Electronic Supplementary Information

Stereodivergent Assembly of δ-Valerolactones with an Azaarene-Containing Quaternary Stereocenter Enabled by Cu/Ru Relay Catalysis

Kui Tian,^{1,+} Zhuan Jin,^{1,+} Xin-Lian Liu,¹ Ling He,¹ Hong-Fu Liu,¹ Pin-Ke Yu,¹ Xin Chang,¹ Xiu-Qin Dong,^{1*} and Chun-Jiang Wang^{1,2*}

¹College of Chemistry and Molecular Sciences, Wuhan University, China 430072; ²State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, China 230021 ⁺These authors contributed equally to this work

*E-mail: xiuqindong@whu.edu.cn (X.-Q.D.); cjwang@whu.edu.cn (C.-J.W.)

Table of Contents

1. General remarks	S2
2. General procedure for the preparation of α -azaaryl acetate substrates	S2
3. General procedure for the stereodivergent construction of δ -valerolactones	S5
4. Characterization data for the products	S6
5. Absolute configuration determination of (3 <i>R</i> ,6 <i>S</i>)- 3 t	
6. Gram scale reaction and synthetic transformations	S39
7. Control experiments	S45
8. References	S50
9. NMR spectra	

1. General remarks

¹H NMR spectra were recorded on a Bruker 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. ¹³C NMR spectra were recorded on a Bruker 101 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. ¹⁹F NMR spectra were recorded on a Bruker 376 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal CF₃COOH signal at -76.55 ppm. The data are reported as follows: (s = single, d = double, t = triple, q = quartet, m = multipleor unresolved, brs = broad single, coupling constant(s) in Hz, integration). High resolution mass spectra (HR-MS) were recorded on a LTQ-Orbitrap Elite mass spectrometer with CH₃CN/MeOH as solvent mixture for the measurements. Commercially obtained reagents were used without further purification. Solvents were purified prior to use according to the standard methods. Unless otherwise noted, all reactions were carried out under nitrogen atmosphere. Enantiomeric ratios were determined by chiralphase HPLC analysis in comparison with authentic racemic materials. Optical rotations were measured on a Rudolph Research Analytical Autopol VI polarimeter with $[\alpha]_D$ values reported in degrees; concentration (c) is in g/100 mL. Substrates 1^[1], substrates 2a, 2e-2l, 2n-2o, 2q-2s^[2] were prepared according to the literature procedure. Chiral ligands L1-L5^[3] were prepared according to the literature procedure. The chiral Ru catalysts [Ru]-1~[Ru]-3 were prepared according to the reported procedure.^[4,5] The racemic products were obtained by running reactions with racemic catalysts or blending equal amount of two enantiomers. The absolute configuration of the product 3t was assigned by crystalline structure, and those of other products were deduced on the basis of this result.

2. General procedure for the preparation of α-azaaryl acetate substrates

Take substrate **2a** as an example: Step1: To a solution of diisopropylamine (3.0 equiv) in THF (10 mL) at 0 °C was added "BuLi (2.5 M in hexanes, 3.0 equiv). The mixture was stirred at 0 °C for 30 min then cooled to -78 °C. Then, 2-methylpyridine in THF (5 mL) was added dropwise, the mixture was stirred at -78 °C for 10 min, dimethyl carbonate (1.2 equiv) was added, the mixture was stirred at -78

 $^{\circ}$ C for 15 min then at 0 $^{\circ}$ C for 2 h. The mixture was quenched by adding H₂O (20 mL) and extracted with EtOAc. After removal of solvent under vacuum, the crude mixture was purified by flash column chromatography (0 to 35% EtOAc in hexanes) to give the intermediate methyl 2-(pyridin-2-yl)acetate.

Step 2: To a solution of diisopropylamine (3.0 equiv) in THF (10 mL) at 0 °C was added "BuLi (2.5 M in hexanes, 3.0 equiv). The mixture was stirred at 0 °C for 30 min then cooled to -78 °C. Thereafter, methyl 2-pyridylacetate (1.0 equiv) in THF (5 mL) was added dropwise. After the mixture being stirred at -78 °C for 30 min, methyl iodide (5.0 equiv) was added, and the mixture was stirred at -78 °C for 15 min then at r.t. for 3 h. The mixture was quenched by adding H₂O (20 mL) at 0 °C and extracted with EtOAc. After removal of solvent under vacuum, the crude mixture was purified by flash column chromatography (0 to 35% EtOAc in hexanes) to give the desired product.

Methyl 2-(5-fluoropyridin-2-yl)propanoate (2b):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.39 (d, *J* = 2.9 Hz, 1H), 7.41 – 7.33 (m, 1H), 7.32 – 7.26 (m, 1H), 3.95 (q, *J* = 7.2 Hz, 1H), 3.68 (s, 3H), 1.54 (d, *J* = 7.2 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.9, 158.5 (d, *J* = 255.3 Hz), 155.7 (d, *J* = 4.3 Hz), 137.5 (d, *J* = 23.7 Hz), 123.5 (d, *J* = 18.8 Hz), 122.9 (d, *J* = 4.3 Hz), 52.2, 47.1, 17.3.

¹⁹F NMR (377 MHz, Chloroform-*d*) δ -129.49.

HRMS (ESI+) Calcd. For C₉H₁₁FNO₂⁺ ([M+H]⁺): 184.0768, found: 184.0768.

Methyl 2-(5-bromopyridin-2-yl)propanoate (2c):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.59 (d, *J* = 2.4 Hz, 1H), 7.77 (dd, *J* = 8.3, 2.4 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 1H), 3.90 (q, *J* = 7.2 Hz, 1H), 3.68 (s, 3H), 1.53 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.6, 158.3, 150.4, 139.3, 123.4, 119.1, 52.2, 47.3, 17.1.

HRMS (ESI+) Calcd. For C₉H₁₁⁷⁹BrNO₂⁺ ([M+H]⁺), C₉H₁₁⁸¹BrNO₂⁺ ([M+H]⁺): 243.9968, 245.9947; found: 243.9965, 245.9942.

Methyl 2-(5-phenylpyridin-2-yl)propanoate (2d):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.78 (d, *J* = 1.6 Hz, 1H), 7.84 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.58 – 7.53 (m, 2H), 7.49 – 7.42 (m, 2H), 7.41 – 7.33 (m, 2H), 4.01 (q, *J* = 7.2 Hz, 1H), 3.71 (s, 3H), 1.60 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.0, 158.5, 147.8, 137.5, 135.1, 135.0, 129.0, 128.0, 127.0, 121.8, 52.1, 47.5, 17.2.

HRMS (ESI+) Calcd. For C₁₅H₁₆NO₂⁺ ([M+H]⁺): 242.1176, found: 242.1174.

Methyl 3-phenyl-2-(pyridin-2-yl)propanoate (2m):

¹H NMR (400 MHz, Chloroform-*d*) δ 8.67 – 8.52 (m, 1H), 7.67 – 7.52 (m, 1H), 7.23 – 7.11 (m, 7H),
4.11 (t, *J* = 7.8 Hz, 1H), 3.64 (s, 3H), 3.46 (dd, *J* = 13.8, 8.1 Hz, 1H), 3.24 (dd, *J* = 13.8, 7.4 Hz, 1H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 172.8, 157.9, 149.6, 138.8, 136.6, 128.9, 128.3, 126.3, 123.0,
122.3, 55.7, 52.1, 38.2.

HRMS (ESI+) Calcd. For C₁₅H₁₆NO₂⁺ ([M+H]⁺): 242.1176, found: 242.1175.

Methyl 4-methyl-2-(pyridin-2-yl)pentanoate (2p):

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.58 – 8.50 (m, 1H), 7.67 – 7.58 (m, 1H), 7.35 – 7.28 (m, 1H), 7.19 – 7.11 (m, 1H), 3.92 (t, *J* = 7.8 Hz, 1H), 3.66 (s, 3H), 2.06 – 1.96 (m, 1H), 1.84 – 1.72 (m, 1H), 1.52 – 1.39 (m, 1H), 0.98 – 0.81 (m, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 158.9, 149.4, 136.6, 122.4, 122.1, 52.02, 51.95, 41.2, 25.9, 22.5, 22.3.

HRMS (ESI+) Calcd. For C₁₂H₁₈NO₂⁺ ([M+H]⁺): 208.1132, found: 208.1130.

Methyl 2-(pyridin-3-yl)propanoate (2t)

¹H NMR (400 MHz, Chloroform-*d*) δ 8.73 – 8.37 (m, 2H), 7.69 (d, *J* = 7.9 Hz, 1H), 7.33 – 7.26 (m, 1H), 3.76 (q, *J* = 6.9 Hz, 1H), 3.68 (s, 3H), 1.54 (d, *J* = 7.2 Hz, 3H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 149.1, 148.5, 136.3, 135.3, 123.7, 52.3, 42.9, 18.4.
HRMS (ESI+) Calcd. For C₉H₁₂NO₂⁺ ([M+H]⁺): 166.0863, found: 166.0869.

Methyl 2-(pyridin-4-yl)propanoate (2u)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.56 (s, 2H), 7.23 (s, 2H), 3.72 – 3.68 (m, 1H), 3.68 (s, 3H), 1.52 (d, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.5, 150.0, 149.0, 122.7, 52.2, 44.8, 17.8.

HRMS (ESI+) Calcd. For C₉H₁₂NO₂⁺ ([M+H]⁺): 166.0863, found: 166.0869.

