	0.56	2649
2j	260, 379	448	0.58	4064
2 k	260, 403	434	0.75	1772
21	212, 270, 324, 392	443	0.16	2937
2I'	262, 310, 344, 391, 412	432	0.16	1124
3fa	244, 291, 341, 396	473	>0.99	4111
3fb	240, 258, 298, 317, 440	620	0.04	6598

Table S7. Optical properties of 1a, 2a, 2j, 2k, 2l, 2l', 3fa, and 3fb.^a

^{*a*} Measured in 1.0×10^{-5} M solution of CHCl₃. ^{*b*} Excited at **1a** (249 nm), **2a** (254 nm), **2j** (260 nm), **2k** (260 nm), **2l** (270 nm), **2l'** (262 nm), **3fa** (244 nm), and **3fb** (298 nm). ^{*c*}Absolute fluorescence quantum yields. ^{*d*}Stokes shifts. ^{*e*}The optical data of **2a** was taken from ref. S2.

Electrochemical Properties

The IUPAC convention was used to report the CV and DPV data. The CV and DPV were recorded in MeCN (0.01 M, degassed by N_2 gas bubbling) containing 0.1 M n-Bu₄NPF₆ with a Pt working electrode, a Pt counter electrode, and a Ag/Ag+ reference electrode. The measurements were performed at room temperature.

Figure S14. Cyclic voltammograms (CV; blue line, from 0 V to 1.5 V then back to 0 V) and differential pulse voltammograms (DPV; orange line) of **2j** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.10 V/s.

Figure S15. Cyclic voltammograms (CV; blue line, from 0 V to 1.4 V then back to 0 V) and differential pulse voltammograms (DPV; orange line) of $2\mathbf{k}$ in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.10 V/s.

Figure S16. Cyclic voltammograms (CV; blue line, from 0 V to 1.5 V then back to 0 V) and differential pulse voltammograms (DPV; orange line) of **2l** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.10 V/s.

Figure S17. Cyclic voltammograms (CV; blue line, from 0 V to 1.4 V then back to 0 V) and differential pulse voltammograms (DPV; orange line) of **21**' in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.10 V/s.

Figure S18. Cyclic voltammograms (CV; blue line, from 0 V to 1.5 V then back to 0 V) and differential pulse voltammograms (DPV; orange line) of **3fa** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.10 V/s.

Figure S19. Cyclic voltammograms (CV; blue line, from 0 V to 1.5 V then back to 0 V) and differential pulse voltammograms (DPV; orange line) of **3fb** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.10 V/s.

 Table S8. Absorption wavelengths, HOMO-LUMO energy gaps and differential pulse voltammetry data of compounds 2a, 2j, 2k, 2l, 2l', 3fa, and 3fb.

compd	$\lambda_{ ext{onset}}^{ ext{abs}}$ (nm) ^a	$E_{g}^{opt} (eV)^{b}$	$E_{\rm ox}$ (V) ^c	$E_{\rm HOMO}({\rm eV})^d$	E _{LUMO} (eV) ^e
2 a ^{<i>f</i>}	397	3.12	1.32	-6.12	-3.00
2j	422	2.94	0.91	-5.71	-2.77
2k	424	2.92	0.99	-5.79	-2.87
21	429	2.89	1.08	-5.88	-2.99
2I'	428	2.90	1.07	-5.87	-2.97
3fa	445	2.79	0.72	-5.52	-2.73
3fb	521	2.38	0.32	-5.12	-2.74

^{*a*} Measured in CHCl₃. ^{*b*} Determined from the onset of the absorption spectra. ^{*c*} Performed in MeCN in the presence of Bu₄NPF₆. v = 0.10 V/s. Values determined by DPV, versus Fc/Fc⁺. ^{*d*} The approximation for Fc/Fc⁺ level is -4.8 eV versus vacuum: $E_{\text{HOMO}} = -4.8 - E_{\text{ox}}$. ^{*e*} Estimated from E_{HOMO} and E_{g}^{opt} : $E_{\text{LUMO}} = E_{\text{HOMO}} + E_{g}^{\text{opt}}$. ^{*f*} The data of **2a** was taken from ref. S2.

Copies of NMR Spectra

 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 2a]$

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2b]

S65

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2d]

$[^{1}H, ^{13}C{^{1}H}, ^{19}F{^{1}H}, and ^{31}P{^{1}H} NMR$ Spectra of **2e**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2g]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2h]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2j]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **2**I']

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2o]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **20-H**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **3fb**]

References

- (S1) Y. Unoh, K. Hirano, T. Satoh and M. Miura, Angew. Chem., Int. Ed., 2013, 52, 12975.
- (S2) K. Nishimura, Y. Unoh, K. Hirano and M. Miura, Chem. Eur. J., 2018, 24, 13089.
- (S3) S. Xu, K. Nishimura, K. Saito, K. Hirano and M. Miura, Chem. Sci., 2022, 13, 10950.
- (S4) Y. Tokura, S. Xu, Y. Kojima, M. Miura and K. Hirano, Chem. Commun., 2022, 58, 12208.

(S5) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Jr., Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
(S6) Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.