Supporting Information for

Potassium tert-butoxide Mediated Stereoselective/Direct Mannich Reaction of α -Substituted- γ -Lactams with in situ Generated Aryl N-silyl imines

Tyler D. Casselman, Mithun C. Madhusudhanan, Binh K. Mai, Peng Liu,*a Brian M. Stoltz*b

^a Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United

States

^bWarren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States pengliu@pitt.edu

stoltz@caltech.edu

Table of Contents:

Computational Details	S2
Supplementary Schemes	S21
Materials and Methods	
List of Abbreviations	
General Procedure 1: Synthesis of N-Substituted-y-Lactam Starting Materials	S24
Synthesis of Mannich Donors: Experimental Procedures and Spectroscopic Data	
Synthesis of Mannich Acceptors: Experimental Procedures and Spectroscopic Data	S31
Diastereoselective Mannich Reaction: Experimental Procedures and Spectroscopic Data	
Product Derivatizations	
X-Ray Crystallographic Data for Mannich Product 4w (D21009)	
X-Ray Crystallographic Data for Benzylated Mannich Product SI2 (V20240)	
X-Ray Crystallographic Data for Mannich Product 5 (D19141)	
NMR and IR Spectra of New Compounds	S109

Computational Details

All density functional theory (DFT) calculations were carried out using *Gaussian 16.*¹ Previous DFT calculations indicated that the dissociation of KO'Bu tetramer to dimer is slightly endergonic by 8.9 kcal/mol, whereas the dissociation of KO'Bu tetramer to monomer is highly endergonic by 27.6 kcal/mol.² Therefore, we surmised that KO'Bu dimer is likely the active catalyst under the reaction conditions. In our calculations, dimeric potassium *tert*-butoxide was used as the base, in which one toluene solvent molecule was added to bind to each K to account for explicit solvent effects. Conformational analysis was carried out for transition states using the CREST/xTB³ package at the GFN2-xTB⁴ level of theory. During the TS conformational sampling, forming C–C bond distances and distances between oxygen atom of the enolate and potassium atoms were constrained. Low-energy conformers from CREST conformational search were then fully optimized at the M06-2X/6-31G(d)⁵ level of theory. Vibrational frequency calculations were performed at the M06-2X/6-31G(d) level of theory to confirm whether the optimized structure is a local minimum or a transition state. Single point energies and natural population analysis (NPA) charges were calculated at the M06-2X/6-311G++(d,p) level of theory using SMD⁶ solvation model and toluene as solvent.

Figure S1. Optimized structures of representative low-energy conformers of **TS1** that lead to the major diastereomeric product **4a**. Gibbs free energies are with respect to lactam **2a**, [KO'Bu]₂, and imine **3b**. The three lowest-energy conformers (**TS1**, **TS1-b**, and **TS1-c**) and two other representative rotamers about the forming C–C bonds (**TS1-rotamer1** and **TS1-rotamer2**) are shown.

Figure S2. Optimized structures of representative low-energy conformers of **TS2** that lead to the minor diastereomeric product **4a-ent.** Gibbs free energies are with respect to lactam **2a**, [KO'Bu]₂, and imine **3b**. The three lowest-energy conformers (**TS2**, **TS2-b**, and **TS2-c**) and two other representative rotamers about the forming C–C bonds (**TS3** and **TS2-rotamer2**) are shown.

Figure S3. Computed Gibbs free energy of the deprotonation of lactam 2a with [KO'Bu]₂ to give potassium enolate 2a'.

Figure S4. Computed NPA charges for **TS1**, **3b**, and **TS2**. The imine N becomes more negatively charged in the TS, promoting the N–K interaction in **TS1**, whereas a much smaller increase of negative charge was observed for the Ph group on the imine.

Figure S5. Calculated reaction energy profiles of the imine addition pathways involving 2a and 3b.

	M06-2X/6-31G(d) (gas)			M06-2X/6-311++G(d,p)/SMD(toluene) //M06-2X/6-31G(d)			Imaginary frequency (cm ⁻¹)
Compound	E (a.u.)	H (a.u.)	G (a.u.)	E (a.u.)	H (a.u.)	G (a.u.)	
2a	-671.23376	-670.9625	-671.0177	-671.4360	-671.1648	-671.2200	
KOt-Bu	-2208.6855	-2208.1371	-2208.2373	-2209.0839	-2208.5356	-2208.6357	
dimer							
2a'	-2646.3614	-2645.6881	-2645.8074	-2646.8772	-2646.2038	-2646.3231	
t-BuOH	-233.5506	-233.4054	-233.4418	-233.6377	-233.4925	-233.5289	
20a	-3380.5264	-3379.6083	-3379.7570	-3381.1942	-3380.2760	-3380.4247	
20b	-3380.5290	-3379.6111	-3379.7607	-3381.1980	-3380.2802	-3380.4297	
21a	-1405.4094	-1404.8929	-1404.9807	-1405.7685	-1405.2520	-1405.3399	
21b	-1405.4021	-1404.8856	-1404.9749	-1405.7625	-1405.2460	-1405.3353	
3b	-734.1366	-733.8949	-733.9516	-734.2983	-734.0566	-734.1133	
TS1	-3380.5195	-3379.6031	-3379.7511	-3381.1859	-3380.2695	-3380.4175	-258
TS1-b	-3380.5211	-3379.6046	-3379.7503	-3381.1879	-3380.2714	-3380.4170	-265
TS1-c	-3380.5191	-3379.6028	-3379.7503	-3381.1856	-3380.2693	-3380.4168	-260
TS1-rotamer1	-3380.5186	-3379.6028	-3379.7478	-3381.1818	-3380.2660	-3380.4110	-178
TS1-rotamer2	-3380.5069	-3379.5910	-3379.7435	-3381.1758	-3380.2599	-3380.4124	-167
TS2	-3380.5093	-3379.5937	-3379.7452	-3381.1780	-3380.2624	-3380.4138	-194
TS2-b	-3380.5093	-3379.5936	-3379.7449	-3381.1779	-3380.2623	-3380.4135	-191
TS2-c	-3380.5090	-3379.5933	-3379.7439	-3381.1780	-3380.2622	-3380.4128	-196
TS3	-3380.5099	-3379.5942	-3379.7430	-3381.1780	-3380.2623	-3380.4112	-221
TS2-rotamer2	-3380.5001	-3379.5841	-3379.7349	-3381.1715	-3380.2555	-3380.4063	-257

Cartesian Coordinates and Energies of All Optimized Structures and Imaginary Frequencies of Transition States

Cartesian Coordinates:

2a				Н	4.3946	1.1776	-2.3431
				Н	4.0103	2.0566	-0.8426
С	-1.0651	0.9094	-0.0929	Н	3.6488	0.3270	-0.9717
С	-0.5310	0.2657	1.1852	С	2.3286	2.9039	-2.8682
0	-1.7034	1.9415	-0.1440	Н	3.0310	2.8281	-3.7077
С	0.5519	-0.6795	0.6651	Н	1.3337	3.1337	-3.2687
Н	1.4970	-0.1330	0.5715	Н	2.6398	3.7384	-2.2271
Η	0.7208	-1.5482	1.3048	С	1.7836	0.4744	-2.9623
С	0.0459	-1.0703	-0.7272	Н	1.7139	-0.4661	-2.3981
Η	0.8568	-1.2766	-1.4316	Н	0.7919	0.7126	-3.3738
Η	-0.6070	-1.9536	-0.6880	Н	2.4609	0.3080	-3.8088
Ν	-0.7047	0.1071	-1.1556	С	0.0848	-1.0463	1.9399
С	-0.0922	1.3062	2.2032	С	1.3137	-0.9372	1.2827
Н	-0.9114	2.0009	2.4025	С	1.5523	-1.7747	0.1847
Н	0.2116	0.8348	3.1420	С	0.5863	-2.6783	-0.2538
Н	0.7537	1.8849	1.8181	С	-0.6432	-2.7665	0.4042
С	-1.1322	0.2632	-2.4938	С	-0.8872	-1.9505	1.5083
С	-1.0584	-0.8275	-3.3723	Н	-0.1212	-0.4013	2.7897
С	-1.6141	1.4821	-2.9785	Н	2.5036	-1.7047	-0.3371
С	-1.4533	-0.7015	-4.6939	Н	0.7936	-3.3166	-1.1081
Н	-0.6985	-1.7898	-3.0251	Н	-1.3958	-3.4731	0.0677
С	-2.0163	1.6054	-4.3065	Н	-1.8369	-2.0102	2.0326
Н	-1.6840	2.3312	-2.3137	С	0.8639	6.2940	-0.9635
С	-1.9374	0.5165	-5.1741	С	0.4463	6.8015	0.2656
Н	-1.3986	-1.5430	-5.3763	Ċ	-0.8457	6.5228	0.7187
Н	-2.3864	2.5651	-4.6476	Ċ	-1.6987	5.7269	-0.0421
0	-2.3015	0.5402	-6.4856	Ċ	-1.2812	5.1880	-1.2668
Ċ	-2.7957	1.7574	-6.9953	Ċ	0.0028	5.4996	-1.7230
Ĥ	-2.0456	2.5548	-6.9240	Ĥ	1.8614	6.5107	-1.3344
Н	-3.0305	1.5748	-8.0439	Н	1.1131	7.4203	0.8586
Н	-3.7048	2.0720	-6.4681	Н	-1.1879	6.9254	1.6678
Н	-1.3644	-0.3228	1.5962	Н	-2.6931	5.4917	0.3252
	110011	0.0220	1.0,0	Н	0.3456	5 0922	-2.6691
KO	t-Bu dimer			C	2.3193	0.1108	1.6743
				Ĥ	2.2783	0.9101	0.9192
К	0.3226	3,3884	0.5853	Н	2.0993	0.5203	2.6649
K	-0.6717	0.3096	-0.8138	Н	3.3366	-0.2930	1.6847
0	-1.7717	2.0664	0.6342	C	-2.1583	4.2045	-1.9956
Ō	1.3808	1.7738	-0.9721	Н	-3.1753	4.5901	-2.1202
Č	-3.0017	1.7968	1.1859	Н	-1.7525	3.9642	-2.9823
Č	-3 7383	0 7027	0 3764	Н	-2.2164	3 2882	-1 3887
H	-3.1759	-0.2422	0.4213		2.2101	5.2002	1.2007
Н	-4 7496	0 4963	0 7473	2a'			
н	-3.8165	1 0154	-0.6736				
C	-2.8616	1 2996	2 6389	К	-0.6232	3 6995	-1 2400
н	-2 3249	2 0513	3 2299	K	0.9879	0 5343	0.0379
н	-3 8286	1 1054	3 1198	0	0.3071	1 5704	-2 1180
н	-2 2760	0 3735	2 6576	C	0.3084	0.9650	-3 3503
Ċ	-3 8915	3 0561	1 2007	C C	1 3650	1 6016	-4 2736
н	-4 0253	3 4314	0 1791	н	1 4102	1 1317	-5 2639
н	-4 8829	2 8725	1 6331	Н	1 1400	2 6671	-4 4076
н	-3 3976	3 8370	1 7917	н	2 3526	1 5250	-3 8046
C	2.2270	1 6155	-2 0256	C	-1 0758	1.0250	_4 0204
c	2.2707	1 2721	-2.0250	с н	-1.0756	0.6454	-5.0204
\sim	5.0070	1.4/21	1.34/0	11	1.1105	0.0707	-2.0120