3. General procedure for the stereodivergent construction of δ -valerolactones

To a clean and dried Schlenk tube was charged with Cu(CH₃CN)₄PF₆ (5 mol%, 3.7 mg) and (*S*,*S*_{*p*})-L5 (5.5 mol%, 6.0 mg) in glovebox, degassed THF (1 mL) was added to the tube under nitrogen atmosphere, and then the mixture was stirred at room temperature for 30 min. Then, α -azaaryl acetate **2** (0.2 mmol, 1.0 equiv), allyl alcohol **1** (0.6 mmol, 3.0 equiv), [Ru]-**1** complex (2 mol%), Cs₂CO₃ (0.3 mmol, 1.5 equiv) and THF (1 mL) were subsequently added to the tube, respectively. The mixture was stirred at room temperature for 36 h. Upon completion, the crude mixture was filtered through a short silica gel plug to remove the metal complex, and the filtrate was concentrated to dryness. The crude product was analyzed by ¹H NMR to determine the diastereoselectivity. Then the residue was purified by column chromatography to give the desired product **3** which was then directly analyzed by HPLC to determine the enantiomeric excess.

4. Characterization data for the products

(3R,6S)-3-methyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3a):

yield (42.7 mg, 80%); colorless oil; $[\alpha]^{25}_{D} = +15.1$ (*c* 0.72, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 24.28 and 30.93 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.62 – 8.59 (m, 1H), 7.47 – 7.41 (m, 1H), 7.35 – 7.27 (m, 5H), 7.21 – 7.16 (m, 1H), 5.45 (dd, *J* = 11.7, 4.0 Hz, 1H), 2.74 – 2.65 (m, 1H), 2.19 – 2.04 (m, 1H), 2.02 – 1.93 (m, 1H), 1.88 – 1.75 (m, 1H), 1.73 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 162.3, 149.1, 140.2, 136.9, 128.5, 128.2, 125.9, 122.0, 120.8, 84.0, 50.3, 34.3, 28.7, 26.9.

HRMS (ESI+) Calcd. For C₁₇H₁₈NO₂⁺ ([M+H]⁺): 268.1332, found: 268.1335

(3S,6R)-3-methyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3a):

yield (43.4 mg, 81%); colorless oil; $[\alpha]^{25}_{D}$ = -14.8 (*c* 1.2, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm); t_r = 24.28 and 30.93 min.

(3R,6R)-3-methyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3a):

yield (34.7 mg, 65%); colorless oil; $[\alpha]^{25}_{D} = +8.48$ (*c* 0.43, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 27.51 and 31.46 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.63 – 8.61 (m, 1H), 7.71 – 7.69 (m, 1H), 7.44 – 7.42 (m, 1H), 7.36 – 7.28 (m, 5H), 7.24 – 7.21 (m, 1H), 5.14 (dd, *J* = 9.9, 4.4 Hz, 1H), 2.98 – 2.91 (m, 1H), 2.26 – 2.18 (m, 1H), 2.08 – 1.91 (m, 2H), 1.67 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 175.3, 162.0, 149.4, 140.0, 137.2, 128.5, 128.1, 125.6, 122.3, 120.5, 80.0, 50.2, 31.0, 28.9, 27.0.

(3S,6S)-3-methyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3a):

yield (36.3 mg, 68%); colorless oil; $[\alpha]^{25}_{D} = -8.22$ (*c* 0.45, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 27.51 and 31.46 min.

(3R,6S)-3-(5-fluoropyridin-2-yl)-3-methyl-6-phenyltetrahydro-2H-pyran-2-one (3b):

yield (41.2 mg, 72%); colorless oil; $[\alpha]^{25}_{D} = +10.6$ (*c* 0.18, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 21.29 and 23.54 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.48 – 8.40 (m, 1H), 7.49 – 7.44 (m, 1H), 7.44 – 7.39 (m, 1H), 7.36 – 7.28 (m, 5H), 5.46 (dd, *J* = 11.6, 3.9 Hz, 1H), 2.72 – 2.64 (m, 1H), 2.15 – 2.05 (m, 1H), 2.04 – 1.95 (m, 1H), 1.88 – 1.77 (m, 1H), 1.71 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.3, 158.3 (d, *J* = 255.9 Hz), 158.0 (d, *J* = 3.7 Hz), 140.0, 137.3, 137.1, 128.5 (d, *J* = 3.2 Hz), 125.8, 123.6 (d, *J* = 17.6 Hz), 121.9 (d, *J* = 6.8 Hz), 84.0, 49.7, 34.2, 28.6, 27.3.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -129.4.

HRMS (ESI+) Calcd. For C₁₇H₁₇FNO₂⁺ ([M+H]⁺): 286.1238, found: 286.1237.

(3R,6S)-3-(5-bromopyridin-2-yl)-3-methyl-6-phenyltetrahydro-2H-pyran-2-one (3c):

yield (45.0 mg, 65%); brown solid; m.p. 94-96 °C; $[\alpha]^{25}_{D} = +8.7$ (*c* 0.77, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IC, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 15.18 and 25.32 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.70 – 8.60 (m, 1H), δ 7.85 – 7.79 (m, 1H), 7.39 – 7.28 (m, 6H), 5.45 (dd, *J* = 11.5, 3.9 Hz, 1H), 2.71 – 2.64 (m, 1H), 2.14 – 2.05 (m, 1H), 2.04 – 1.95 (m, 1H), 1.89 – 1.75 (m, 1H), 1.70 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.0, 160.8, 150.2, 140.0, 139.5, 128.5, 128.3, 125.8, 122.3, 119.2, 84.0, 49.9, 34.1, 28.6, 27.0.

HRMS (ESI+) Calcd. For $C_{17}H_{17}^{79}BrNO_2^+$ ([M+H]⁺), $C_{17}H_{17}^{81}BrNO_2^+$ ([M+H]⁺): 346.0437, 348.0417; found: 346.0433, 348.0413.

(3R,6S)-3-methyl-6-phenyl-3-(5-phenylpyridin-2-yl)tetrahydro-2H-pyran-2-one (3d):

yield (46.8 mg, 68%); white solid; m.p. 140-142 °C; $[\alpha]^{25}_{D} = +23.1$ (*c* 0.93, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 17.20 and 24.48 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.84 – 8.80 (m, 1H), δ 7.91 – 7.83 (m, 1H), 7.60 – 7.56 (m, 2H), 7.52 – 7.45 (m, 3H), 7.43 – 7.38 (m, 1H), 7.35 – 7.28 (m, 5H), 5.48 (dd, *J* = 11.5, 4.1 Hz, 1H), 2.77 – 2.72 (m, 1H), 2.18 – 2.11 (m, 1H), 2.04 – 1.97 (m, 1H), 1.94 – 1.84 (m, 1H), 1.77 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.5, 161.1, 147.5, 140.2, 137.4, 135.3, 135.0, 129.1, 128.5, 128.3, 128.2, 127.1, 125.9, 120.8, 84.1, 50.1, 34.4, 28.8, 27.0.

(3R,6S)-3-methyl-3-(4-methylpyridin-2-yl)-6-phenyltetrahydro-2H-pyran-2-one (3e):

yield (35.0 mg, 62%); colorless oil; $[\alpha]^{25}_{D} = +11.9$ (*c* 0.63, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 23.19 and 35.31 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.53 – 8.34 (m, 1H), 7.35 – 7.28 (m, 5H), 7.26 – 7.23 (m, 1H), 7.04 – 6.94 (m, 1H), 5.44 (dd, *J* = 11.7, 4.0 Hz, 1H), 2.78 – 2.62 (m, 1H), 2.36 (s, 3H), 2.14 – 2.04 (m, 1H), 2.00 – 1.91 (m, 1H), 1.87 – 1.75 (m, 1H), 1.70 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 161.9, 148.9, 148.1, 140.2, 128.5, 128.2, 125.9, 123.1, 121.7, 84.1, 50.1, 34.2, 28.7, 26.9, 21.2.

HRMS (ESI+) Calcd. For C₁₈H₂₀NO₂⁺ ([M+H]⁺): 282.1489, found: 282.1489.

(3R,6S)-3-(4-methoxypyridin-2-yl)-3-methyl-6-phenyltetrahydro-2H-pyran-2-one (3f):

yield (38.1 mg, 64%); brown oil; $[\alpha]^{25}_{D} = +2.6$ (*c* 0.58, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 32.12 and 39.13 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.45 – 8.38 (m, 1H), 7.34 – 7.27 (m, 5H), 6.97 – 6.94 (m, 1H), 6.72 – 6.70 (m, 1H), 5.44 (dd, *J* = 11.6, 4.1 Hz, 1H), 3.85 (s, 3H), 2.74 – 2.69 (m, 1H), 2.11 – 2.04 (m, 1H), 2.00 – 1.95 (m, 1H), 1.88 – 1.79 (m, 1H), 1.70 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 166.4, 163.8, 150.3, 140.2, 128.5, 128.2, 125.9, 108.2, 107.2, 84.1, 55.2, 50.3, 34.2, 28.7, 26.9.

HRMS (ESI+) Calcd. For C₁₈H₂₀NO₃⁺ ([M+H]⁺): 298.1438, found: 298.1439.

(3R,6S)-3-(5-fluoropyridin-2-yl)-3-methyl-6-phenyltetrahydro-2H-pyran-2-one (3g):

yield (37.7 mg, 66%); colorless oil; $[\alpha]^{25}_{D} = +38.4$ (*c* 0.28, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 20.34 and 34.93 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.48 – 8.40 (m, 1H), 7.49 – 7.44 (m, 1H), 7.44 – 7.39 (m, 1H), 7.36 – 7.28 (m, 5H), 5.46 (dd, *J* = 11.6, 3.9 Hz, 1H), 2.72 – 2.64 (m, 1H), 2.15 – 2.05 (m, 1H), 2.04 – 1.95 (m, 1H), 1.88 – 1.77 (m, 1H), 1.71 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.9, 169.3 (d, *J* = 262.6 Hz), 165.8 (d, *J* = 6.4 Hz), 151.4 (d, *J* = 7.2 Hz), 140.0, 128.6, 128.3, 125.8, 110.2 (d, *J* = 15.9 Hz), 109.0 (d, *J* = 19.2 Hz), 84.0, 50.2, 34.17, 28.7, 26.9.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -101.2.

HRMS (ESI+) Calcd. For C₁₇H₁₇FNO₂⁺ ([M+H]⁺): 286.1238, found: 286.1237.

(3R,6S)-3-(4-chloropyridin-2-yl)-3-methyl-6-phenyltetrahydro-2H-pyran-2-one (3h):

yield (4.22 mg, 70%); yellow solid; m.p. 92-94 °C; $[\alpha]^{25}_{D} = +1.6$ (*c* 0.81, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak ID, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 12.97 and 17.44 min.

¹**H NMR** δ 8.51 – 8.48 (m, 1H), 7.49 – 7.45 (m, 1H), 7.38 – 7.28 (m, 5H), 7.22 (dd, *J* = 5.3, 1.9 Hz, 1H), 5.46 (dd, *J* = 11.5, 4.0 Hz, 1H), 2.70 – 2.61 (m, 1H), 2.16 – 2.06 (m, 1H), 2.04 – 1.95 (m, 1H), 1.91 – 1.80 (m, 1H), 1.72 (s, 3H).

¹³C NMR δ 173.8, 164.1, 149.9, 145.0, 140.0, 128.5, 128.3, 125.8, 122.6, 121.4, 84.0, 50.1, 34.2, 28.6, 26.9.

HRMS (ESI+) Calcd. For C₁₇H₁₇³⁵ClNO₂⁺ ([M+H]⁺), C₁₇H₁₇³⁷ClNO₂⁺ ([M+H]⁺): 302.0942, 304.0913, found: 302.0945, 304.0910.

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo	#	[min]		[min]	[mAU*s]	[mAU]	olo
1	12.968	BB	0.4895	7375.33789	227.93436	50.1866	1	12.969	VV R	0.4819	9496.51660	282.28363	99.9283
2	17.444	FM	0.6851	7320.47949	178.08029	49.8134	2	17.407	BV	0.0905	6.81710	1.01352	0.0717

(3R,6S)-3-(4-bromopyridin-2-yl)-3-methyl-6-phenyltetrahydro-2H-pyran-2-one (3i)

yield (49.1 mg, 71%); yellow solid; m.p. 96-98 °C; $[a]^{25}_{D} = +1.2$ (*c* 0.69, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 95% ee (Chiralpak IE, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 13.48 and 17.98 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.46 – 8.37 (m, 1H), 7.66 – 7.61 (m, 1H), 7.41 – 7.29 (m, 6H), 5.46 (dd, *J* = 11.5, 4.0 Hz, 1H), 2.73 – 2.60 (m, 1H), 2.19 – 2.03 (m, 1H), 2.04 – 1.95 (m, 1H), 1.93 – 1.78 (m, 1H), 1.72 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 164.0, 149.7, 140.0, 133.7, 128.5, 128.3, 125.8, 125.6, 124.3, 84.0, 50.1, 34.2, 28.6, 26.9.

HRMS (ESI+) Calcd. For C₁₇H₁₇⁷⁹BrNO₂⁺ ([M+H]⁺), C₁₇H₁₇⁸¹BrNO₂⁺ ([M+H]⁺): 346.0437, 348.0417; found: 346.0433, 348.0413.

(3R,6S)-3-methyl-6-phenyl-3-(4-phenylpyridin-2-yl)tetrahydro-2H-pyran-2-one (3j):

yield (50.2 mg, 73%); white solid; m.p. 106-108 °C;l; $[a]^{25}_D = +21.7$ (*c* 0.65, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IC, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 26.84 and 30.02 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.65 – 8.59 (m, 1H), 7.67 – 7.58 (m, 3H), 7.55 – 7.40 (m, 3H), 7.42 – 7.40 (m, 1H), 7.36 – 7.26 (m, 5H), 5.48 (dd, *J* = 11.5, 4.1 Hz, 1H), 2.78 – 2.73 (m, 1H), 2.18 – 2.09 (m, 1H), 2.04 – 1.97 (m, 1H), 1.94 – 1.86 (m, 1H), 1.78 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 162.8, 149.5, 149.5, 140.3, 138.2, 129.2, 129.1, 128.5, 128.2, 127.2, 125.9, 120.2, 118.9, 84.1, 50.4, 34.4, 28.7, 27.0.

HRMS (ESI+) Calcd. For C₂₃H₂₂NO₂⁺ ([M+H]⁺): 344.1645, found: 344.1645

(3R,6S)-3-methyl-6-phenyl-3-(pyrazin-2-yl)tetrahydro-2H-pyran-2-one (3k):

yield (30.6 mg, 57%); yellow solid; m.p. 156-158 °C; $[\alpha]^{25}_{D}$ = +21.3 (*c* 0.40, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm); t_r = 15.96 and 19.36 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.80 – 8.75 (m, 1H), 8.58 – 8.49 (m, 2H), 7.39 – 7.28 (m, 5H), 5.49 (dd, *J* = 11.3, 3.9 Hz, 1H), 2.67 – 2.57 (m, 1H), 2.20 – 2.10 (m, 1H), 2.10 – 1.99 (m, 1H), 1.87 – 1.77 (m, 1H),1.79 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.3, 158.1, 143.5, 143.2, 142.9, 139.8, 128.6, 128.4, 125.7, 83.9, 48.7, 34.2, 28.6, 26.6.

HRMS (ESI+) Calcd. For C₁₆H₁₇N₂O₂⁺ ([M+H]⁺): 269.1285, found: 269.1290.

(3R,6S)-3-methyl-6-phenyl-3-(quinolin-2-yl)tetrahydro-2H-pyran-2-one (3l):

yield (42.6 mg, 67%); white solid; m.p. 126-128 °C; $[\alpha]^{25}_{D}$ = +16.8 (*c* 0.76, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 3/97, flow rate 1.0 mL/min, λ = 210 nm); t_r = 36.21 and 39.35 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 8.7 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.84 – 7.76 (m, 1H), 7.76 – 7.65 (m, 1H), 7.62 – 7.47 (m, 2H), 7.42 – 7.35 (m, 2H), 7.35 – 7.22 (m, 3H), 5.49 (dd, *J* = 11.1, 4.7 Hz, 1H), 2.93 – 2.66 (m, 1H), 2.18 (td, *J* = 13.1, 3.7 Hz, 1H), 2.04 – 1.86 (m, 2H), 1.83 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 162.1, 147.2, 140.4, 137.1, 129.6, 129.5, 128.4, 128.1, 127.4, 126.9, 126.5, 126.0, 118.2, 84.0, 50.8, 34.3, 28.8, 26.7.

HRMS (ESI+) Calcd. For C₂₁H₂₀NO₂⁺ ([M+H]⁺): 318.1489, found: 318.1491.

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8	#	[min]		[min]	[mAU*s]	[mAU]	90
1	36.214	VV R	1.1110	3.22512e4	428.34756	50.5068	1	36.362	BV	0.5186	193.76003	4.45945	0.4951
2	39.349	VB	1.2000	3.16040e4	384.17508	49.4932	2	39.534	VV R	1.1815	3.89438e4	485.69083	99.5049

(3S,6S)-3-benzyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3m):

yield (56.4 mg, 82%); brown oil; $[\alpha]^{25}_{D} = +39.2$ (*c* 0.63, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak ID, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 18.56 and 24.82 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.64 – 8.62 (m, 1H), 7.75 – 7.71 (m, 1H), 7.62 – 7.60 (m, 1H), 7.30 – 7.24 (m, 9H), 7.20 – 7.15 (m, 2H), 5.10 (dd, *J* = 12.0, 3.8 Hz, 1H), 3.73 (d, *J* = 13.4 Hz, 1H), 3.21 (d, *J* = 13.4 Hz, 1H), 2.74 – 2.66 (m, 1H), 2.16 – 2.08 (m, 1H), 1.93 – 1.86 (m, 1H), 1.80 – 1.69 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 160.9, 149.3, 140.0, 137.1, 136.9, 131.0, 128.5, 128.3, 128.2, 126.8, 125.7, 122.3, 121.9, 83.7, 55.9, 45.4, 29.4, 28.5.

HRMS (ESI+) Calcd. For C₂₃H₂₂NO₂⁺ ([M+H]⁺): 344.1645, found: 344.1643.

(3R,6S)-3-phenethyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3n):

yield (53.7 mg, 75%); white solid; m.p. 150-152 °C; $[\alpha]^{25}_{D} = +33.2$ (*c* 0.65, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak ID, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 26.12 and 32.93 min.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.66 – 8.54 (m, 1H), 7.75 – 7.64 (m, 1H), 7.58 – 7.50 (m, 1H), 7.36 – 7.26 (m, 7H), 7.22 – 7.14 (m, 4H), 5.45 (dd, *J* = 12.0, 3.8 Hz, 1H), 2.88 – 2.72 (m, 2H), 2.70 – 2.59 (m, 1H), 2.53 – 2.41 (m, 1H), 2.38 – 2.25 (m, 2H), 2.08 – 2.01 (m, 1H), 1.91 – 1.79 (m, 1H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 173.4, 160.9, 149.1, 141.9, 140.1, 136.9, 128.53, 128.5, 128.4, 128.3, 125.9, 125.8, 122.2, 121.7, 83.92, 54.3, 42.5, 31.5, 30.6, 28.8.

HRMS (ESI+) Calcd. For C₂₄H₂₄NO₂⁺ ([M+H]⁺): 358.1802, found: 358.1803.

(3S,6S)-3-(cyclopropylmethyl)-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3o):

yield (44.3 mg, 72%); yellow oil; $[\alpha]^{25}_{D} = +56.9$ (*c* 0.73, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 17.03 and 20.29 min.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.60 – 8.58 (m, 1H), 7.70 – 7.65 (m, 1H), 7.53 – 7.48 (m, 1H),

7.33 – 7.27 (m, 5H), 7.20 – 7.16 (m, 1H), 5.46 (dd, *J* = 12.1, 3.8 Hz, 1H), 2.85 – 2.80 (m, 1H), 2.57 – 2.49 (m, 1H), 2.31 (dd, *J* = 14.0, 5.6 Hz, 1H), 2.07 – 2.00 (m, 1H), 1.88 – 1.77 (m, 2H), 0.81 – 0.77 (m, 1H), 0.53 – 0.41 (m, 2H), 0.16 – 0.05 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 161.1, 149.0, 140.2, 136.8, 128.4, 128.2, 125.7, 122.0, 121.6, 83.9, 55.1, 45.0, 29.9, 28.8, 7.1, 5.7, 4.0.