Н	-1.8311	0.6136	-3.3885
Η	-1.3363	2.1603	-4.1167
С	0.6201	-0.5420	-3.2148
Η	1.6134	-0.6777	-2.7629
Η	-0.1260	-1.0027	-2.5541
Н	0.6106	-1.0775	-4.1722
С	-0.9390	1.9015	1.9529
С	-0.4327	1.6019	3.1860
0	-0.4063	2.4755	0.9396
С	-1.4816	0.9323	4.0317
Н	-1.3469	-0.1617	4.1261
Н	-1.5350	1.3212	5.0560
С	-2.7724	1.2523	3.2566
Н	-3.5334	0.4663	3.3138
Н	-3.2116	2.1863	3.6480
Ν	-2.3141	1.4334	1.8858
С	0.9641	1.8934	3.6199
Н	1.4734	2.4799	2.8455
Н	1.0066	2.4740	4.5525
Н	1.5675	0.9857	3.8016
С	-3.1953	1.7945	0.8707
С	-4.5241	2.1677	1.1469
С	-2.8102	1.7290	-0.4806
С	-5.4020	2.5209	0.1285
Н	-4.8791	2.1878	2.1720
С	-3.6803	2.1144	-1.4981
Н	-1.8185	1.3773	-0.7574
С	-4.9815	2.5276	-1.2009
Н	-6.4249	2.8088	0.3505
Н	-3.3332	2.0518	-2.5242
0	-5.8976	2.9325	-2.1313
С	-5.5114	2.8510	-3.4828
Н	-5.2572	1.8221	-3.7671
Н	-6.3680	3.1881	-4.0667
Н	-4.6501	3.4988	-3.6961
С	-0.6665	-1.5683	1.5935
С	0.4991	-1.5557	2.3612
С	1.6889	-2.1085	1.8759
С	1.6879	-2.6666	0.5904
С	0.5265	-2.6872	-0.1804
С	-0.6562	-2.1377	0.3202
Н	-1.5688	-1.0962	1.9735
Н	0.4854	-1.0930	3.3448
Н	2.6060	-3.0944	0.1941
Н	0.5471	-3.1191	-1.1764
Н	-1.5578	-2.1362	-0.2852
С	2.9335	-2.1286	2.7282
Н	2.9693	-3.0405	3.3343
Н	3.8391	-2.1059	2.1152
Н	2.9585	-1.2768	3.4136
С	-3.0391	5.7940	-1.2717
С	-3.0251	5.2696	0.0218
С	-1.9748	5.5468	0.9030
С	-0.9339	6.3707	0.4522
С	-0.9419	6.8995	-0.8380
С	-1.9963	6.6106	-1.7093

H H H H C H H H	-3.8694 -3.8329 -0.1074 -0.1283 -2.0059 -1.9571 -0.9993 -2.1307 -2.7366	5.5559 4.6186 6.5950 7.5413 7.0262 4.9685 4.4855 5.7499 4.2085	-1.9316 0.3449 1.1227 -1.1642 -2.7126 2.2929 2.5071 3.0413 2.4011
t-Bı	ıOH		
0 C C H H H C H H H C H H H H H H H	$\begin{array}{c} 1.0016\\ 2.0915\\ 3.2821\\ 4.1195\\ 2.9882\\ 3.6346\\ 1.5721\\ 2.3429\\ 0.6993\\ 1.2722\\ 2.4690\\ 2.8142\\ 1.5991\\ 3.2740\\ 1.2953\end{array}$	$\begin{array}{c} 1.9025\\ 2.0588\\ 2.6831\\ 2.8573\\ 3.6368\\ 2.0209\\ 2.9938\\ 3.1795\\ 2.5509\\ 3.9481\\ 0.7002\\ 0.0196\\ 0.2497\\ 0.7963\\ 1.3123\\ \end{array}$	-1.3929 -2.2994 -1.5709 -2.2541 -1.1234 -0.7707 -3.3843 -4.1381 -3.8722 -2.9422 -2.8906 -2.1027 -3.3770 -3.6261 -0.6833
20a			
C C C H O SI N C H H C H H N C H H H K K C C C C C	0.8503 0.3253 -1.2863 -1.6201 0.7846 -2.7258 -1.9218 1.1633 0.6437 2.0825 1.5095 0.8159 2.5315 1.3807 0.5014 -0.0885 1.5516 0.1577 -1.3502 1.2928 -1.5007 -1.5018 -1.6621 -1.5936	$\begin{array}{c} 1.1782\\ 2.1101\\ 2.2542\\ 2.7496\\ -0.0466\\ 0.0674\\ 1.0265\\ 3.3717\\ 4.2970\\ 3.3254\\ 3.3234\\ 3.9287\\ 3.6563\\ 1.8999\\ 1.5412\\ 0.6283\\ 1.3027\\ 2.2634\\ -0.9612\\ -2.2770\\ 3.2840\\ 2.9019\\ 4.6402\\ 3.8464\\ \end{array}$	$\begin{array}{c} 1.0836\\ 2.1320\\ 1.8382\\ 2.7762\\ 1.1171\\ 2.6748\\ 1.5535\\ 1.8777\\ 2.1367\\ 2.4753\\ 0.3793\\ -0.2109\\ 0.1676\\ 0.0408\\ 3.5304\\ 3.6377\\ 3.7421\\ 4.2791\\ -0.3322\\ 2.1668\\ 0.7294\\ -0.6146\\ 1.0234\\ -1.6318\\ \end{array}$
Н	-1.4178	1.8453	-0.8527

С	-1.7722	5.5935	0.0116
Н	-1.7006	4.9539	2.0649
С	-1.7231	5.2012	-1.3230
Η	-1.5577	3.5299	-2.6718
Η	-1.8982	6.6418	0.2669
Η	-1.8004	5.9399	-2.1152
С	1.4816	1.4308	-1.2912
С	1.5638	2.3625	-2.3286
С	1.4420	0.0591	-1.6252
С	1.5568	1.9664	-3.6660
Η	1.6035	3.4229	-2.1090
С	1.4301	-0.3270	-2.9564
Н	1.3950	-0.7173	-0.8672
С	1.4703	0.6147	-3.9878
Н	1.6080	2.7276	-4.4358
Н	1.3818	-1.3810	-3.2125
С	-4.3168	-0.6467	1.9207
Н	-5.0077	0.1546	1.6360
Н	-4.1022	-1.2300	1.0145
Н	-4.8334	-1.3160	2.6191
С	-3.1957	0.9150	4.3078
Н	-3.8213	1.7959	4.1236
Н	-3.7607	0.2337	4.9539
Н	-2.3148	1.2485	4.8688
С	-1.7924	-1.5412	3.1918
Н	-2.4363	-2.1863	3.8027
Н	-1.4902	-2.1319	2.3136
Н	-0.8986	-1.3166	3.7904
0	0.2447	-2.8725	0.0282
Č	0.3436	-4.1044	-0.5678
Č	1.2669	-5.0380	0.2502
Ĥ	1.3857	-6.0335	-0.1946
Н	2 2640	-4 5830	0 3345
Н	0.8549	-5 1712	1 2610
C	-1 0424	-4 7723	-0 6744
н	-1 0100	-5 7704	-1 1294
н	-1 4840	-4 8563	0 3257
н	-1 7012	-4 1385	-1 2820
\hat{C}	0.9323	-3 9678	-1 9855
н	0.2684	-3 3329	-2 5864
н	1 9099	-3 4724	-1 9256
н	1.0555	_4 9787	-2 5020
$\hat{0}$	1.0555	0 1179	-5 2547
c	1.4000	1 0469	-6 3142
ч	0.6055	1.0409	-6.2601
н	2 3885	1.6166	-6 3049
н	1 3004	0.4641	-0.30+9
n C	2 8210	0.4041	-7.2329
C	2 8501	-0.0889	0.9554
C	5.8501	-0.1995	2.2412
C	4.1402	-1.0481	2.0009
C	4.4412	-2.4000 2.0011	3.0881 1.7740
C	4.4102	-2.0014	1.//40
с п	4.1009	-2.0334	0.7049
п	3.3/19	-0.0308	0.1099
H H	5.0200	0.8466	2.4270
Н	4.1386	-0.65/4	4.3220

H H C H H H H C C C C C C H H H H H C H H H	4.6254	-3.9307	1.5852
	4.0686	-2.4323	-0.3052
	4.8181	-3.3055	4.2350
	5.9006	-3.2847	4.4010
	4.3376	-2.9921	5.1662
	4.5371	-4.3430	4.0339
	-2.4676	-1.9884	-3.3248
	-3.5615	-2.2055	-2.4856
	-4.1834	-1.1308	-1.8519
	-3.7241	0.1811	-2.0304
	-2.6382	0.3839	-2.8928
	-2.0141	-0.6864	-3.5365
	-1.9794	-2.8258	-3.8139
	-3.9296	-3.2144	-2.3233
	-5.0354	-1.3069	-1.1999
	-2.2738	1.3949	-3.0592
	-1.1710	-0.5049	-4.1978
	-4.3410	1.3186	-1.2597
	-5.4027	1.1327	-1.0726
	-3.8341	1.4273	-0.2886
	-4.2364	2.2669	-1.7941
20b			
C	-0.5033	-1.1172	1.7183
C	-0.0509	-2.5573	1.6321
C	-0.1065	-2.9856	0.1049
H	0.2608	-4.0388	0.1447
O	0.1890	-0.1370	1.4104
Si	-2.0485	-3.8707	-1.5478
N	-1.4250	-2.8267	-0.3769
C	-1.1587	-3.3095	2.3912
H	-1.3878	-4.2635	1.9106
H	-0.8498	-3.4911	3.4272
C	-2.3761	-2.3791	2.3600
H	-3.0065	-2.6188	1.5015
H	-2.9536	-2.3815	3.2908
N	-1.7800	-1.0494	2.1725
C	1.3218	-2.7376	2.2747
H H H K	2.0886 1.3067 1.6265	-2.1407 -2.4478 -3.7888	1.7732 3.3317 2.2142 0.3062
K C C	-0.6011 2.6080 0.9518 0.5462	1.7441 0.2509 -2.2448	-0.3062 0.4403 -0.7430
C C U	0.5402 2.2882 1.4416 0.5168	-2.6515 -0.5059	-0.8228 -2.3796
п	-0.5108	-0.9389	-1.5521
С	3.1928	-2.0018	-1.6703
Н	2.6208	-3.5087	-0.2396
С	2.7769	-0.9186	-2.4440
Н	1.1035	0.3306	-2.9876
Н	4.2202	-2.3521	-1.7374
H	3.4746	-0.4147	-3.1069
C	-2.5581	0.1268	2.2203

С	-3.9400	0.0511	2.0500
С	-1.9833	1.3833	2.4862
С	-4.7387	1.1937	2.1040
Η	-4.4082	-0.9087	1.8613
С	-2.7709	2.5236	2.5122
Н	-0.9196	1.4565	2.6783
С	-4.1547	2.4419	2.3149
Н	-5.8089	1.0906	1.9661
Н	-2.3341	3.4971	2.7130
С	-3.8929	-4.1867	-1.2276
Н	-4.4496	-3.2507	-1.0997
Н	-4.3649	-4.7455	-2.0444
Н	-4.0181	-4.7693	-0.3069
С	-1.2063	-5.5794	-1.5710
Н	-1.7095	-6.2552	-2.2720
Н	-0.1559	-5.5106	-1.8796
Н	-1.2292	-6.0512	-0.5809
С	-1.9273	-3.2523	-3.3506
Н	-0.8868	-3.0126	-3.6040
Н	-2.2829	-4.0024	-4.0676
Н	-2.5229	-2.3443	-3.5073
0	1.7527	2.4385	-0.3357
Ċ	2.4529	3.4167	-0.9946
Č	3 1378	4 3636	0.0101
н	3 8223	3 7842	0.6435
н	3 7070	5 1675	-0 4733
н	2 3803	4 8119	0.6624
C	3 5407	2 7935	-1 8978
н	3 0705	2.1755	-2 6226
н	4 1307	3 5389	-2.0220
н	4 2333	2 2012	-1 2817
C	1 5103	4 2477	-1 8913
н	2 0209	5.0525	-2 4349
н	1.0205	3 5845	-2.4347
н	0.7222	1 6063	-2.0232
0	1 8321	3 6100	2 3 4 5 7
C	6 2207	3.0190	2.5457
с ц	-0.2297	3.3070	2.1379
п u	-0.4643	2 0600	2 0280
п	-0./14/	2.9099	2.9309
Г	-0.3616	4.3909	2.2179
C	4.0028	1 1 2 0 4	2 2000
C	4./029	-1.1694	2.3900
C	5.5540	-1.2033	0.4420
C	5.7005	-0.1070	0.4429
C	5.3843	1.1292	1.0/81
	5.0088	1.2101	2.3433
H	4.1559	0.1091	3.9934
H	4.4//9	-2.0998	2.8977
Н	5.4895	-2.2327	0.6453
H	5.8947	2.0390	0.5698
H	4.8/31	2.1805	2.8133
C II	0.3338	-0.1782	-0.9485
H	5.5746	0.0800	-1.6950
H	7.1635	0.5260	-1.0700
H	6.7017	-1.1831	-1.1757
С	-2.0650	3.2526	-2.6751

C C C C C H H H H H H H H H H H H H H H	-1.6581 -2.2083 -3.1791 -3.5781 -3.0297 -1.6303 -0.9099 -1.8865 -4.3270 -3.3585 -3.7497 -4.0855 -2.9925 -4.6048	2.0561 0.8420 0.7923 1.9991 3.2186 4.1959 2.0723 -0.0856 1.9797 4.1396 -0.5249 -1.1148 -1.1300 -0.3697	-3.2722 -2.8635 -1.8500 -1.2640 -1.6691 -2.9902 -4.0600 -3.3332 -0.4766 -1.1951 -1.3982 -2.2572 -0.8704 -0.7339
21a			
C C C H O Si N C H H C H H H N C H H H C C C C H C H	0.8641 0.8167 -0.6644 -0.6368 0.4089 -3.1774 -1.5196 1.7424 1.4027 2.7455 1.7776 1.0419 2.7637 1.4329 1.2914 0.6791 2.3348 1.2176 -1.1550 -1.5108 -1.2242 -1.8751 -1.4907 -1.6070 -0.9738 -1.9205 -2.1261 -1.6594 -2.2129 1.4280	0.5939 1.1472 1.5479 1.9672 -0.4895 0.4447 0.3748 2.3724 3.2019 2.0878 2.7641 3.5452 3.1077 1.5247 0.0951 -0.8044 -0.1730 0.4861 2.6552 2.3722 3.9755 3.3953 1.3432 5.0031 4.2015 4.7158 3.1619 6.0247 5.5129 1.4526	0.5432 1.9671 2.2791 3.2967 0.2071 2.8403 2.2991 1.8891 2.5155 2.2208 0.4054 0.1787 0.0776 -0.2871 2.9661 2.8954 2.7720 3.9867 1.3512 0.0271 1.7973 -0.8406 -0.3260 0.9351 2.8323 -0.3896 -1.8709 1.2996 -1.0662
C	1.4273	2.6266	-2.4516
C C	1.4408	2.5889	-3.8463
H C	1.4093 1.4430	3.5926 0.1821	-1.9593 -3.7534
H	1.4387	-0.7005	-1.8017
C H	1.4415 1.4363	1.3621 3.5227	-4.5048 -4.3959
Н	1.4527	-0.7644	-4.2835

С	-3.7154	-1.3255	3.1627
Η	-3.6242	-1.9365	2.2580
Н	-3.0985	-1.7862	3.9400
Н	-4.7614	-1.3687	3.4839
С	-4.3734	1.2322	1.6129
Н	-4.3404	0.7243	0.6427
Η	-5.4030	1.1751	1.9853
Н	-4.1322	2.2866	1.4414
С	-3.1924	1.4704	4.4170
Η	-4.1873	1.4589	4.8748
Н	-2.4771	1.0833	5.1500
Н	-2.9409	2.5175	4.2130
0	1.4497	1.2080	-5.8565
С	1.4480	2.3791	-6.6394
Н	0.5504	2.9824	-6.4545
Н	2.3378	2.9911	-6.4454
Н	1.4548	2.0507	-7.6786
Н	-1.2728	-0.2945	1.5723
21b			
С	-0.5480	-0.8995	1.6442
С	-0.0011	-2.3298	1.6319
С	-0.0931	-2.9212	0.1900
Н	0.0973	-3.9944	0.3321
0	0.0537	0.0773	1.2337
Si	-1.9620	-3.7678	-1.7108
Ν	-1.4540	-2.8083	-0.3289
С	-0.9747	-3.0743	2.5614
Н	-1.1594	-4.1001	2.2312
Н	-0.5606	-3.1080	3.5742
С	-2.2653	-2.2472	2.5554
Н	-2.9851	-2.6402	1.8300
Η	-2.7402	-2.1971	3.5407
Ν	-1.8234	-0.9116	2.1591
С	1.4431	-2.3357	2.1242
Η	2.0501	-1.6531	1.5254
Н	1.4926	-2.0148	3.1692
Н	1.8709	-3.3422	2.0521
С	0.9745	-2.4280	-0.7796
С	0.8786	-1.1870	-1.4169
С	2.0441	-3.2647	-1.1029
С	1.8327	-0.7976	-2.3501
Н	0.0582	-0.5177	-1.1782
С	3.0011	-2.8792	-2.0401
Н	2.1223	-4.2379	-0.6215
С	2.8955	-1.6425	-2.6676
Н	1.7452	0.1699	-2.8350
Н	3.8215	-3.5479	-2.2826
Н	3.6342	-1.3377	-3.4024
C	-2.7025	0.1949	2.2240
С	-4.0668	-0.0264	2.4137
С	-2.2436	1.5203	2.1239
С	-4.9676	1.0354	2.5005
Н	-4.4531	-1.0363	2.4908
С	-3.1391	2.5712	2.2061

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н С Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н Н С Н Н С Н Н Н С Н Н С Н Н С Н Н С Н Н С С Н Н Н С С Н Н С С Н Н С С Н Н С С Н Н С С Н С	-1.1910 -4.5061 -6.0190 -2.7949 -3.8307 -4.1268 -4.2419 -4.2998 -1.4547 -1.9008 -0.3680 -1.7844 -1.2093 -0.1203 -0.1203 -1.6150 -1.4242 -5.2927 -6.6740 -7.1107 -6.8769 -7.1254 -1.7641	1.7132 2.3442 0.8189 3.5974 -3.5944 -2.5451 -4.1408 -3.9817 -5.5421 -6.2224 -5.6689 -5.8565 -3.2276 -3.3448 -3.8220 -2.1738 3.4526 3.2513 2.6759 2.7325 4.2430 -1.8374	1.9759 2.3949 2.6479 2.1306 -1.7957 -1.9043 -2.6509 -0.8859 -1.3542 -2.0873 -1.4114 -0.3582 -3.3504 -3.3468 -4.1774 -3.5588 2.4643 2.6531 1.8273 3.5984 2.6810 -0.3602
TS1	C H Si N C C C C H C H C H H H C H H H C H H H H C H H H H T S1	$\begin{array}{r} -3.3042 \\ -3.0568 \\ -4.7203 \\ -4.0212 \\ -2.7211 \\ -2.9412 \\ -1.9443 \\ -2.3882 \\ -3.5489 \\ -1.3894 \\ -1.7758 \\ -1.6117 \\ -2.5591 \\ -0.7860 \\ -1.1804 \\ -4.2756 \\ -4.6434 \\ -3.1933 \\ -4.7267 \\ -6.5808 \\ -6.8472 \\ -6.9768 \\ -7.0816 \\ -4.0599 \\ -4.5057 \\ -2.9735 \\ -4.2889 \end{array}$	$\begin{array}{c} -0.9405\\ -1.2307\\ 1.1377\\ 0.0668\\ -1.8360\\ -1.6014\\ -2.9255\\ -2.4502\\ -0.7474\\ -3.7772\\ -3.1040\\ -3.5391\\ -2.2678\\ -4.6235\\ -4.2013\\ 0.6134\\ -0.3917\\ 0.6237\\ 1.3031\\ 1.0887\\ 1.3670\\ 0.0859\\ 1.7832\\ 2.8594\\ 3.5942\\ 2.8989\\ 3.1614 \end{array}$	0.6638 1.7025 1.5926 0.3818 -0.3607 -1.7217 0.0358 -2.6705 -2.0044 -0.9153 1.0956 -2.2687 -3.7270 -0.6021 -3.0133 3.3476 3.5801 3.5160 4.0693 1.3589 0.3348 1.5477 2.0419 1.2491 1.9279 1.3759 0.2227

C 0.8293 1.1922 1.1914

С	0.4804	2.1196	2.2225
С	-1.5561	2.1840	1.7838
Η	-1.7376	2.6247	2.7800
Ο	0.5957	-0.0283	1.1839
Si	-2.7543	-0.0902	2.6198
Ν	-2.0657	0.9886	1.4830
С	1.2524	3.3881	1.9252
Η	0.7086	4.3102	2.1582
Η	2.1877	3.4128	2.5070
С	1.5533	3.2975	0.4173
Н	0.8417	3.9021	-0.1543
Н	2.5668	3.6248	0.1591
Ν	1.3948	1.8731	0.1049
С	0.4525	1.6156	3.6371
Н	-0.0924	0.6681	3.6872
Н	1.4626	1.4453	4.0431
Η	-0.0478	2.3286	4.3042
Κ	-1.3302	-0.9391	-0.4595
Κ	1.3925	-2.2538	2.0216
С	-1.5595	3.2390	0.7204
С	-1.5253	2.8973	-0.6342
С	-1.5976	4.5944	1.0625
С	-1.4817	3.8791	-1.6177
Η	-1.5198	1.8459	-0.9063
С	-1.5592	5.5831	0.0820
Н	-1.6576	4.8728	2.1126
С	-1.4907	5.2288	-1.2638
Н	-1.4256	3.5930	-2.6654
Η	-1.5879	6.6305	0.3681
Н	-1.4575	5.9969	-2.0306
С	1.4150	1.4037	-1.2213
С	1.4610	2.3166	-2.2806
C	1.3891	0.0276	-1.5426
С	1.4069	1.8983	-3.6111
Н	1.5048	3.3808	-2.0808
С	1.3251	-0.3833	-2.8647
Н	1.3813	-0.7336	-0.7702
C	1.3156	0.5426	-3.9109
H	1.4282	2.6483	-4.3936
Н	1.2790	-1.4428	-3.1000
C H	-4.3256	-0.8127	1.8520
H H	-5.0204	-0.0189	1.3363
H H	-4.0901	-1.39/3	0.9528
H C	-4.8435	-1.4833	2.54/4
C H	-3.2061	0.7025	4.2//2
п	-3.8998	1.3380	4.1348
п	-3.0943	-0.0278	4.9520
Н	-2.3272	1.0870	4.8060
C H	-1.6892	-1.0253	3.0056
H	-2.2740	-2.3381	3.6005
п u	-1.3028	-2.1493	2.0901
п 0	-0.8033	-1.5502	3.3940 0.0105
C	0.100/	-2.9033	-0.0103
C	0.2314	-4.1044	-0.3434 0 2710
с u	1.1052	-3.0040	0.5248
11	1.2034	-0.0039	-0.0023

H H C H H H C H H H	2.1712 0.7528 -1.1411 -1.1197 -1.5852 -1.7906 0.8474 0.1926 1.8288 0.9650	-4.6268 -5.1324 -4.8222 -5.8417 -4.8511 -4.2103 -4.1073 -3.5004 -3.6177 5.0050	0.3778 1.3426 -0.6197 -1.0253 0.3824 -1.2591 -1.9633 -2.6018 -1.9247
н О	0.9650	-3.0930	-2.4269
C	1.1791	0.0202	-6.2393
Н	0.3281	1.6325	-6.1567
Н	2.1079	1.5260	-6.2846
Н	1.0785	0.3518	-7.1486
C	3.8041	-0.4378	0.9475
C	5.7289 4.0684	-0.0002	2.2/19
C	4.4964	-2.1792	3.0504
С	4.5559	-2.6038	1.7178
С	4.2139	-1.7418	0.6734
Н	3.5204	0.2319	0.1418
Н	3.3843	1.0018	2.4892
H H	4.0068	-0.5262	4.3422
п Н	4.8737	-2.0194	-0 3536
C	4.9156	-3.0951	4.1737
Н	5.9869	-2.9893	4.3762
Н	4.3824	-2.8618	5.0996
H	4.7310	-4.1438	3.9241
C	-2.4928	-1.9765	-3.3976
C	-3.3833	-2.1/09	-2.5495
C	-3.7419	0.2181	-2.1423
Č	-2.6561	0.4039	-3.0078
С	-2.0362	-0.6800	-3.6342
Н	-2.0080	-2.8233	-3.8735
Н	-3.9524	-3.1820	-2.3670
H U	-5.0529	-1.2513	-1.2/81
H	-2.2879	-0 5144	-4 2997
C	-4.3716	1.3707	-1.4039
Н	-5.4499	1.2212	-1.2946
Н	-3.9328	1.4552	-0.3995
Η	-4.1979	2.3192	-1.9193
TS1-	·b		
C C	-0.8778 -0.9867	-0.8109 -0.6827	-1.5205
č	0.0624	1.0851	-3.1236
Ĥ		0.8072	4 2060
	0.1727	0.0972	-4.2009
0	0.1727 0.1310	-1.1564	-4.2009
O Si	0.1727 0.1310 2.7133	-1.1564 0.6306	-4.2009 -0.8805 -2.8143
O Si N	0.1727 0.1310 2.7133 1.1446	-1.1564 0.6306 1.1272	-4.2009 -0.8805 -2.8143 -2.3464