HRMS (ESI+) Calcd. For C₂₂H₂₂NO₂⁺ ([M+H]⁺): 308.1645, found: 308.1646.

(3S,6S)-3-isobutyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3p):

yield (40.3 mg, 65%); colorless oil; $[\alpha]^{25}_{D} = +21.9$ (*c* 0.52, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 87% ee (Chiralpak IA, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 10.40 and 13.30 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.66 – 8.51 (m, 1H), 7.74 – 7.62 (m, 1H), 7.60 – 7.52 (m, 1H), 7.36 – 7.26 (m, 4H), 7.25 – 7.22 (m, 1H), 7.20 – 7.15 (m, 1H), 5.43 (dd, *J* = 12.1, 3.7 Hz, 1H), 2.91 – 2.78 (m, 1H), 2.32 – 2.16 (m, 2H), 2.05 – 1.96 (m, 2H), 1.88 – 1.78 (m, 2H), 0.94 (d, *J* = 6.7 Hz, 3H), 0.88 (d, *J* = 6.6 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.9, 161.3, 149.0, 140.2, 136.8, 128.5, 128.18, 125.8, 122.0, 122.0, 83.8, 54.1, 48.4, 29.4, 28.8, 25.4, 24.6, 23.5.

HRMS (ESI+) Calcd. For C₂₀H₂₄NO₂⁺ ([M+H]⁺): 310.1802, found: 310.1802.

(3S,6S)-3-allyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3q):

yield (48.2 mg, 82%); yellow oil; $[\alpha]^{25}_{D}$ = +45.9 (*c* 0.85, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 210 nm); t_r = 10.62 and 13.78 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.61 – 8.60 (m, 1H), 7.72 – 7.67 (m, 1H), 7.51 – 7.49 (m, 1H), 7.34 – 7.25 (m, 5H), 7.21 – 7.18 (m, 1H), 5.89 – 5.79 (m, 1H), 5.39 (dd, *J* = 12.0, 3.8 Hz, 1H), 5.21 – 5.15 (m, 2H), 3.04 – 2.99 (m, 1H), 2.74 – 2.63 (m, 1H), 2.32 – 2.25 (m, 1H), 2.01 – 1.95 (m, 1H), 1.87 – 1.77 (m, 1H), 1.67 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.1, 161.0, 149.1, 140.0, 136.9, 133.7, 128.5, 128.2, 125.8, 122.1, 121.5, 119.5, 83.9, 54.0, 44.4, 30.1, 28.5.

HRMS (ESI+) Calcd. For C₁₉H₂₀NO₂⁺ ([M+H]⁺): 294.1489, found: 294.1488.

S20

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	do	#	[min]		[min]	[mAU*s]	[mAU]	do
1	10.624	MM	0.3835	4360.51367	189.51437	48.3583	1	13.781	BB	0.5117	4.66879e4	1393.49939	100.0000
2	13.779	MM	0.4648	4656.57178	166.97227	51.6417							

2-(3-((3*R*,6*S*)-2-oxo-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-3-yl)propyl)-1H-indene-1,3(2H)-dione (3r):

yield (70.4 mg, 80%); yellow oil; $[\alpha]^{25}_{D} = +31.5$ (*c* 0.55, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IA, *i*-propanol/hexane = 30/70, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 24.86 and 43.32 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.58 – 8.51 (m, 1H), 7.86 – 7.80 (m, 2H), 7.74 – 7.66 (m, 3H), 7.49 – 7.45 (m, 1H), 7.32 – 7.28 (m, 3H), 7.24 – 7.22 (m, 2H), 7.20 – 7.16 (m, 1H), 5.38 (dd, *J* = 12.0, 3.8 Hz, 1H), 3.73 – 3.65 (m, 2H), 2.84 – 2.69 (m, 1H), 2.21 – 1.72 (m, 7H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 173.3, 168.4, 160.5, 149.1, 140.0, 136.9, 133.9, 132.1, 128.5, 128.2, 125.8, 123.2, 122.2, 121.7, 83.8, 53.8, 38.1, 37.3, 30.4, 28.6, 24.3.

HRMS (ESI+) Calcd. For $C_{27}H_{25}N_2O_4^+$ ([M+H]⁺): 441.1809, found: 441.1812.

(3*R*,6*S*)-6-phenyl-5,6,6',7'-tetrahydro-2H,4H,5'H-spiro[pyran-3,8'-quinolin]-2-one (3s):

yield (45.8 mg, 78%); white solid; m.p. 166-168 °C; $[\alpha]^{25}_{D} = +28.1$ (*c* 0.31, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 16.89 and 21.39 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.47 – 8.30 (m, 1H), 7.65 – 7.54 (m, 2H), 7.43 – 7.31 (m, 4H), 7.12 – 7.02 (m, 1H), 5.50 (dd, *J* = 9.8, 3.8 Hz, 1H), 2.98 – 2.87 (m, 1H), 2.86 – 2.76 (m, 1H), 2.64 – 2.51 (m, 2H), 2.46 – 2.37 (m, 1H), 2.12 – 1.83 (m, 5H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 175.0, 159.12, 146.9, 140.6, 137.2, 130.9, 128.4, 128.1, 126.4, 122.0, 82.8, 48.6, 35.5, 34.1, 28.2, 27.9, 17.9.

HRMS (ESI+) Calcd. For C₁₉H₂₀NO₂⁺ ([M+H]⁺): 294.1489, found: 294.1492.

(3S,6R)-6-phenyl-5,6,6',7'-tetrahydro-2H,4H,5'H-spiro[pyran-3,8'-quinolin]-2-one (3s):

yield (44.6 mg, 76%); white solid; m.p. 165-167 °C; $[\alpha]^{25}_{D} = -29.5$ (*c* 0.65, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 16.89 and 21.39 min.

(3R,6R)-6-phenyl-5,6,6',7'-tetrahydro-2H,4H,5'H-spiro[pyran-3,8'-quinolin]-2-one (3s):

yield (40.6 mg, 69%); white solid; m.p. 166-168 °C; $[\alpha]^{25}_{D} = -75.0$ (*c* 0.68, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 13.66 and 15.80 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.48 – 8.42 (m, 1H), 7.44 – 7.37 (m, 5H), 7.36 – 7.31 (m, 1H), 7.12 – 7.05 (m, 1H), 5.69 (dd, *J* = 11.0, 3.3 Hz, 1H), 2.97 – 2.86 (m, 1H), 2.81 – 2.63 (m, 2H), 2.51 – 2.42 (m, 1H), 2.22 – 2.01 (m, 5H), 1.85 – 1.75 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 175.6, 158.8, 147.7, 140.2, 137.2, 132.3, 128.5, 128.2, 125.8, 121.9, 82.5, 49.6, 34.2, 28.6, 28.5, 18.5.

HRMS (ESI+) Calcd. For C₁₉H₂₀NO₂⁺ ([M+H]⁺): 294.1489, found: 294.1492.

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%	#	[min]		[min]	[mAU*s]	[mAU]	%
1	13.663	мм	0.5068	1.26822e4	417.09625	50.6373	1	15.549	VV R	0.6264	1.38085e4	330.40942	100.0000
2	15.804	BB	0.5519	1.23630e4	334.61301	49.3627							

(3S,6S)-6-phenyl-5,6,6',7'-tetrahydro-2H,4H,5'H-spiro[pyran-3,8'-quinolin]-2-one (3s):

yield (36.5 mg, 62%); white solid; m.p. 166-168 °C; $[\alpha]^{25}_{D} = +76.1$ (*c* 0.89, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 13.66 and 15.80 min.

(3R,6S)-6-(4-fluorophenyl)-3-methyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3t):

yield (30.2 mg, 65%); white solid; m.p. 146-148 °C; $[\alpha]^{25}_{D}$ = +48.2 (*c* 0.21, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 210 nm); t_r = 21.69 and 29.39 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.66 – 8.47 (m, 1H), 7.74 – 7.64 (m, 1H), 7.45 – 7.39 (m, 1H), 7.34 – 7.27 (m, 2H), 7.22 – 7.18 (m, 1H), 7.07 – 6.96 (m, 2H), 5.43 (dd, *J* = 11.7, 4.0 Hz, 1H), 2.70 –

2.65 (m, 1H), 2.15 – 2.07 (m, 1H), 1.98 – 1.91 (m, 1H), 1.85 – 1.78 (m, 1H), 1.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 162.5 (d, *J* = 247.2 Hz), 162.3, 149.1, 137.0, 136.1, 127.8 (d, *J* = 8.7 Hz), 122.1, 120.7, 115.4 (d, *J* = 21.9 Hz), 83.4, 50.2, 34.3, 28.7, 26.8. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -113.8.

HRMS (ESI+) Calcd. For C₁₇H₁₇FNO₂⁺ ([M+H]⁺): 286.1238, found: 286.1239.

(3R,6S)-6-(4-bromophenyl)-3-methyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3u):

yield (46.9 mg, 68%); brown solid; m.p. 136-138 °C; $[\alpha]^{25}_{D} = +114.6$ (*c* 0.18, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 26.35 and 36.37 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.60 – 8.58 (m, 1H), 7.71 – 7.67 (m, 1H), 7.47 – 7.39 (m, 3H), 7.47 – 7.39 (m, 3H), 5.41 (dd, *J* = 11.7, 4.0 Hz, 1H), 2.68 – 2.63 (m, 1H), 2.14 – 2.06 (m, 1H), 1.98 – 1.92 (m, 1H), 1.81 – 1.74 (m, 1H), 1.72 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 162.2, 149.1, 139.3, 137.0, 131.6, 127.5, 122.1, 122.1, 120.6, 83.1, 50.2, 34.3, 28.6, 26.8.

HRMS (ESI+) Calcd. For $C_{17}H_{17}^{79}BrNO_2^+$ ([M+H]⁺), $C_{17}H_{17}^{81}BrNO_2^+$ ([M+H]⁺): 346.0437, 348.0417; found: 346.0433, 348.0413.

(3R,6S)-3-methyl-3-(pyridin-2-yl)-6-(4-(trifluoromethyl)phenyl)tetrahydro-2H-pyran-2-one (3v):

yield (36.9 mg, 55%); yellow oil; $[\alpha]^{25}_{D} = -13.8$ (*c* 0.50, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 9.41 and 12.62 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.60 – 8.58 (m, 1H), 7.72 – 7.68 (m, 1H), 7.61 – 7.59 (m, 2H), 7.48 – 7.41 (m, 3H), 7.21 – 7.18 (m, 1H), 5.51 (dd, *J* = 11.7, 4.1 Hz, 1H), 2.70 – 2.65 (m, 1H), 2.17 – 2.10 (m, 1H), 2.03 – 1.97 (m, 1H), 1.83 – 1.76 (m, 1H), 1.73 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ174.0, 162.2, 149.1, 144.3, 137.0, 130.5 (q, *J* = 32.0 Hz), 126.1,

125.5 (q, *J* = 40.0 Hz), 125.3 (q, *J* = 270.0 Hz), 122.2, 120.5, 82.9, 50.2, 34.3, 28.7, 26.7.

¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -62.6.

HRMS (ESI+) Calcd. For C₁₈H₁₇F₃NO₂⁺ ([M+H]⁺): 336.1206, found: 336.1214.

Methyl 4-((2S,5R)-5-methyl-6-oxo-5-(pyridin-2-yl)tetrahydro-2H-pyran-2-yl)benzoate (3w):

yield (39.0 mg, 60%); colorless oil; $[\alpha]^{25}_{D} = +29.0$ (*c* 0.36, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 23.26 and 27.32 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.58-8.62 (m, 1H), 8.06 – 7.96 (m, 2H), 7.68 – 7.72 (m, 1H), 7.47 – 7.38 (m, 3H), 7.25-7.16 (m, 1H), 5.51 (dd, *J* = 11.6, 4.1 Hz, 1H), 3.91 (s, 3H), 2.65 – 2.71 (m, 1H), 2.09 – 2.17 (m, 1H), 2.04 – 1.96 (m, 1H), 1.84 – 1.75 (m, 1H), 1.73 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 166.7, 162.2, 149.1, 145.2, 137.0, 130.0, 129.9, 125.9, 122.2, 120.6, 83.2, 52.1, 50.2, 34.3, 28.7, 26.8.

HRMS (ESI+) Calcd. For C₁₉H₂₀NO₄⁺ ([M+H]⁺): 326.1387, found: 326.1387.

Peak	RetTime	Туре	Width	Area	Height	Area	Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	do	#	[min]		[min]	[mAU*s]	[mAU]	8
1	23.256	MM	0.8690	2481.89453	47.60112	48.2276	1	27.166	VB R	0.8669	1.20890e4	206.81430	100.0000
2	27.319	MM	0.9081	2664.31641	48.90176	51.7724							

(3R,6S)-3-methyl-3-(pyridin-2-yl)-6-(p-tolyl)tetrahydro-2H-pyran-2-one (3x):

yield (41.0 mg, 73%); white solid; m.p. 90-92 °C; $[\alpha]^{25}_{D}$ = +12.3 (*c* 0.40, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, λ = 210 nm); t_r = 24.24 and 32.72 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.61 – 8.59 (m, 1H), 7.70 – 7.66 (m, 1H), 7.42 (d, *J* = 8.0 Hz, 1H), 7.22 – 7.16 (m, 3H), 7.13 (d, *J* = 7.9 Hz, 2H), 5.42 (dd, *J* = 11.7, 4.0 Hz, 1H), 2.72 – 2.67 (m, 1H), 2.32 (s, 3H), 2.13 – 2.06 (m, 1H), 1.98 – 1.91 (m, 1H), 1.85 – 1.78 (m, 1H), 1.72 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 162.3, 149.2, 138.0, 137.3, 136.9, 129.1, 125.8, 122.0, 120.9, 84.0, 50.3, 34.3, 28.6, 26.9, 21.1.

HRMS (ESI+) Calcd. For C₁₈H₂₀NO₂⁺ ([M+H]⁺): 282.1489, found: 282.1489.

yield (39.8mg, 67%); colorless oil; $[\alpha]^{25}_{D}$ = +52.7 (*c* 0.42, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IA, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 21.73 and 27.71 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.62 – 8.60 (m, 1H), 7.71 – 7.67 (m, 1H), 7.44 – 7.41 (m, 1H), 7.26 – 7.18 (m, 3H), 6.87 – 6.84 (m, 2H), 5.40 (dd, *J* = 11.6, 4.1 Hz, 1H), 3.79 (s, 3H), 2.72 – 2.66 (m, 1H), 2.13 – 2.05 (m, 1H), 1.96 – 1.89 (m, 1H), 1.87 – 1.79 (m, 1H), 1.72 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 162.3, 159.5, 149.1, 136.9, 132.3, 127.4, 122.0, 120.8, 113.8, 83.9, 55.3, 50.2, 34.4, 28.5, 26.9.

(3R,6S)-3-methyl-3-(pyridine-2-yl)-6-(m-tolyl)tetrahydro-2H-pyran-2-one (3z):

yield (34.8 mg, 62%); colorless oil; $[\alpha]^{25}_{D} = +34.2$ (*c* 0.44, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 20/80, flow

rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 18.58 and 24.83 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.75 – 8.46 (m, 1H), 7.73 – 7.63 (m, 1H), 7.44 (d, *J* = 8.0 Hz, 1H), 7.23 – 7.06 (m, 5H), 5.42 (dd, *J* = 11.6, 4.0 Hz, 1H), 2.74 – 2.65 (m, 1H), 2.33 (s, 3H), 2.15 – 2.06 (m, 1H), 2.00 – 1.93 (m, 1H), 1.85 – 1.78 (m, 1H), 1.73 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.5, 162.3, 149.1, 140.2, 138.2, 136.9, 128.9, 128.4, 126.6, 122.9, 122.1, 120.9, 84.1, 50.3, 34.4, 28.7, 26.9, 21.4.

HRMS (ESI+) Calcd. For $C_{18}H_{20}NO_2^+$ ([M+H]⁺): 282.1489, found: 282.1492.

(3R,6S)-6-(3-fluorophenyl)-3-methyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3A):

yield (32.5 mg, 57%); colorless oil; $[\alpha]^{25}_{D} = +3.8$ (*c* 0.18, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 21.68 and 26.11 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.73 – 8.47 (m, 1H), 7.78 – 7.65 (m, 1H), 7.45 – 7.40 (m, 1H), 7.33 – 7.27 (m, 2H), 7.22 – 7.17 (m, 1H), 7.12 – 7.06 (m, 2H), 7.02 – 6.95 (m, 1H), 5.44 (dd, *J* = 11.7, 4.0 Hz, 1H), 2.74 – 2.64 (m, 1H), 2.17 – 2.07 (m, 1H), 2.02 – 1.93 (m, 1H), 1.84 – 1.75 (m, 1H), 1.73 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 162.9 (d, *J* = 246.2 Hz), 162.2, 149.1, 142.8 (d, *J* = 7.4 Hz), 137.0, 130.1, 122.2, 121.4 (d, *J* = 3.0 Hz), 120.7, 115.1 (d, *J* = 21.3 Hz), 113.0 (d, *J* = 22.8 Hz),

¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -112.5.

HRMS (ESI+) Calcd. For $C_{17}H_{17}FNO_2^+$ ([M+H]⁺): 286.1238, found: 286.1239.

(3R,6S)-3-methyl-3-(pyridin-2-yl)-6-(o-tolyl)tetrahydro-2H-pyran-2-one (3B):

yield (34.3 mg, 61%); colorless oil; $[\alpha]^{25}_{D} = -21.6$ (*c* 0.65, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 9.91 and 12.93 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.74 – 8.47 (m, 1H), 7.75 – 7.63 (m, 1H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.41 – 7.32 (m, 1H), 7.22 – 7.15 (m, 3H), 7.14 – 7.08 (m, 1H), 5.68 (dd, *J* = 11.7, 3.9 Hz, 1H), 2.80 – 2.65 (m, 1H), 2.33 (s, 3H), 2.19 – 2.06 (m, 1H), 1.98 – 1.87 (m, 1H), 1.85 – 1.75 (m, 1H), 1.73 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.7, 162.3, 149.2, 138.2, 136.9, 134.2, 130.4, 128.0, 126.4, 125.9, 122.1, 120.9, 81.3, 50.4, 34.6, 27.4, 27.0, 19.0.

HRMS (ESI+) Calcd. For $C_{18}H_{20}NO_2^+$ ([M+H]⁺): 282.1489, found: 282.1487.

(3R,6S)-6-(2-fluorophenyl)-3-methyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3C):

yield (36.5 mg, 64%); colorless oil; $[a]^{25}_{D} = -60.5$ (*c* 0.51 CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 17.93 and 23.02 min.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.64 – 8.54 (m, 1H), 7.77 – 7.63 (m, 1H), 7.53 – 7.38 (m, 2H), 7.30 – 7.23 (m, 1H), 7.22 – 7.08 (m, 2H), 7.05 – 6.91 (m, 1H), 5.78 (dd, *J* = 11.6, 4.0 Hz, 1H), 2.80 – 2.53 (m, 1H), 2.13 (td, *J* = 13.5, 3.0 Hz, 1H), 2.07 – 1.97 (m, 1H), 1.85 – 1.75 (m, 1H), 1.73 (s, 3H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 162.2, 159.3 (d, *J* = 246.6 Hz), 149.1, 136.9, 129.6 (d, *J* = 8.1 Hz), 127.6, 127.5, 124.4 (d, *J* = 3.6 Hz), 122.0, 120.7, 115.3 (d, *J* = 21.4 Hz), 78.0 (d, *J* = 3.0 Hz), 50.4, 34.3, 27.5, 26.8.