Н	-2.7130	0.1026	-4.0621
Н	-2.8701	-1.5692	-3.5242
С	-3.0911	-0.0999	-1.9203
Н	-3.3094	0.9734	-1.9522
Н	-4.0162	-0.6316	-1.6684
Ν	-2.0644	-0.3839	-0.9123
С	-0.1495	-1.5972	-3.7918
Н	0.8837	-1.6012	-3.4323
Н	-0.5175	-2.6345	-3.7788
Η	-0.1418	-1.2680	-4.8383
Κ	1.4542	0.8944	0.3893
Κ	1.5840	-3.0250	-0.0198
С	-1.0384	2.0717	-2.8694
С	-1.2639	2.6102	-1.5981
С	-1.8728	2.4757	-3.9161
С	-2.3247	3.4807	-1.3705
Н	-0.6028	2.3265	-0.7840
С	-2.9336	3.3513	-3.6962
Н	-1.6837	2.0941	-4.9174
С	-3.1710	3.8487	-2.4176
Н	-2.4986	3.8748	-0.3733
Η	-3.5704	3.6491	-4.5241
Н	-3.9975	4.5298	-2.2392
С	-2.2274	-0.0021	0.4276
С	-3.3946	0.6700	0.8145
С	-1.2749	-0.2856	1.4355
С	-3.6084	1.0698	2.1350
Н	-4.1556	0.9047	0.0797
С	-1.4826	0.1337	2.7406
Н	-0.3733	-0.8459	1.2155
С	-2.6437	0.8199	3.1061
Н	-4.5263	1.5937	2.3760
Н	-0.7336	-0.0767	3.4996
С	3.9485	1.9230	-2.1899
Н	4.9741	1.6760	-2.4882
Н	3.7035	2.9147	-2.5850
H	3.9383	1.9924	-1.0935
С	2.9502	0.4402	-4.6821
H	2.3148	-0.3468	-5.1025
H	2.7111	1.3740	-5.2030
H	3.9906	0.1864	-4.9138
C II	3.2968	-0.9913	-1.99/2
H	2./300	-1.8503	-2.38/5
H	4.3581	-1.1582	-2.2205
H	3.1915	-0.9636	-0.9029
0	2.2239	-1.2084	1.50/2
C	3.0262	-1.39/5	2.6045
C	2.2/6/	-0.9925	3.8892
H	1.3654	-1.59/3	3.9795
H	2.8728	-1.1185	4.8021
H	1.9/33	0.0597	3.8119
U U	3.4405	-2.8821	2./361
H	4.0805	-3.0801	3.6046
H TT	2.5421	-5.5082	2.8293
H C	3.9931	-5.1908	1.8571
U	4.3142	-0.55/1	2.4855

Н	4.8529	-0.8462	1.5752
Н	4.0496	0.5036	2.3929
Н	4.9889	-0.6712	3.3436
0	-2.7223	1.2228	4.4075
С	-3.8883	1.9131	4.7939
Н	-4.0037	2.8481	4.2302
Н	-4.7839	1.2959	4.6508
Н	-3.7714	2.1415	5.8531
C	-0.0196	-4 8987	2.0345
Č	-0.8443	-3 7849	1 8619
č	-1 4810	-3 5703	0.6413
C	-1 3081	-4 4570	-0.4285
c	-0.4677	-5 5611	-0.4205
c	-0.4077	5 7852	0.0740
с u	0.1097	-5.7852	2 0 9 5 5
п	0.4/34	-3.0093	2.9855
п	-0.9803	-3.0/10	2.0093
H	-2.1105	-2.6942	0.50/1
H	-0.3204	-6.2587	-1.0/03
Н	0.8094	-6.6542	1.0983
С	-2.0331	-4.2217	-1.7282
Н	-3.0597	-4.6002	-1.6707
Н	-2.0863	-3.1514	-1.9527
Н	-1.5382	-4.7266	-2.5626
С	3.1560	3.3600	1.6921
С	2.3902	3.9685	0.6956
С	1.0049	4.0494	0.8298
С	0.3595	3.5197	1.9549
С	1.1370	2.9087	2.9442
С	2.5247	2.8339	2.8193
Н	4.2350	3.2933	1.5890
Н	2.8695	4.3706	-0.1918
Н	0.4136	4.5167	0.0453
Н	0.6467	2.4865	3.8186
Н	3.1102	2.3558	3.5988
С	-1.1403	3.5744	2.0763
Н	-1.6095	2.8283	1.4225
Н	-1.4613	3.3559	3.0988
Н	-1 5217	4 5601	1 7907
	1.0217	1.2001	1.7907
TS1	-c		
С	-0.8452	-1.5780	1,2830
č	-0.5127	-2.7425	2.0412
Č	1 4498	-2 9105	1 3612
н	1.6731	-3 5755	2 2145
0	-0.4818	-0.4108	1 5117
Si	3 0215	-1.0078	2 1.5117
N	2 0618	-1.0070	2.7/2/ 1.2568
	2.0010	-1./32/ 2.9210	1.2300
с u	-1.4303	-3.0310	1.3/39
п	-1.0083	-4.0303	1.3430
п	-2.3314	-3.889/	2.2393
	-1.8/90	-3.3/89	0.1029
п	-1.3009	-3.9110	-0.6032
H N	-2.9462	-5.5529	-0.0368
N	-1.5/26	-1.9449	0.1412
()	-0 2844	-7 5728	3 51 59

Н	-1.2184	-2.3766	4.0651
Н	0.1676	-3.4713	3.9540
Н	0.3947	-1.7333	3.6953
Κ	1.4119	0.5581	-0.210
Κ	-0.7911	1.6974	2.8620
С	1.2213	-3.7013	0.1091
С	1.0952	-3.0640	-1.1280
С	1.1343	-5.0958	0.1478
С	0.8476	-3.7899	-2.2871
Η	1.1743	-1.9835	-1.1638
С	0.8877	-5.8309	-1.0101
Η	1.2623	-5.6078	1.0993
С	0.7348	-5.1801	-2.2324
Η	0.7329	-3.2713	-3.2365
Η	0.8216	-6.9139	-0.9591
Η	0.5432	-5.7510	-3.1359
С	-1.7001	-1.1785	-1.0280
С	-1.9890	-1.8069	-2.2454
С	-1.5606	0.2279	-1.0356
С	-2.0935	-1.0850	-3.4362
Η	-2.1137	-2.8829	-2.2848
С	-1.6600	0.9400	-2.2201
Η	-1.3437	0.7715	-0.1237
С	-1.9146	0.2958	-3.4332
Н	-2.3079	-1.6226	-4.3531
Н	-1.5304	2.0189	-2.2154
С	4.5735	-0.3084	1.6442
Н	5.1209	-1.0988	1.1198
Н	4.3187	0.4623	0.9036
Н	5.2487	0.1551	2.3728
С	3.5556	-2.1904	3.8498
Η	2.6990	-2.5842	4.4081
Н	4.1066	-3.0447	3.4413
Η	4.2117	-1.6808	4.5642
С	2.2167	0.5049	3.3065
Н	1.8793	1.2481	2.5696
Н	1.3639	0.1966	3.9246
Н	2.9427	0.9985	3.9647
0	0.3976	2.5688	0.9168
С	0.6654	3.8589	0.5385
С	0.1955	4.8539	1.6225
Н	-0.8848	4.7314	1.7847
Н	0.7146	4.6342	2.5650
Н	0.3830	5.9039	1.3659
С	2.1824	4.0565	0.3297
Н	2.5388	3.3655	-0.4474
Н	2.4526	5.0769	0.0273
Н	2.7116	3.8150	1.2592
С	-0.0647	4.1836	-0.7795
Н	0.1174	5.2017	-1.1482
Н	0.2591	3.4705	-1.5494
Н	-1.1448	4.0484	-0.6352
0	-1.9506	1.0930	-4.5418
С	-2.1245	0.4523	-5.7849
Н	-1.3192	-0.2691	-5.9756
Н	-3.0902	-0.0653	-5.8367

H C	-2.0947 -3.6361	1.2373 0.2721	-6.5403 3.1144
С	-3.7811	1.3096	4.0357
С	-3.8272	2.6349	3.5969
č	-3 7370	2 9456	2 2347
c	3.7970	1 2026	1 2000
C	-3.3621	1.6950	1.5220
C H	-3.334/	0.3691	1./343
Н	-3.5916	-0.7598	3.4497
Н	-3.8619	1.0898	5.0966
Н	-3.9465	3.4391	4.3193
Н	-3.4849	2.1144	0.2622
Н	-3.3954	-0.2304	1.0319
С	-3.8356	4.3707	1.7531
Н	-3.5251	5.0772	2.5278
Н	-3.2099	4.5338	0.8711
н	-4.8685	4.6107	1.4777
C	2 8382	-0 5782	-2 7831
c	1 6379	-0 1093	-3 3165
c	1.0577	1 2508	-3 5203
C	2 4 4 2 5	2 1 2 1 6	2 1 970
C	2.4433	2.1810	-3.10/0
C	3.0280	1.7000	-2.0110
U U	3.8300	0.3338	-2.4183
H	2.9925	-1.6413	-2.6253
H	0.8357	-0.8022	-3.5648
Н	0.5110	1.6121	-3.9507
Н	4.4042	2.4074	-2.3263
Η	4.7570	-0.0187	-1.9774
С	2.2759	3.6530	-3.4705
Н	2.4987	4.2581	-2.5859
Η	2.9573	3.9670	-4.2687
Η	1.2551	3.8817	-3.7868
TSI	l-rotamer1		
С	1.3014	1.2550	0.0192
С	1.1234	2.4096	0.8333
С	-0.6491	1.8717	2.0683
H	-0.9925	2.8978	1.8555
0	1 6308	0 1034	0.3812
Si	-0.1336	2 6065	4 6012
N	-0 2714	1 5068	3 2758
C	0.8238	3 5786	-0.0855
ч	-0.0488	1 1663	0.2353
и П	1 6603	4.1005	0.2555
C	1.0093	4.2790	1 1707
С	0.3870	2.9493	-1.4/8/
п	-0.4004	3.0424	-1./00/
H	1.19/8	3.4060	-2.2038
N	0.9643	1.5516	-1.3080
C	2.0990	2.6413	1.9470
H	2.1030	1.8161	2.6654
H	3.1264	2.7747	1.5782
H	1.8329	3.5418	2.5125
K	0.4831	-2.1923	-0.2996
K	1.4046	-0.7790	2.9271
С	-1.3296	0.8520	1.2024
С	-1.5776	-0.4366	1.6906

С	-1.8068	1.1758	-0.0709
С	-2.2366	-1.3873	0.9109
Н	-1.2988	-0.6562	2.7170
С	-2.4537	0.2309	-0.8604
Η	-1.6792	2.1923	-0.4335
С	-2.6626	-1.0626	-0.3776
Η	-2.4254	-2.3809	1.3142
Η	-2.8093	0.5023	-1.8504
Η	-3.1813	-1.7945	-0.9896
С	0.8642	0.6108	-2.3393
С	-0.1069	0.7296	-3.3362
С	1.7662	-0.4670	-2.4220
С	-0.2286	-0.2228	-4.3494
Н	-0.7926	1.5706	-3.3267
С	1.6280	-1.4342	-3.4052
Н	2.5689	-0.5356	-1.6978
С	0.6178	-1.3295	-4.3690
Н	-0.9978	-0.0927	-5.1022
Н	2.3202	-2.2699	-3.4609
С	-1.3995	2.1668	5.9350
Н	-2.4041	2.0885	5.5053
Н	-1.1728	1.2165	6.4293
Н	-1.4255	2.9408	6.7111
С	-0.4891	4.4044	4.1238
Н	-1.5345	4.5243	3.8165
H	-0.3243	5.0626	4.9843
Н	0.1394	4.7674	3.3037
С	1.5721	2.4896	5.4115
H	1.54/4	2.8941	6.4302
H	1.8948	1.4428	5.4816
Н	2.3372	3.0354	4.850/
0 C	1.8839	-2.9433	1.0380
C	3.2186	-3.2289	1.480/
	4.1010	-2.3330	2.3834
п	3.1007	-2.3807	2.3280
п	5.9997 2 7016	-1.2801	2.08/0
пС	3.7640	-2.4422	5.4524 1.8402
с u	3.3132	-4.0985	1.0402
н Ц	3 2155	-4.9031	2 8784
н	2 9193	-5 3575	1 1955
C	2.9193	-2 9789	0.0215
н	3.0055	-3 6132	-0.6571
н	3 4788	-1 9261	-0 2271
н	4 7275	-3 1911	-0 1542
0	0.5429	-2 3453	-5 2775
Č	-0.3321	-2 1679	-6 3707
н	-1 3775	-2 1059	-6 0434
н	-0.0780	-1 2627	-6 9349
н	-0.2050	-3 0433	-7 0074
C	0 4759	-1 1864	6 0305
č	-0.7008	-1.4552	5.3332
Ċ	-0.8031	-2.6110	4.5571
Ċ	0.2604	-3.5123	4.4491
Č	1.4377	-3.2257	5.1520
С	1.5461	-2.0797	5.9375

Н	0.5597	-0.2917	6.6404
Н	-1.5336	-0.7594	5.3799
Η	-1.7281	-2.8166	4.0214
Н	2.2789	-3.9099	5.0727
Н	2.4675	-1.8820	6.4786
С	0.1819	-4.7078	3.5420
Н	-0.8585	-4.9804	3.3371
Н	0.6992	-4 4361	2,6079
н	0.6860	-5 5746	3 9811
C	0.2528	-5 3942	-0.4096
C	1.0670	5 0510	-0.4090
C	-1.0079	-3.0319	-0.1239
C	-1.6425	-4.3933	-1.0850
C	-1.3118	-4.0394	-2.5529
C	0.0129	-4.4195	-2.6126
C	0.7866	-5.0852	-1.6618
H	0.8602	-5.8876	0.3413
Н	-1.4944	-5.2957	0.8425
Н	-2.8773	-4.1469	-0.8581
Н	0.4302	-4.1726	-3.5867
Н	1.8115	-5.3590	-1.8950
С	-2.1298	-3.3107	-3.3538
Η	-1.9292	-3.6864	-4.3615
Η	-3.2011	-3.4099	-3.1561
Н	-1.8802	-2.2411	-3.3439
TS	1-rotamer2		
С	0 6643	0 7051	1 5107
\sim	0.0015	0.7051	1.210/
č	0.3573	1.6434	2.5217
C C	0.3573	1.6434	2.5217
C C H	0.3573 -1.8131 -1.8461	1.6434 1.5684 0.7469	2.5217 1.8619 2.6030
C C H	0.3573 -1.8131 -1.8461 0.5269	1.6434 1.5684 0.7469 -0.5451	2.5217 1.8619 2.6030 1.5430
C C H O Si	0.3573 -1.8131 -1.8461 0.5269 -2.6565	1.6434 1.5684 0.7469 -0.5451 1.8929	2.5217 1.8619 2.6030 1.5430
C C H O Si	0.3573 -1.8131 -1.8461 0.5269 -2.6565	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039
C C H O Si N C	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9500	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360
C C H O Si N C	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 2.8270	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.2604
C C H O Si N C H	$\begin{array}{c} 0.3013\\ 0.3573\\ -1.8131\\ -1.8461\\ 0.5269\\ -2.6565\\ -1.9611\\ 0.9599\\ 0.3203\\ 1.0125\end{array}$	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.3604
C C H O Si N C H H H	$\begin{array}{c} 0.3013\\ 0.3573\\ -1.8131\\ -1.8461\\ 0.5269\\ -2.6565\\ -1.9611\\ 0.9599\\ 0.3203\\ 1.9135\\ 1.1051\end{array}$	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.3604 2.6007
C C H O Si N C H H C	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368 2.8227	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.3604 2.6607 0.6207
C C H O Si N C H H C H	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478	$\begin{array}{c} 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 2.9227\\ 3.3619\\ 3.1368\\ 3.3619$	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.3604 2.6607 0.6207 0.0259
C C H O Si N C H H C H H	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368 2.8227 3.3619 3.1929	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.3604 2.6607 0.6207 0.0259 0.3341
C C H O Si N C H H C H H N	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731	$\begin{array}{c} 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ \end{array}$	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.3604 2.6607 0.6207 0.0259 0.3341 0.3605
C C H O Si N C H H C H H N C	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ \end{array}$	2.5217 1.8619 2.6030 1.5430 -0.8195 0.6039 2.1360 2.3604 2.6607 0.6207 0.0259 0.3341 0.3605 3.9516
C C H O SI N C H H C H H N C H	0.3015 0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631 \end{array}$	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\end{array}$
C C H O SI N C H H C H H N C H H	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067 \end{array}$	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572 \end{array}$
C C H O SI N C H H C H H N C H H H	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067\\ 1.8201 \end{array}$	$\begin{array}{c} 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ \end{array}$
C C H O SI N C H H C H H N C H H H K	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067\\ 1.8201\\ -1.4467 \end{array}$	$\begin{array}{c} 2.5217\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ \end{array}$
C C H O SI N C H H C H H N C H H H K K	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067\\ 1.8201\\ -1.4467\\ -2.6039 \end{array}$	$\begin{array}{c} 2.5217\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\end{array}$
ССНОЅІ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067\\ 1.8201\\ -1.4467\\ -2.6039\\ 2.8650\\ \end{array}$	$\begin{array}{c} 2.5217\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\end{array}$
ССНОЅІ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310	$\begin{array}{c} 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067\\ 1.8201\\ -1.4467\\ -2.6039\\ 2.8650\\ 4.0731\\ \end{array}$	$\begin{array}{c} 2.5217\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\end{array}$
ССНОЅІ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	0.3015 0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310 -2.7204	$\begin{array}{c} 1.6434\\ 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067\\ 1.8201\\ -1.4467\\ -2.6039\\ 2.8650\\ 4.0731\\ 2.8893 \end{array}$	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\\ 3.7828 \end{array}$
CCHOSINCHHCHHNCHHHKKCCCC	0.3013 0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310 -2.7204 -2.5395	$\begin{array}{c} 1.6434\\ 1.5684\\ 0.7469\\ -0.5451\\ 1.8929\\ 1.2504\\ 2.9655\\ 3.8279\\ 3.1368\\ 2.8227\\ 3.3619\\ 3.1929\\ 1.3879\\ 1.2140\\ 0.1631\\ 1.3067\\ 1.8201\\ -1.4467\\ -2.6039\\ 2.8650\\ 4.0731\\ 2.8893\\ 5.2666\end{array}$	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\\ 3.7828\\ 2.3593\end{array}$
CCHOSINCHHCHHNCHHHKKCCCCH	0.3013 0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310 -2.7204 -2.5395 -1.7286	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368 2.8227 3.3619 3.1929 1.3879 1.2140 0.1631 1.3067 1.8201 -1.4467 -2.6039 2.8650 4.0731 2.8893 5.2666 4.0691	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\\ 3.7828\\ 2.3593\\ 0.7658\end{array}$
ССНОЅІ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	0.3013 0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310 -2.7204 -2.5395 -1.7286 -3.1343	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368 2.8227 3.3619 3.1929 1.3879 1.2140 0.1631 1.3067 1.8201 -1.4467 -2.6039 2.8650 4.0731 2.8893 5.2666 4.0691 4.0824	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\\ 3.7828\\ 2.3593\\ 0.7658\\ 4.3699\end{array}$
ССНОЅІ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	0.3013 0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310 -2.7204 -2.5395 -1.7286 -3.1343 -2.7983	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368 2.8227 3.3619 3.1929 1.3879 1.2140 0.1631 1.3067 1.8201 -1.4467 -2.6039 2.8650 4.0731 2.8893 5.2666 4.0691 4.0824 1.9552	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\\ 3.7828\\ 2.3593\\ 0.7658\\ 4.3699\\ 4.3353\end{array}$
ССНОЅІ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	0.3013 0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310 -2.7204 -2.5395 -1.7286 -3.1343 -2.7983 -3.0456	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368 2.8227 3.3619 3.1929 1.3879 1.2140 0.1631 1.3067 1.8201 -1.4467 -2.6039 2.8650 4.0731 2.8893 5.2666 4.0691 4.0824 1.9552 5.2758	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\\ 3.7828\\ 2.3593\\ 0.7658\\ 4.3699\\ 4.3353\\ 3.6591\end{array}$
ССНОКИСННСННИСННККССССНСНСН	0.3573 -1.8131 -1.8461 0.5269 -2.6565 -1.9611 0.9599 0.3203 1.9135 1.1951 0.4478 2.1855 1.0731 0.2915 -0.0132 1.2652 -0.4211 -1.9356 1.7556 -2.2160 -2.1310 -2.7204 -2.5395 -1.7286 -3.1343 -2.7983 -3.0456 -2.4622	1.6434 1.5684 0.7469 -0.5451 1.8929 1.2504 2.9655 3.8279 3.1368 2.8227 3.3619 3.1929 1.3879 1.2140 0.1631 1.3067 1.8201 -1.4467 -2.6039 2.8650 4.0731 2.8893 5.2666 4.0691 4.0824 1.9552 5.2758 6.1945	$\begin{array}{c} 1.5107\\ 2.5217\\ 1.8619\\ 2.6030\\ 1.5430\\ -0.8195\\ 0.6039\\ 2.1360\\ 2.3604\\ 2.6607\\ 0.6207\\ 0.0259\\ 0.3341\\ 0.3605\\ 3.9516\\ 4.0158\\ 4.4572\\ 4.5270\\ 0.9110\\ 0.6206\\ 2.4776\\ 1.7755\\ 3.7828\\ 2.3593\\ 0.7658\\ 4.3699\\ 4.3353\\ 3.6591\\ 1.8002\\ \end{array}$

Η	-3.5305	4.0787	5.3811
Η	-3.3680	6.2079	4.1128
С	1.2667	0.8591	-0.9199
С	2.0057	1.5838	-1.8639
С	0.7456	-0.3869	-1.3308
С	2.2444	1.0942	-3.1513
Н	2.4026	2.5603	-1.6124
С	0.9996	-0.8814	-2.5990
Н	0.1348	-0.9904	-0.6736
С	1.7539	-0.1533	-3.5258
Н	2.8134	1.7056	-3.8423
H	0.5847	-1.8398	-2.8979
С	-4.2776	2.8275	-0.5008
H	-4.8215	2.4033	0.3512
H	-4.1024	3.8834	-0.2712
Н	-4.9319	2.7791	-1.3/93
C II	-3.0257	0.3978	-1.9162
H	-3.693/	-0.3214	-1.4250
H H	-3.4932	0.0881	-2.8644
H C	-2.0896	-0.1233	-2.100/
С П	-1.3389	3.0100	-1.8821
п u	-2.0812	5.2275 2.0724	-2.8221
п u	-1.5195	5.9724 2.5097	-1.4104
	-0.01/9	2.3087	-2.1556
C	-0.4998	-3.2900	-0.0247
C	0.0820	-4.8753	-0.8520
ч	-0.2897	-5.6429	-1.7515
н	0.5692	-4 0895	-2.4213
н	0.8411	-5 3385	-2.5221
C	-1 6770	-5 3810	-0.0287
н	-2 1150	-6 1710	-0.6518
Н	-0.9286	-5 8319	0.6331
Н	-2.4681	-4.9573	0.6032
С	-2.0975	-3.6438	-1.7805
Н	-2.9363	-3.2594	-1.1808
Н	-1.6674	-2.8013	-2.3357
Н	-2.5085	-4.3629	-2.5001
0	1.9363	-0.7315	-4.7462
С	2.6545	0.0090	-5.7045
Η	2.1577	0.9615	-5.9279
Η	3.6801	0.2105	-5.3688
Η	2.6836	-0.6039	-6.6052
С	4.1621	-0.9990	-0.6385
С	3.9925	-0.3683	0.5956
С	4.3213	-1.0346	1.7751
С	4.8322	-2.3386	1.7492
С	4.9945	-2.9623	0.5066
C	4.6658	-2.2993	-0.6780
Н	3.8823	-0.4861	-1.5548
H	3.5741	0.6331	0.6390
H	4.1703	-0.5390	2./314
H	5.3887	-3.9753	0.4668
H C	4./963	-2.8024	-1.0318
С П	5.2250	-3.03/4	3.02/1
п	0.2349	-2./424	3.3320