¹⁹**F NMR** (377 MHz, Chloroform-*d*) δ -119.8.

HRMS (ESI+) Calcd. For C₁₇H₁₇FNO₂⁺ ([M+H]⁺): 286.1238, found: 286.1239.

(3*R*,6*S*)-6-(3,5-dimethylphenyl)-3-methyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3D):

yield (44.2 mg, 66%); yellow oil; $[\alpha]^{25}_{D}$ = +33.2 (*c* 0.43 CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 210 nm); t_r = 15.21 and 17.59 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.67 – 8.57 (m, 1H), 7.75 – 7.66 (m, 1H), 7.46 – 7.37 (m, 2H), 7.28 – 7.27 (m, 1H), 7.23 – 7.16 (m, 2H), 5.42 (dd, *J* = 11.6, 4.1 Hz, 1H), 2.72 – 2.61 (m, 1H), 2.17 – 2.06 (m, 1H), 2.01 – 1.94 (m, 1H), 1.85 – 1.75 (m, 1H), 1.73 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 162.2, 149.1, 142.3, 137.0, 134.5, 129.8, 128.3, 126.2, 124.0, 122.2, 120.6, 83.0, 50.3, 34.3, 28.6, 26.7.

HRMS (ESI+) Calcd. For C₁₇H₁₆Cl₂NO₂⁺ ([M+H]⁺): 336.0553, found: 336.0561.

(3R,6S)-3-methyl-6-(naphthalen-2-yl)-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3E):

yield (51.3 mg, 81%); white solid; m.p. 150-152 °C; $[\alpha]^{25}_{D}$ = +146.3 (*c* 0.43 CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm); t_r = 13.94 and 19.21 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.64 – 8.60 (m, 1H), 7.84 – 7.79 (m, 4H), 7.72 – 7.68 (m, 1H), 7.49 – 7.41 (m, 4H), 7.20 – 7.15 (m, 1H), 5.63 (dd, *J* = 11.5, 4.0 Hz, 1H), 2.74 – 2.69 (m, 1H), 2.21 – 2.11 (m, 1H), 2.09 – 2.02 (m, 1H), 1.97 – 1.83 (m, 1H), 1.76 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 162.3, 149.1, 137.6, 136.9, 133.1, 133.0, 128.4, 128.0, 127.7, 126.3, 126.2, 124.8, 123.6, 122.1, 120.8, 84.0, 50.3, 34.4, 28.6, 26.9.

HRMS (ESI+) Calcd. For C₂₁H₂₀NO₂⁺ ([M+H]⁺): 318.1489, found: 318.1493.

0.5202 3.71878e4 1191.47681

920.63885

0.6953 3.84084e4

1 13.925 VV R

2 19.164 MF

0.5190 5.06441e4

0.3787 224.52728

1477.07202

9.88050

99.5586

0.4414

(3R,6S)-3-methyl-6-(naphthalen-1-yl)-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3F):

49.1927

50.8073

1 13.936 MF

19.210 FM

2

yield (45.0 mg, 71%); yellow oil; $[\alpha]^{25}_{D}$ = +30.0 (*c* 0.36 CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, λ = 210 nm); t_r = 11.93 and 12.88 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.66 – 8.59 (m, 1H), 8.00 – 7.93 (m, 1H), 7.89 – 7.83 (m, 1H), 7.81 – 7.77 (m, 1H), 7.75 – 7.68 (m, 1H), 7.65 – 7.60 (m, 1H), 7.52 – 7.43 (m, 4H), 7.22 – 7.16 (m, 1H), 6.24 (dd, *J* = 11.5, 3.7 Hz, 1H), 2.82 – 2.71 (m, 1H), 2.30 – 2.15 (m, 2H), 2.05 – 1.93 (m, 1H), 1.79 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.7, 162.3, 149.1, 136.9, 135.1, 133.6, 129.8, 129.0, 128.7, 126.3, 125.6, 125.4, 123.7, 122.5, 122.1, 120.8, 81.2, 50.5, 34.6, 27.9, 27.0.

HRMS (ESI+) Calcd. For C₂₁H₂₀NO₂⁺ ([M+H]⁺): 318.1489, found: 318.1493.

(3R,6S)-3-methyl-3-(pyridin-2-yl)-6-(thiophen-3-yl)tetrahydro-2H-pyran-2-one (3G):

yield (28.2 mg, 70%); colorless oil; $[a]^{25}_{D} = +25.2$ (*c* 0.26 CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IE, *i*-propanol/hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 20.60 and 24.88 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.60 – 8.58 (m, 1H), 7.68 – 7.64 (m, 1H), 7.40 – 7.37 (m, 1H), 7.29 – 7.25 (m, 2H), 7.20 – 7.16 (m, 1H), 7.05 – 7.01 (m, 1H), 5.55 (dd, *J* = 11.3, 4.0 Hz, 1H), 2.74 – 2.68 (m, 1H), 2.10 – 2.01 (m, 2H), 1.93 – 1.82 (m, 1H), 1.71 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 162.1, 149.1, 141.3, 136.9, 126.3, 125.6, 122.1, 120.9, 80.0, 50.2, 34.0, 27.6, 26.9.

HRMS (ESI+) Calcd. For C₁₅H₁₆NO₂S⁺ ([M+H]⁺): 274.0896, found: 274.0898.

(3R,6S)-6-(furan-3-yl)-3-methyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3H):

yield (33.4 mg, 65%); colorless oil; $[\alpha]^{25}_{D} = +53.2$ (*c* 0.33, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 21.46 and 23.86 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.63 – 8.52 (m, 1H), 7.72 – 7.61 (m, 1H), 7.47 – 7.41 (m, 1H), 7.39 – 7.32 (m, 2H), 7.22 – 7.16 (m, 1H), 6.40 – 6.31 (m, 1H), 5.45 (dd, *J* = 11.2, 4.0 Hz, 1H), 2.76 – 2.66 (m, 1H), 2.10 – 1.94 (m, 2H), 1.91 – 1.77 (m, 1H), 1.70 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.3, 162.0, 149.2, 143.4, 139.7, 136.8, 125.3, 122.1, 121.0, 108.6, 50.2, 33.9, 26.9, 26.9.

HRMS (ESI+) Calcd. For C₁₅H₁₆NO₃⁺ ([M+H]⁺): 258.1125, found: 258.1127.

(3R,6S)-6-cyclohexyl-3-methyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one (3I):

yield (32.8 mg, 60%); colorless oil; $[\alpha]^{25}_{D} = -50.7$ (*c* 0.41, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak IE, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 21.39 and 24.05 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.72 – 8.42 (m, 1H), 7.77 – 7.55 (m, 1H), 7.40 – 7.27 (m, 1H), 7.21 – 7.12 (m, 1H), 4.22 (ddd, *J* = 12.0, 5.8, 3.9 Hz, 1H), 2.73 – 2.54 (m, 1H), 1.95 – 1.81 (m, 2H), 1.67 – 1.61 (m, 6H), 1.53 – 1.43 (m, 2H), 1.29 – 0.96 (m, 7H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 175.0, 162.2, 149.2, 136.7, 121.9, 121.2, 87.0, 42.9, 33.8, 28.1, 27.9, 26.3, 26.0, 25.9, 22.8.

HRMS (ESI+) Calcd. For C₁₇H₂₄NO₂⁺ ([M+H]⁺): 274.1802, found: 274.1804.

5. Absolute configuration determination of (3R,6S)-3t

Figure S1. ORTEP representation of (3*R*,6*S*)-3t at 30% probability for the drawing of thermal ellipsoids.

Crystal data for (3R,6S)-**3t**: C₁₇H₁₆FNO₂, M_r = 285.31, T = 300 K, Monoclinic, space group P 1 21 1, a = 6.47670(10) b = 15.7755(3) c = 7.4250(2) Å, β = 100.190(2), V = 746.67(3) Å³, Z = 2, 2694 unique reflections, final R_1 = 0.0336 and wR_2 = 0.0945 for 2845 observed [I>2 σ (I)] reflections, Flack χ = 0.07(6). CCDC 2375149 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

6. Gram scale reaction and synthetic transformations

a) Scale-up experiment

To a clean and dried Schlenk tube was charged with Cu(CH₃CN)₄PF₆ (5 mol%, 37 mg) and (*S*,*S*_p)-L5 (5.5 mol%, 60 mg) in glovebox, degassed THF (5 mL) was added to the tube under nitrogen atmosphere, and then the mixture was stirred at room temperature for 30 min. Then, α -azaaryl acetate **2a** (2 mmol, 1.0 equiv), allyl alcohol **1a** (6 mmol, 3.0 equiv), [Ru]-**1** complex (2 mol%), Cs₂CO₃ (3 mmol, 1.5 equiv) and THF (15 mL) were subsequently added to the tube, respectively. The mixture was stirred at room temperature for 36 h. Upon completion, the crude mixture was filtered through a short silica gel plug to remove the metal complex, and the filtrate was concentrated to dryness. The crude product was analyzed by ¹H NMR to determine the diastereoselectivity. Then the residue was purified by column chromatography to give the desired product **3a**, which was then directly analyzed by HPLC to determine the enantiomeric excess.

b) Synthetic transformations

A 10 mL dried two-neck round bottom flask was charged with (3*R*,6*S*)-**3a** (26.7 mg, 0.1 mmol), then evacuated and filled with nitrogen atmosphere for three times, and 1 mL dried THF was added by syringe. LiAlH₄ (0.2 mmol, dissolved in THF) was added slowly at 0 °C under N₂ atmosphere, and stirred at room temperature for 30 min. After completion, the mixture was concentrated in vacuo. The ¹H NMR analysis of the crude reaction mixture showed a >20:1 diastereomer ratio of the product **4**. Finally, and the mixture was purified by column chromatography with MeOH : DCM = 20:1 to give the desired product as colorless oil.