H H C C C C C C C C C H H H H H H H H H	4.5475 5.2210 -5.1374 -4.7189 -4.2424 -4.1755 -4.5988 -5.0765 -5.5047 -4.7606 -3.9194 -4.5410 -5.3908 -3.6352 -3.6779 -2.5885 -4.2056	-2.7797 -4.1240 -1.9720 -2.9603 -2.6054 -1.2640 -0.2817 -0.6311 -2.2440 -4.0064 -3.3810 0.7685 0.1461 -0.8808 -1.7228 -0.5579 -0.0519	3.8462 2.9057 0.7146 1.6054 2.8683 3.2628 2.3589 1.0968 -0.2706 1.3176 3.5586 2.6401 0.4064 4.6184 5.3144 4.5496 5.0475
TS2			
C C	-0.4120	-1.1921	1.6241
C	-0.1427	-3.0419	-0.5600
H	0.3133	-4.0017	-0.2538
O Si	0.2939	-0.1667	1.4303
N	-1.3650	-2.9815	-1.0166
С	-1.1957	-3.3783	2.0846
Н	-1.3581	-4.2790	1.4747
H C	-1.0643	-3.7129	3.1241
Н	-2.3983	-2.6588	1.0836
Н	-3.0475	-2.4322	2.8459
Ν	-1.7954	-1.1003	1.8091
С	1.3662	-2.9481	2.0095
H U	2.0993	-2.2010	1.6859
п Н	1.4700	-3.0000	1 5622
K	-0.4534	1.8440	-0.1644
Κ	2.6751	0.3488	0.6575
С	0.8788	-2.0754	-1.0682
C	0.4763	-0.8726	-1.6635
C	2.2347	-2.4162	-1.10/9
н	-0 5901	-0.6579	-2.2709
C	3.1619	-1.5881	-1.7465
Н	2.5582	-3.3613	-0.6779
С	2.7490	-0.3923	-2.3322
Н	1.0739	0.9035	-2.7294
н ц	4.2050	-1.8889	-1.8044
C	-2.5574	0.2527	-2.0340 1.9555
Č	-3.9467	0.0020	1.7858
С	-2.0003	1.2890	2.3665
С	-4.7543	1.1244	1.9788
Н	-4.4151	-0.9331	1.4974

С	-2.7971	2.4125	2.5183
Η	-0.9400	1.3409	2.5836
С	-4.1813	2.3469	2.3208
Н	-5.8254	1.0256	1.8417
Η	-2.3654	3.3588	2.8315
С	-4.0074	-4.3641	-0.4785
Η	-4.5077	-3.3908	-0.5506
Н	-4.6664	-5.1065	-0.9435
Н	-3.9161	-4.6231	0.5820
С	-1.4811	-6.0051	-1.0093
Н	-2.1315	-6.8360	-1.3052
Н	-0.5474	-6.1014	-1.5747
Н	-1.2422	-6.1373	0.0516
С	-2.7355	-4.3178	-3.2177
Н	-1.8164	-4.3426	-3.8122
Н	-3.3584	-5.1685	-3.5169
Η	-3.2724	-3.3993	-3.4783
0	1.8953	2.5629	-0.1411
С	2.5923	3.6297	-0.6448
С	3.3117	4.3917	0.4860
Н	4.0064	3.7106	0.9950
Η	3.8771	5.2623	0.1304
Η	2.5744	4.7276	1.2235
С	3.6505	3.1533	-1.6638
Н	3.1515	2.6337	-2.4909
Н	4.2544	3.9700	-2.0793
Н	4.3288	2.4383	-1.1751
С	1.6411	4.6074	-1.3684
Η	2.1506	5.4851	-1.7857
Η	1.1369	4.0786	-2.1887
Η	0.8740	4.9556	-0.6640
0	-4.8679	3.5125	2.4893
С	-6.2632	3.4673	2.2990
Η	-6.5168	3.1603	1.2758
Η	-6.7417	2.7805	3.0081
Η	-6.6282	4.4793	2.4735
С	4.7811	-0.0481	3.0660
С	4.8930	-1.2504	2.3678
С	5.4175	-1.2625	1.0739
С	5.8412	-0.0802	0.4571
С	5.7259	1.1196	1.1711
С	5.2006	1.1388	2.4623
Н	4.3721	-0.0360	4.0714
Н	4.5701	-2.1795	2.8279
Н	5.5012	-2.2044	0.5368
Η	6.0458	2.0493	0.7064
Н	5.1139	2.0819	2.9934
С	6.3851	-0.0810	-0.9489
Н	5.6456	0.3216	-1.6517
Н	7.2793	0.5442	-1.0249
Н	6.6456	-1.0918	-1.2739
С	-1.9544	3.6255	-2.3127
С	-1.4970	2.5681	-3.1031
C	-2.0112	1.2835	-2.9265
С	-2.9903	1.0227	-1.9559
С	-3.4397	2.0930	-1.1742

С	-2.9311	3.3818	-1.3475
Н	-1.5490	4.6234	-2.4479
Н	-0.7393	2.7473	-3.8610
Н	-1.6519	0.4675	-3.5504
Н	-4.1934	1.9107	-0.4139
Н	-3.2991	4.1902	-0.7212
С	-3.5271	-0.3703	-1.7467
Н	-3.7270	-0.8580	-2.7062
Н	-2.8084	-1.0107	-1.2137
Н	-4.4565	-0.3422	-1.1710
TS2	2-b		
С	-0.4262	-1.1684	1.6274
Č	-0.0764	-2.5407	1.6168
Č	-0.2349	-3.0325	-0.5571
Ĥ	0.1980	-4.0029	-0.2507
0	0.3050	-0.1637	1.4196
Si	-2.4769	-4.2914	-1.3361
Ν	-1.4600	-2.9409	-0.9999
С	-1.2650	-3.3304	2.1040
Н	-1.4597	-4.2281	1.4991
Н	-1.1310	-3.6656	3.1431
С	-2.4420	-2.3429	1.9918
Н	-3.0591	-2.5612	1.1192
Η	-3.0831	-2.3333	2.8818
Ν	-1.8036	-1.0373	1.8328
С	1.3071	-2.9715	1.9965
Н	2.0556	-2.2431	1.6654
Η	1.4200	-3.0877	3.0861
Н	1.5729	-3.9385	1.5456
Κ	-0.4173	1.8495	-0.1849
Κ	2.6860	0.2918	0.6114
С	0.8069	-2.0962	-1.0797
С	0.4312	-0.8861	-1.6778
С	2.1527	-2.4736	-1.1309
С	1.3693	-0.0733	-2.3052
H	-0.6288	-0.6418	-1.6793
С	3.0954	-1.6/45	-1.7834
H	2.4549	-3.4248	-0.6989
С П	2./091	-0.4/12	-2.3/20
п	1.0030	0.8078	-2./388
п	4.1294	-2.0038	-1.0499
п	2.4338	0.1313	-2.0034
C	-2.3527	0.1419	1.9/32
C	-3.9243	1 3612	2 3605
C	-1.9301	1.3012	2.3093
с ц	-4.0988	0.8013	1 5440
C	-7.7019	2 5080	2 5162
н	-0 8748	1 3858	2.5162
C	-4.0890	2.4793	2.3305
Ĥ	-5.7733	1.1996	1.8790
Н	-2.2412	3.4450	2.8160
C	-4.1294	-4.2534	-0.4150
Н	-4.6064	-3.2682	-0.4831

Н	-4.8140	-4.9807	-0.8667
Η	-4.0277	-4.5108	0.6449
С	-1.6546	-5.9600	-0.9800
Η	-2.3307	-6.7751	-1.2620
Н	-0.7331	-6.0819	-1.5603
Н	-1.4016	-6.0946	0.0773
С	-2.8994	-4.2457	-3.1741
Н	-1.9905	-4.2977	-3.7824
Н	-3.5507	-5.0789	-3.4617
Н	-3.4138	-3.3126	-3.4285
0	1.9451	2.5179	-0.1965
Č	2.6710	3 5613	-0 7083
Ĉ	3 4181	4 3068	0 41 56
Н	4.0948	3.6078	0.9248
Н	4 0074	5 1 5 8 5	0.0532
Н	2.6946	4 6679	1 1549
C	3 7098	3 0492	-1 7299
н	3 1917	2 5396	-2.5514
Н	4 3348	3 8459	-2.1531
н	4 3702	2 3178	-1.2408
C	1 7457	4 5634	-1 4319
н	2.2789	5 4242	-1 8549
н	1 2228	4 0462	-2.2478
н	0.9921	4 9363	-0.7257
0	-4 7415	3 6654	2 4918
Č	-6 1390	3 6571	23133
н	-6 6304	2 9910	3 0333
н	-6 4744	4 6805	2 4800
н	-6 4096	3 3467	1 2954
C	4 8013	-0.1509	3 0059
C	4 8732	-1 3599	2 3141
C	5 3858	-1 3943	1 0159
C	5 8373	-0 2281	0 3883
C	5 7621	0.9787	1 0960
C	5 2489	1 0202	2 3915
н	4 4014	-0.1215	4 0146
н	4 5281	-2 2769	2 7825
н	5 4384	-2 3413	0.4837
н	6 1041	1 8963	0.6230
н	5 1933	1.0503	2 9177
C	6 3687	-0 2522	-1 0222
н	7 2822	0 3430	-1 1084
н	6 5933	-1 2723	-1 3451
н	5 6369	0 1716	-1 7205
\hat{C}	-1 8809	3 6627	-2 3282
c	-1 4631	2 5892	-3 1190
c	-2 0158	1 3219	_2 9347
c	-2.0158	1.00/0	-1.0562
c	-3 4040	2 1804	-1.733
c	-2.4040	3 4522	-1 3542
н	-1 4457	2.7522 4.6468	-1.55+2
H	-1.7452	7 7474	-2.4094
н	-1 6860	0 4027	-3.5585
н	-4 1562	2 0227	-0.4057
Н	_3 1933	4 2732	-0.7057
C	-3 5784	-0 2792	-1 7444
\sim	J.J. 0T	0.2192	1.1/177