(1*S*,4*R*)-4-methyl-1-phenyl-4-(pyridin-2-yl)pentane-1,5-diol (4):

yield (21.2 mg, 78%); colorless oil; $[\alpha]^{25}_{D} = -5.7$ (*c* 0.23, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IC, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 46.08 and 57.37 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.48 – 8.46 (m, 1H), 7.66 – 7.62 (m, 1H), 7.34 – 7.27 (m, 5H), 7.22 – 7.19 (m, 1H), 7.16 – 7.12 (m, 1H), 4.61 (dd, *J* = 7.3, 5.2 Hz, 1H), 3.74 (s, 2H), 2.01 – 1.93 (m, 1H), 1.71 – 1.61(m, 3H), 1.24 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.2, 148.0, 144.6, 136.9, 128.4, 127.5, 125.9, 121.4, 120.9, 74.8, 70.3, 43.8, 34.6, 33.7, 22.0.

HRMS (ESI+) Calcd. For C₁₇H₂₂NO₂⁺ ([M+H]⁺): 272.1645, found: 272.1646.

A 10 mL dried two-neck round bottom flask was charged with (3R,6S)-3a (26.7 mg, 0.1 mmol),

then evacuated and filled with nitrogen atmosphere for three times, and 1 mL dried THF was added by syringe. CH₃MgBr (0.22 mmol) was added slowly at 0 °C under N₂ atmosphere, and stirred at room temperature for 30 min. After completion, the mixture was concentrated in vacuo. The ¹H NMR analysis of the crude reaction mixture showed a >20:1 diastereomer ratio of the product **5**. Finally, and the mixture was purified by column chromatography with MeOH : DCM = 20:1 to give the desired product as colorless oil.

(1*S*,4*R*)-4,5-dimethyl-1-phenyl-4-(pyridin-2-yl)hexane-1,5-diol (5):

yield (22.5 mg, 75%); colorless oil; $[\alpha]^{25}_{D}$ = +4.8 (*c* 0.99, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm); t_r = 12.38 and 15.70 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.57 – 8.51 (m, 1H), 7.70 – 7.62 (m, 1H), 7.34 – 7.27 (m, 3H), 7.26 – 7.21 (m, 3H), 7.19 – 7.15 (m, 1H), 4.53 (dd, *J* = 7.2, 5.9 Hz, 1H), 2.69 – 2.58 (m, 1H), 1.65 – 1.45 (m, 4H), 1.28 (s, 3H), 1.17 (s, 3H), 1.04 – 0.93 (m, 1H), 0.85 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 166.0, 148.0, 144.6, 136.7, 128.4, 127.5, 125.9, 122.0, 121.2, 75.4, 75.1, 49.2, 34.5, 31.6, 26.9, 24.9, 19.3.

HRMS (ESI+) Calcd. For C₁₉H₂₆NO₂⁺ ([M+H]⁺): 300.1958, found: 300.1958.

A 10 mL dried two-neck round bottom flask was charged with (3R,6S)-3a (26.7 mg, 0.1 mmol),

then 1 mL dried DCM was added by syringe. *m*-CPBA (0.2 mmol) was added slowly and stirred at room temperature for 12 h. After completion, the mixtures were concentrated in vacuo. The ¹H NMR analysis of the crude reaction mixtures showed a >20:1 diastereomer ratio of the product **6**. Finally, the mixture was purified by column chromatography with EA to give the desired product as colorless oil.

2-((3R,6S)-3-methyl-2-oxo-6-phenyltetrahydro-2H-pyran-3-yl)pyridine 1-oxide (6):

yield (22.7 mg, 80%); colorless oil; $[\alpha]^{25}_{D} = -12.6$ (*c* 0.98, CH₂Cl₂);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.40 – 8.19 (m, 1H), 7.61 – 7.28 (m, 8H), 5.60 – 5.52 (m, 1H), 2.77 – 2.59 (m, 1H), 2.43 – 2.30 (m, 1H), 2.30 – 2.18 (m, 1H), 1.93 – 1.81 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 154.3, 140.0, 139.6, 128.5, 128.2, 126.2, 126.1, 124.5, 123.1, 81.3, 43.8, 32.1, 29.9, 25.8.

HRMS (ESI+) Calcd. For C₁₇H₁₇NO₃⁺ ([M+H]⁺): 284.1281, found: 284.1283.

A 10 mL dried two-neck round bottom flask was charged with (3R,6S)-**3a** (26.7 mg, 0.2 mmol), then evacuated and filled with nitrogen atmosphere for three times, and 1 mL dried MeOH was added by syringe. The mixture was stirred at room temperature for 12 h and monitored by TLC. After completion, the mixture was concentrated in vacuo. The ¹H NMR analysis of the crude reaction mixture showed a >20:1 diastereomer ratio of the product **7**. Finally, and the mixture was purified by column chromatography with PE:EA = 3:1 to give the desired product as colorless oil.

Methyl (2*R*,5*S*)-5-hydroxy-2-methyl-5-phenyl-2-(pyridin-2-yl)pentanoate (7):

yield (53.8 mg, 90%); colorless oil; $[\alpha]^{25}_{D}$ = +6.6 (*c* 0.85, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AS-H, *i*-propanol/hexane = 10/90, flow rate 1.0 mL/min, λ = 254 nm); t_r = 12.79 and 14.24 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.63 – 8.48 (m, 1H), 7.70 – 7.57 (m, 1H), 7.37 – 7.29 (m, 4H), 7.28 – 7.26 (m, 1H), 7.25 – 7.22 (m, 1H), 7.18 – 7.12 (m, 1H), 4.67 (t, *J* = 6.4 Hz, 1H), 3.65 (s, 3H),

2.78 (s, 1H), 2.32 – 2.22 (m, 1H), 2.15 – 2.02 (m, 1H), 1.73 – 1.67 (m, 2H), 1.56 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.0, 162.6, 148.8, 144.6, 136.6, 128.4, 127.4, 125.8, 121.8, 120.9, 52.9, 52.2, 34.3, 33.9, 22.7.

HRMS (ESI+) Calcd. For C₁₈H₂₂NO₃⁺ ([M+H]⁺): 300.1594, found: 300.1592.

A 10 mL dried two-neck round bottom flask was charged with (3R,6S)-**3a** (26.7 mg, 0.1 mmol), then THF (2 mL) under an argon atmosphere, diisopropylazodiformate (DIAD) (0.2 mmol) was added dropwise under 0 °C and stirred for 10 minutes. Then diphenylphosphoryl azide (DPPA) (0.2 mmol) was added dropwise under 0 °C, and the reaction mixture was stirred at room temperature for 16 h. Then the solution was concentrated under reduced pressure. The ¹H NMR analysis of the crude reaction mixture showed a >20:1 diastereomer ratio of the product **8**. Finally, the crude product was purified by silica gel column chromatography to provide the product as colorless oil.

Methyl (2R,5R)-5-azido-2-methyl-5-phenyl-2-(pyridin-2-yl)pentanoate (8):

yield (23.4 mg, 72%); colorless oil; $[\alpha]^{25}_{D}$ = +4.8 (*c* 0.78, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak AD-H, i-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm); t_r = 5.60 and 7.54 min.

¹**H NMR** (400 MHz, Chloroform-d) δ 8.60 – 8.45 (m, 1H), 7.75 – 7.50 (m, 1H), 7.37 – 7.27 (m, 3H), 7.25 – 7.18 (m, 3H), 7.16 – 7.11 (m, 1H), 4.36 (dd, *J* = 7.8, 6.4 Hz, 1H), 3.67 (s, 3H), 2.27 – 2.17 (m,

1H), 2.04 – 1.95 (m, 1H), 1.75 – 1.64 (m, 2H), 1.58 (s, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ 175.8, 162.3, 149.0, 139.3, 136.5, 128.8, 128.3, 126.9, 121.8, 120.4, 66.5, 52.9, 52.2, 34.9, 31.2, 22.3.

HRMS (ESI+) Calcd. For C₁₈H₂₀N₄O₂+ ([M+H]+): 325.1659, found: 325.1656.

A 10 mL dried two-neck round bottom flask was charged with 8 (32.4 mg, 0.1 mmol), PPh₃ (0.20 mmol), H₂O (0.1 mL) and THF (2 mL). The mixture was stirred at 70 °C for 12 h. After completion, the mixture was concentrated in vacuo. The ¹H NMR analysis of the crude reaction mixtures showed a >20:1 diastereomer ratio of the product 9. Finally, the mixture was purified by column chromatography with EA:PE = 2:1 to give the desired product as colorless oil.

(3R,6R)-3-methyl-6-phenyl-3-(pyridin-2-yl)piperidin-2-one (9):

yield (22.6 mg, 85%); colorless oil; $[\alpha]^{25}_{D} = +15.2$ (*c* 0.66, CH₂Cl₂);

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.65 – 8.46 (m, 1H), 7.70 – 7.64 (m, 1H), 7.49 – 7.45 (m, 1H), 7.43 – 7.36 (m, 2H), 7.34 – 7.29 (m, 3H), 7.19 – 7.12 (m, 1H), 5.98 (s, 1H), 4.72 (t, *J* = 5.3 Hz, 1H), 2.52 – 2.41 (m, 1H), 2.19 – 2.04 (m, 1H), 1.95 – 1.79 (m, 2H), 1.76 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 176.2, 163.9, 149.1, 142.7, 136.6, 128.9, 127.9, 126.1, 121.7, 121.1, 57.5, 49.3, 33.4, 28.7, 25.0.

HRMS (ESI+) Calcd. For C₁₇H₁₈N₂O⁺ ([M+H]⁺): 267.1497, found: 267.1492.

7. Control Experiments

To a clean and dried Schlenk tube was charged with allyl alcohol **1a** (0.6 mmol, 3.0 equiv), α -azaaryl acetate **2a** (0.2 mmol, 1.0 equiv), [Ru]-**1** complex (2 mol%), Cs₂CO₃ (0.3 mmol, 1.5 equiv) and THF (2 mL) were subsequently added to the tube, respectively. The mixtures were stirred at room temperature for 36 h. The crude mixture was filtered through a short silica gel plug to remove the metal complex, and the filtrate was concentrated to dryness. The crude product was analyzed by ¹H NMR.

Figure S2: The crude ¹H NMR spectra of the reaction mixture.

To a clean and dried Schlenk tube was charged with Cu(CH₃CN)₄PF₆ (5 mol%, 3.7 mg) and (*S*,*S*,*S*_{*p*})-L5 (5.5 mol%, 6.0 mg) in glovebox, degassed THF (1 mL) was added to the tube under nitrogen atmosphere, and then the mixtures were stirred at room temperature for 30 min. Then, α -azaaryl acetate 2a (0.2 mmol, 1.0 equiv), D-1a (0.6 mmol, 3.0 equiv), [Ru]-1 complex (2 mol%), Cs₂CO₃ (0.3 mmol, 1.5 equiv) and THF (1 mL) were subsequently added to the tube, respectively. The mixture was stirred at room temperature for 36 h. Upon completion, the crude mixture was filtered through a short silica gel plug to remove the metal complex, and the filtrate was concentrated to dryness. The crude product was analyzed by ¹H NMR to determine the diastereoselectivity. Then the residue was purified by column chromatography to give the desired product D-3a which was then directly analyzed by HPLC to determine the enantiomeric excess.

(3R,6S)-3-methyl-6-phenyl-3-(pyridin-2-yl)tetrahydro-2H-pyran-2-one-6-d(D-3a):

yield (38.6 mg, 72%); colorless oil; $[\alpha]^{25}_{D}$ = +6.6 (*c* 0.85, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm); t_r = 24.33 and 30.88 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.67–8.53 (m, 1H), 7.76–7.65 (m, 1H), 7.51–7.41 (m, 1H), 7.34–7.28 (m, 5H),7.22–7.15 (m, 1H), 2.75–2.67 (m, 1H), 2.16–2.03 (m, 1H), 2.00–1.92 (m, 1H), 1.85–1.75 (m, 1H),1.73 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 162.3, 149.1, 140.1, 136.9, 128.5, 128.2, 125.9, 122.0, 120.8, 83.6 (t, J = 25.3 Hz), 50.3, 34.3, 28.6, 26.9.

HRMS (ESI+) Calcd. For C₁₇H₁₇DNO₂⁺ ([M+H]⁺): 269.1395, found: 269.1397.

To a clean and dried Schlenk tube was charged with Cu(CH₃CN)₄PF₆ (5 mol%, 3.7 mg) and (*S*,*S*_{*p*})-L5 (5.5 mol%, 6.0 mg) in glovebox, degassed THF (1 mL) was added to the tube under nitrogen atmosphere, and then the mixtures were stirred at room temperature for 30 min. Then, α -azaaryl acetate **2a** (0.2 mmol, 1.0 equiv), α , β -unsaturated ketone (0.24 mmol, 1.2 equiv), Cs₂CO₃ (0.3 mmol, 1.5 equiv) and THF (1 mL) were subsequently added to the tube, respectively. The mixture was stirred at room temperature for 12 h. Upon completion, the residue was purified by column chromatography to give the desired product **12** which was then directly analyzed by HPLC to determine the enantiomeric excess.

Methyl (*R*)-2-methyl-5-oxo-5-phenyl-2-(pyridin-2-yl)pentanoate (12):

yield (45.1 mg, 76%); colorless oil; $[\alpha]^{25}_{D} = +14.2$ (*c* 0.76, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 90% ee (Chiralpak AD, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, $\lambda = 210$ nm); t_r = 8.65 and 9.73 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.57–8.54 (m, 1H), 8.02–7.86 (m, 2H), 7.73–7.62 (m, 1H), 7.57–7.51 (m, 1H), 7.48–7.40 (m, 2H), 7.37–7.28 (m, 1H), 7.22–7.1 (m, 1H), 3.71 (s, 3 H), 3.10–2.81 (m, 2H), 2.65–2.35 (m, 2H), 1.66 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 199.8, 175.9, 162.5, 149.0, 136.8, 136.7, 133.0, 128.5, 128.1, 121.9, 120.5, 52.8, 52.2, 34.5, 32.9, 23.0.

HRMS (ESI+) Calcd. For C₁₈H₂₀NO₃⁺ ([M+H]⁺): 298.1438, found: 298.1442.

Methyl (R)-2-methyl-7-oxo-7-phenyl-2-(pyridin-2-yl)heptanoate (13):

yield (23.4 mg, 36%); colorless oil; $[\alpha]^{25}_{D}$ = +8.6 (*c* 0.44, CH₂Cl₂); The product was analyzed by HPLC to determine the enantiomeric excess: 85% ee (Chiralpak AD, *i*-propanol/hexane = 15/85, flow rate 1.0 mL/min, λ = 210 nm); t_r = 8.36 and 9.15 min.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.58–8.51 (m, 1H), 8.02–7.89 (m, 2H), 7.68–7.59 (m, 1H), 7.58–7.50 (m, 1H), 7.49–7.40 (m, 2H), 7.27–7.22 (m, 1H), 7.17–7.09 (m, 1H), 3.67 (s, 3H), 2.99–2.91 (m, 2H), 2.27–1.98 (m, 2H), 1.87–1.67 (m, 2H), 1.58 (s, 3H), 1.36–1.23 (m, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 200.2, 176.1, 163.1, 149.0, 137.0, 136.4, 132.9, 128.5, 128.0, 121.6, 120.4, 53.3, 52.1, 38.3, 38.0, 24.6, 24.4, 22.4.

HRMS (ESI+) Calcd. For $C_{20}H_{24}NO_3^+$ ([M+H]⁺): 326.1751, found: 326.1751.

Peak	RetTime	Туре	Width	Area	Height	Area	reak	NC CT IIIC	Type	MIGCH	Aica	neight	Alca
#	[min]		[min]	[mAU*s]	[mAU]	%	#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.364	MM	0.2115	4791.31006	377.49402	48.2795	1	8.390	MM	0.2139	5482.46191	427.21664	92.4816
2	9.149	MM	0.2343	5132.79932	365.15616	51.7205	2	9.188	MM	0.2466	445.70309	30.12160	7.5184

8. References

[1] S. F. Musolino, O. S. Ojo, N. J. Westwood, J. E. Taylor, A. D. Smith, *Eur. Chem. J.* **2016**, *22*, 18916-18922.

[2] S.-Q. Yang, Y.-F. Wang, W.-C. Zhao, G.-Q. Lin, Z.-T. He, J. Am. Chem. Soc. 2021, 143, 7285-7291.

[3] C. J. Richards, A. W. Mulvaney, 1996, 7, 1419-1430.

- [4] a) M. Y. Jin, Y. Zhou, D. Xiao, Y. You, Q. Zhen, G. Tao, P. Yu, X. Xing, Angew. Chem. Int. Ed. 2022,
- 61, e202112993; b) W. Baratta, E. Herdtweck, K. Siega, M. Toniutti, P. Rigo, Organometallics 2005, 24, 1660-1669.

[5] K. Tsutsumi, T. Katayama, N. Utsumi, K. Murata, N. Arai, N. Kurono, T. Ohkuma, *Org. Process Res. Dev.* **2009**, 13, 625-628.

100 90 f1 (ppm)

80

60

70

50

40 30

20 10

0 -

00 190 180 170 160 150 140 130 120 110

 ^{13}C NMR (101 MHz, CDCl₃) of 2c

 ^{13}C NMR (101 MHz, CDCl_3) of 2d

¹³C NMR (101 MHz, CDCl₃) of **2m**

¹³C NMR (101 MHz, CDCl₃) of **2p**

₹77.3 ₹77.0 76.7 <52.0
<52.0
-41.2</pre>

25.9 22.5 22.3

CO₂Me

— 173.8

158.9
149.4
136.6
122.4
122.1

f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) of (3*R*,6*R*)-3a

¹H NMR (400 MHz, CDCl₃) of (3*R*, 6*S*)-3b

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3b

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3c

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3d

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3e

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3f

¹⁹F NMR (376 MHz, CDCl₃) of (3*R*, 6*S*)-3g

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3g

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3h

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3i

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3j

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-31

¹³C NMR (101 MHz, CDCl₃) of (3*S*, 6*S*)-3m

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3n

¹³C NMR (101 MHz, CDCl₃) of (3*S*, 6*S*)-30

¹³C NMR (101 MHz, CDCl₃) of (3*S*, 6*S*)-3p

¹³C NMR (101 MHz, CDCl₃) of (3*S*, 6*S*)-3q

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3r

¹³C NMR (101 MHz, CDCl₃) of (3*R*,6*S*)-3s

¹³C NMR (101 MHz, CDCl₃) of (3*R*,6*R*)-3s

¹H NMR (400 MHz, CDCl₃) of (3*R*, 6*S*)-3t

¹⁹F NMR (376 MHz, CDCl₃) of (3*R*, 6*S*)-3t

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3u

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of (3*R*, 6*S*)-3v

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3v

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3w

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3x

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3y

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3z

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of (3*R*, 6*S*)-**3**A

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3B

¹H NMR (400 MHz, CDCl₃) of (3*R*, 6*S*)-**3**C

-119.8 -119.8 -119.8 -119.8 -119.8 -119.8

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of (3*R*, 6*S*)-**3**C

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3D

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3F

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3G

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3H

¹³C NMR (101 MHz, CDCl₃) of (3*R*, 6*S*)-3I

¹³C NMR (101 MHz, CDCl₃) of 4

¹³C NMR (101 MHz, CDCl₃) of **5**

8.58 8.54 8.54 8.554 8.554 8.554 8.555 8.554 8.554 8.555 8.554 8.554 8.555 8.554 8.555 8.5

¹³C NMR (101 MHz, CDCl₃) of 9

B 865 B 865 B 866 B 866

S109