Η	-2.8578	-0.9620	-1.2695
Η	-4.4697	-0.2257	-1.1131
Η	-3.8584	-0.7325	-2.7009
TS2	2-с		
С	0.4527	1.0688	1.6733
С	0.1605	2.4555	1.6732
С	0.3368	2.9683	-0.4860
Η	-0.0691	3.9475	-0.1714
0	-0.3207	0.0977	1.4589
Si	2.6195	4.1715	-1.2375
Ν	1.5607	2.8479	-0.9287
С	1.3791	3.1892	2.1737
Н	1.6096	4.0883	1.5837
Н	1.2579	3.5116	3.2184
С	2.5150	2.1571	2.0450
Н	3.1346	2.3592	1.1704
Η	3.1604	2.1127	2.9308
Ν	1.8233	0.8798	1.8773
С	-1.2063	2.9305	2.0584
Н	-1.9768	2.2396	1.7000
Н	-1.3230	3.0189	3.1505
Н	-1.4310	3.9196	1.6338
Κ	0.4173	-1.8587	-0.2165
Κ	-2.7103	-0.3434	0.6486
С	-0.7290	2.0674	-1.0234
С	-0.3793	0.8657	-1.6521
С	-2.0689	2.4666	-1.0530
С	-1.3358	0.0765	-2.2806
Н	0.6776	0.6094	-1.6735
С	-3.0309	1.6928	-1.7081
Н	-2.3522	3.4142	-0.6007
С	-2.6710	0.4927	-2.3200
H	-1.0516	-0.8606	-2.7533
Н	-4.0594	2.0410	-1.7577
Н	-3 4143	-0.1112	-2.8337
C	2.5076	-0.3290	1.9948
Č	3.8966	-0.3631	1.8176
Č	1.8699	-1.5296	2.3787
Č	4.6264	-1.5430	1.9739
H	4.4263	0.5454	1.5512
C	2.5885	-2.7089	2.4935
Ĥ	0.8083	-1.5159	2.5956
C	3.9728	-2.7325	2.2865
Ĥ	5.7010	-1.5140	1.8317
Н	2.0943	-3.6320	2.7823
C	4 2619	4 0727	-0 3022
н	4 1559	4 3071	0 7626
Н	4 7170	3 0787	-0 3894
Н	4.9675	4.7944	-0.7301
C	1.8443	5.8589	-0.8644
Ĥ	2.5472	6.6576	-1.1270
Н	0.9328	6.0170	-1 4517
Н	1.5844	5.9849	0.1924
C	3.0584	4.1386	-3.0721
-			2.0/21

Н	3.5438	3.1924	-3.3350
Η	2.1576	4.2294	-3.6877
Н	3.7399	4.9535	-3.3418
0	-1.9355	-2.5125	-0.3196
С	-2.7329	-3.4749	-0.8812
С	-4.2239	-3.1664	-0.6151
Н	-4.4723	-2.1802	-1.0368
Н	-4.9095	-3.9035	-1.0519
Н	-4.3986	-3.1312	0.4685
С	-2.5225	-3.5349	-2.4087
Н	-1.4634	-3.7352	-2.6178
Н	-3.1251	-4.3093	-2.9000
Н	-2.7771	-2.5650	-2.8541
C	-2.4124	-4 8619	-0.2891
н	-3.0420	-5 6629	-0.6967
н	-1 3629	-5 1085	-0 4954
н	-2 5423	-4 8303	0.4994
0	1 5701	-3.9462	2 1176
c	5 0730	-3.0402	2.4170
ч	6 5020	-3 3590	2.2172
и П	6 2686	5.0305	2.2400
п u	6.2080	-3.0303	2.3008
n C	4 7208	-3.0742	2 1 2 2 5
C	-4.7208	0.4223	5.1255 2.4150
C	-4.0038	1.0224	2.4130
C	-3.214/	1./034	1.1342
C	-5.8341	0.5987	0.5433
C	-5.8901	-0.5976	1.2693
С	-5.3369	-0.6890	2.5454
H	-4.2922	0.3557	4.1185
H	-4.1937	2.4944	2.8572
H	-5.1656	2.6450	0.5887
H	-6.3666	-1.46/5	0.8245
H	-5.3882	-1.6282	3.0883
C	-6.4107	0.6709	-0.8480
Н	-7.3872	0.1808	-0.8947
Н	-6.5322	1.7069	-1.1754
Н	-5.7567	0.1637	-1.5680
С	1.7441	-3.6931	-2.4364
С	1.3809	-2.5772	-3.1948
С	2.0003	-1.3469	-2.9769
С	2.9937	-1.1995	-1.9969
С	3.3507	-2.3280	-1.2503
С	2.7358	-3.5636	-1.4644
Н	1.2564	-4.6488	-2.6026
Η	0.6115	-2.6675	-3.9565
Н	1.7109	-0.4838	-3.5731
Η	4.1133	-2.2335	-0.4826
Η	3.0314	-4.4194	-0.8633
С	3.6396	0.1393	-1.7450
Н	2.9399	0.8476	-1.2758
Н	4.5106	0.0306	-1.0928
Н	3.9671	0.5937	-2.6858
TS3			

-1.3733 1.7620

С

-0.4738

С	-0.2956	-2.7840	1.6837
С	-0.2561	-2.9151	-0.5237
Н	-1.3515	-3.0427	-0.5321
0	0.3948	-0.4754	1.6923
Si	-0.6240	-0.6482	-1.8897
Ν	0.3049	-1.8670	-1.0989
С	-1.6013	-3.4006	2.1407
Η	-1.8497	-4.3400	1.6361
Н	-1.5843	-3.6159	3.2218
С	-2.6403	-2.3045	1.8368
Н	-3.1036	-2.4598	0.8528
Η	-3.4397	-2.2394	2.5818
Ν	-1.8396	-1.0828	1.8520
С	0.9988	-3.3469	2.1996
Η	1.8618	-2.9053	1.6865
Н	1.1305	-3.1623	3.2785
Н	1.0566	-4.4287	2.0351
Κ	0.7839	2.1324	1.6104
Κ	2.5205	-0.7141	0.0826
С	0.4455	-4.2347	-0.5322
С	1.8126	-4.3153	-0.8091
С	-0.2534	-5.4229	-0.2947
С	2.4758	-5.5378	-0.7841
Н	2.3368	-3.4006	-1.0693
С	0.4053	-6.6488	-0.2696
Η	-1.3291	-5.3857	-0.1434
С	1.7779	-6.7107	-0.5004
Η	3.5412	-5.5835	-1.0000
Η	-0.1559	-7.5594	-0.0817
Η	2.2938	-7.6658	-0.4839
С	-2.3838	0.1943	2.0264
С	-3.5726	0.5720	1.4022
С	-1.7669	1.1173	2.8879
С	-4.1110	1.8470	1.5827
Η	-4.0832	-0.1315	0.7515
С	-2.2805	2.3936	3.0529
Η	-0.8767	0.8097	3.4281
С	-3.4561	2.7741	2.3925
Η	-5.0342	2.1025	1.0762
Η	-1.8085	3.1071	3.7244
С	-0.4409	1.0623	-1.1033
Η	0.6140	1.3130	-0.9220
Η	-0.8625	1.8322	-1.7617
Η	-0.9968	1.0781	-0.1569
С	-2.4752	-1.0395	-1.9096
Η	-3.0322	-0.2340	-2.4010
Н	-2.7001	-1.9742	-2.4345
Н	-2.8543	-1.1271	-0.8850
С	-0.0115	-0.4941	-3.6673
Н	-0.1265	-1.4431	-4.2012
Η	-0.5566	0.2801	-4.2191
Н	1.0527	-0.2317	-3.6845
0	2.7631	1.7896	0.1760
С	3.4439	2.6200	-0.6796
С	4.6999	3.1943	0.0055
Н	5.3437	2.3698	0.3362

Н	5.2859	3.8535	-0.6472
Н	4.4018	3.7644	0.8946
С	3.8829	1.8477	-1.9417
Н	2.9982	1.4256	-2.4365
Н	4.4235	2.4659	-2.6695
Н	4.5394	1.0183	-1.6447
С	2.5521	3.8015	-1.1189
Н	3.0553	4.4907	-1.8085
Н	1.6483	3.4209	-1.6095
Η	2.2470	4.3770	-0.2332
0	-3.8827	4.0453	2.6211
С	-5.0656	4.4563	1.9720
Н	-4.9594	4.4054	0.8815
Н	-5.9221	3.8444	2.2803
Н	-5.2330	5.4903	2.2721
С	4.7440	-2.2135	1.9902
С	4.5657	-3.1385	0.9588
С	5.0152	-2.8426	-0.3262
С	5.6493	-1.6258	-0.6100
С	5.8173	-0.7084	0.4313
С	5.3712	-0.9977	1.7222
Н	4.3949	-2.4437	2.9929
Н	4.0617	-4.0819	1.1499
Н	4.8723	-3.5652	-1.1274
Н	6.3005	0.2434	0.2280
Н	5.5148	-0.2714	2.5174
С	6.1290	-1.3234	-2.0074
Н	6.6607	-0.3696	-2.0456
Н	6.8037	-2.1073	-2.3655
Н	5.2894	-1.2654	-2.7089
C	3.3700	1.8559	3.2649
С	2.6727	0.7150	3.6613
С	1.5770	0.8206	4.5165
Ċ	1.1539	2.0659	4.9970
С	1.8565	3.2056	4.5862
С	2.9561	3.1035	3.7327
Н	4.1763	1.7838	2.5433
Н	2.9569	-0.2617	3.2783
Н	1.0331	-0.0777	4.8012
Н	1.5420	4.1822	4.9473
Н	3.4818	4.0005	3.4183
C	-0.0033	2.1690	5.9596
H	-0.8444	1.5397	5.6507
Н	0.2983	1.8421	6.9605
Н	-0.3612	3.1992	6.0422
TS2-	-rotamer2		
С	-0.6077	-1.1404	1.5287
Ċ	-0.2066	-2.4837	1.2500
С	-0.1056	-2.5539	-0.8244
Н	0.4277	-1.5783	-0.8675
0	0.0557	-0.0810	1.3724
Si	2.0872	-3.8894	-1.7256
	0.4075	2 (702	1 1007

С

-1.3243

-3.3887

1.7202

Н	-1.5111	-4.2072	1.0129
Η	-1.0812	-3.8433	2.6916
С	-2.5424	-2.4565	1.8487
Н	-3.1986	-2.5409	0.9750
Н	-3.1383	-2.6349	2.7500
N	-1.9441	-1.1207	1.9143
С	1.1835	-2.9401	1.5667
H	1.9553	-2.2863	1.1416
H	1.3635	-3.0120	2.6493
H V	1.3321	-3.930/	1.1217
K V	-0.0109	2.248/	0.2132
к С	2.4031	0.14/9	1 1 2 0 2
c	-1.3022	-2.3649	-1.1393
C	-2 1701	-1 1266	-1 1177
C	-3.7071	-3.3686	-1.6862
H	-1.8365	-4.4611	-1.5214
С	-3.5356	-0.9888	-1.3491
Н	-1.5577	-0.2532	-0.8951
С	-4.3139	-2.1137	-1.6202
Η	-4.3038	-4.2452	-1.9222
Η	-3.9945	-0.0042	-1.3046
Н	-5.3801	-2.0103	-1.7999
С	-2.7106	0.0304	2.1212
C	-4.0696	0.0501	1.7985
C	-2.15/0	1.1721	2.7351
C II	-4.85//	1.1/61	2.0451
П	-4.3239	-0.8204	1.33/3
с н	-2.9327	2.2908	2.9039
C	-4 2901	2 3087	2 6217
Н	-5.9090	1.1470	1.7824
Н	-2.5139	3.1777	3.4422
С	3.0462	-5.1744	-0.7231
Н	2.4531	-6.0861	-0.5950
Н	3.9769	-5.4501	-1.2328
Н	3.3065	-4.8050	0.2754
С	3.1523	-2.3007	-1.6923
Н	4.0357	-2.4237	-2.3299
Η	2.6027	-1.4292	-2.0728
Н	3.5198	-2.0916	-0.6785
С	2.0797	-4.4879	-3.5149
H	1.6216	-3.7416	-4.1727
H H	3.0915	-4.6929	-3.8832
П	1.4929	-3.4080	-3.0040
C	2 5620	2.3292	-0.0701
C	3 3572	2.9313	-0.7665
н	3 8939	3 5601	0.0749
H	4.0848	4.5360	-1.4033
Н	2.6611	4.7577	-0.3557
С	3.5733	1.9071	-2.0893
Η	3.0343	1.0946	-2.5940
Н	4.2689	2.3528	-2.8106
Н	4.1837	1.4757	-1.2815
С	1.8443	3.5884	-2.7131

Н	2.5348	4.0558	-3.4260
Η	1.2531	2.8304	-3.2413
Н	1.1596	4.3587	-2.3404
0	-4.9593	3.4703	2.8797
С	-6.3224	3.5210	2.5183
Η	-6.4516	3.3748	1.4377
Η	-6.9053	2.7647	3.0570
Η	-6.6737	4.5148	2.7943
С	3.9659	0.4178	3.1059
С	4.0680	-0.9422	2.8182
С	4.8179	-1.3727	1.7214
С	5.4804	-0.4565	0.8973
С	5.3738	0.9078	1.2024
С	4.6239	1.3436	2.2931
Н	3.3773	0.7545	3.9534
Н	3.5556	-1.6710	3.4386
Η	4.8835	-2.4354	1.4980
Н	5.8777	1.6359	0.5706
Η	4.5459	2.4061	2.5026
С	6.2704	-0.9105	-0.3039

Н	5.8418	-0.5066	-1.2285	
Н	7.3073	-0.5656	-0.2422	
Н	6.2740	-2.0003	-0.3860	
С	-2.2381	5.0709	-0.1813	
С	-1.4687	4.9908	-1.3422	
С	-1.7374	4.0071	-2.2927	
С	-2.7718	3.0823	-2.1037	
С	-3.5262	3.1637	-0.9257	
С	-3.2696	4.1542	0.0254	
Н	-2.0425	5.8466	0.5529	
Н	-0.6602	5.6957	-1.5110	
Н	-1.1327	3.9526	-3.1938	
Н	-4.3323	2.4532	-0.7521	
Н	-3.8754	4.2157	0.9245	
С	-3.0462	2.0255	-3.1445	
Η	-2.8334	2.4049	-4.1475	
Η	-2.4234	1.1368	-2.9893	
Η	-4.0896	1.7006	-3.1153	

Scheme S1. Derivatization of Mannich Products to Elucidate Relative Stereochemistry

Scheme S2. Extension of Calculated Diastereoselective Transition States to Model the Relative Stereochemistry of Stereotriads

Scheme S3. KOt-Bu Loading Screen to Elucidate KOt-Bu Catalysis

of major diastereomer

		12b		
Entry	LX	(% yield)	anti:syn	% ee
1	L1	95% yield	10:1	60%
2	L2	33% yield	10:1	3%
3	L3	95% yield	10:1	0%
4	L4	92% yield	10:1	0%
5	L5	62% yield	10:1	5%
6	L6	93% yield	10:1	25%
7	L7	94% yield	10:1	13%

٦h

Ph

Me

Table S2: Solvent screen for the asymmetric Mannich reaction

Silanes were generated from the following procedure: chlorosilane (1.0 equiv) was dissolved in THF (0.2 M) followed by the addition of of magnesium turnings (1.5 equiv) and catalytic iodine as an activator. The aryl/alkyl bromide (1.5 equiv) was then added and the reaction mixture was

brought to reflux. Upon complete conversion, the mixture was neutralized with sat'd NaHCO₃, and the phases were separated. The aqueous phase was extracted with EtOAc three times and the organics were concentrated via rotary evaporator. The crude mixture was purified via column chromatography to deliver the desired silane. Note: the Grignard formation can be performed without the presence of the chlorosilane; however, this results in lower yield for more unstable Grignard species due to decomposition of the Grignard before chlorosilane addition.

References

- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, rev. C.01; Gaussian, Inc.: Wallingford, CT, 2016.
- W.-B. Liu, D. P. Schuman, Y.-F. Yang, A. A. Toutov, Y. Liang, H. F. T. Klare, N. Nesnas, M. Oestreich, D. G. Blackmond, S. C. Virgil, S. Banerjee, R. N. Zare, R. H. Grubbs, K. N. Houk and B. M. Stoltz, *J. Am. Chem. Soc.* 2017, *139*, 6867–6879.
- 3. Pracht, P.; Bohle, F.; Grimme, S. Automated exploration of the low-energy chemical space with fast quantum chemical methods. *Phys. Chem. Chem. Phys.* **2020**, *22*, 7169–7192
- 4. Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-XTB—an Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. *J. Chem. Theory Comput.* **2019**, *15*, 1652–1671.
- 5. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.
- 6. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. *Phys. Chem. B* **2009**, *113*, 6378–6396.

Materials and Methods

Unless otherwise stated, reactions were performed in flame-dried glassware under an argon or nitrogen atmosphere using dry, deoxygenated solvents. Solvents were dried by passage through an activated alumina column under argon.ⁱ Reaction progress was monitored by thin-layer chromatography (TLC) or Agilent 1290 UHPLC-MS. TLC was performed using E. Merck silica

gel 60 F254 precoated glass plates (0.25 mm) and visualized by UV fluorescence quenching, panisaldehyde, or KMnO₄ staining. Silicycle Silia*Flash*® P60 Academic Silica gel (particle size 40–63 µm) was used for flash chromatography. ¹H NMR spectra were recorded on Varian Inova 500 MHz and Bruker 400 MHz spectrometers and are reported relative to residual CHCl₃ (δ 7.26 ppm). ¹³C NMR spectra were recorded on a Varian Inova 500 MHz spectrometer (125 MHz) and Bruker 400 MHz spectrometers (100 MHz) and are reported relative to CHCl₃ (δ 77.16 ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, q = quartet, p = pentet, sept = septuplet, m = multiplet, br s = broad singlet, br d = broad doublet. Data for ${}^{13}C$ NMR are reported in terms of chemical shifts (δ ppm). IR spectra were obtained by use of a Perkin Elmer Spectrum BXII spectrometer or Nicolet 6700 FTIR spectrometer using thin films deposited on NaCl plates and reported in frequency of absorption (cm⁻¹). Optical rotations were measured with a Jasco P-2000 polarimeter operating on the sodium D-line (589 nm), using a 100 mm pathlength cell. High resolution mass spectra (HRMS) were obtained from Agilent 6200 Series TOF with an Agilent G1978A Multimode source in electrospray ionization (ESI+), atmospheric pressure chemical ionization (APCI+), or fast atom bombardment (FAB+). Reagents were purchased from commercial sources and used as received unless otherwise stated.

List of Abbreviations:

TLC – thin-layer chromatography DMEDA – dimethyl ethylene diamine Boc₂O – Di-tert-butyl dicarbonate LiHMDS - lithium bis(trimethylsilyl)amide THF - tetrahydrofuran DMF – dimethylformamide EtOAc – ethyl acetate OMP - ortho-methoxyphenyl PMP – *para*-methoxyphenyl DCM – dichloromethane KOt-Bu - potassium tert-butoxide DMAP-4-dimethylaminopyridine TEA - triethyl amine MeI – methyl iodide *n*-BuLi – *n*-butyl lithium BzCl – benzoyl chloride

General Procedure 1: Synthesis of *N*-Substituted-*γ*-Lactam Starting Materials

1-(4-methoxyphenyl)pyrrolidin-2-one (SI7):⁷ To a solution of CuI (1.52 g, 8 mmol, 0.1 equiv) in toluene (80 mL 1.0 M) was added DMEDA (1.68 mL, 16 mmol, 0.2 equiv), 4-bromoanisole (10.84 mL, 80 mmol, 1.0 equiv), 2-pyrollidinone (8.2 g, 96 mmol, 1.2 equiv), and K₂CO₃ (22.1 g, 160 mmol, 2.0 equiv). The resultant suspension was heated to 100 °C and allowed to stir for 18 hours. The reaction was cooled to ambient temperature, diluted with EtOAc (100 mL) and filtered through a plug of silica. The filter was concentrated by rotary evaporation. The crude product was the purified by flash column chromatography (80% EtOAc in hexanes) to afford the desired *N*-arylated product **SI7** as a colorless solid (13.1 g, 69 mmol, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.43 (m, 2H), 6.96 – 6.86 (m, 2H), 3.85 – 3.81 (m, 2H), 3.80 (s, 3H), 2.60 (dd, *J* = 8.5, 7.7 Hz, 2H), 2.22 – 2.10 (m, 2H). All characterization data match those reported.⁷

1-(2-methoxyphenyl)pyrrolidin-2-one (SI8):⁷ To a solution of CuI (1.52 g, 8 mmol, 0.1 equiv) in toluene (80 mL 1.0 M) was added DMEDA (1.68 mL, 16 mmol, 0.2 equiv), 2-bromoanisole (10.84 mL, 80 mmol, 1.0 equiv), 2-pyrollidinone (8.2 g, 96 mmol, 1.2 equiv), and K₂CO₃ (22.1 g, 160 mmol, 2.0 equiv). The resultant suspension was heated to 100 °C and allowed to stir for 18 hours. The reaction was cooled to ambient temperature, diluted with EtOAc (100 mL) and filtered through a plug of silica. The filter was concentrated via rotary evaporation. The crude product was the purified by flash column chromatography (70% EtOAc in hexanes) to afford the desired *N*-arylated product **SI8** as a pale-yellow oil (13.6 g, 70.4 mmol, 88% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 2H), 7.02 – 6.93 (m, 2H), 3.84 (s, 3H), 3.76 (dd, *J* = 7.3, 6.7 Hz, 2H), 2.56 (dd, *J* = 8.6, 7.6 Hz, 2H), 2.30 – 2.12 (m, 2H). All characterization data match those reported.⁷

SI9

MeO

1-(4-methoxyphenyl)-5-methylpyrrolidin-2-one (SI9): To a solution of CuI (1.52 g, 8 mmol, 0.1 equiv) in toluene (80 mL 1.0 M) was added DMEDA (1.68 mL, 16 mmol, 0.2 equiv), 4bromoanisole (10.84 mL, 80 mmol, 1.0 equiv), 5-methylpyrrolidin-2-one (9.6 g, 96 mmol, 1.2 equiv), and K₂CO₃ (22.1 g, 160 mmol, 2.0 equiv). The resultant suspension was heated to 100 °C and allowed to stir for 18 hours. The reaction was cooled to ambient temperature, diluted with EtOAc (100 mL) and filtered through a plug of silica. The filter was concentrated via rotary evaporation. The crude product was the purified by flash column chromatography (90% EtOAc in hexanes) to afford the desired N-arylated product SI9 as a pale-yellow oil (14.1 g, 68.8 mmol, 86% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 0.4H)*, 7.26 – 7.21 (m, 1.6H), 7.02 – 6.95 (m, 0.4H)*, 6.96 - 6.88 (m, 1.6H)*, 4.25 - 4.13 (m, 1H), 3.83 (s, 0.6H)*, 3.81 (s, 2.4H)*, 2.67 -2.49 (m, 2H), 2.37 (dddd, J = 13.2, 9.3, 7.4, 6.0 Hz, 1H), 1.75 (dddd, J = 12.5, 9.5, 7.4, 5.9 Hz, 1H), 1.18 (d, J = 6.3 Hz, 2.4H), 1.08 (d, J = 6.3 Hz, 0.4H). ¹³C NMR (101 MHz, CDCl₃) δ 175.11,* 174.35, 157.69, 155.30,* 132.23,* 130.38, 130.19,* 128.88,* 126.12, 120.81,* 114.35, 111.95,* 56.14, 55.86,* 55.64,* 55.46, 31.17, 30.93,* 27.74,* 26.86, 20.36,* 20.30; IR (Neat Film, NaCl) 2968, 2836, 1693, 1513, 1462, 1392, 1286, 1248, 1180, 1033, 831 cm⁻¹; (MM:ESI⁺) m/z calc'd for C₁₂H₁₆NO₂ [M+H]⁺: 206.1181, found 206.1166. Rotomeric peaks (approx. 4:1) denoted with*

Synthesis of Mannich Donors: Experimental Procedures and Spectroscopic Data

1-(2-methoxyphenyl)-3-methylpyrrolidin-2-one (1): To a solution of *i*-Pr₂NH (710 μ L, 5.5 mmol, 1.1 equiv) in THF (15 mL) was added *n*-BuLi (2.50 M in hexanes, 2 mL, 5.5 mmol, 1.1 equiv) dropwise at -78 °C. The resulting mixture was stirred at -78 °C for 20 min. A solution of 1-(4-methoxyphenyl)-3-methylpyrrolidin-2-one **SI8** (950 mg, 5 mmol, 1.0 equiv) in THF (10 mL) was added dropwise to the reaction mixture at -78 °C. The resulting mixture was stirred for 30 min at -78 °C, then MeI (345 μ L, 5.5 mmol, 1.1 equiv) was added dropwise. The resulting mixture was stirred for 3 hours at -78 °C. The reaction mixture was allowed to warm to ambient

temperature overnight, diluted with EtOAc and then quenched with a saturated aqueous NH₄Cl solution. The aqueous layer was extracted three times with EtOAc, and the resulting organic layers were dried over Na₂SO₄ and concentrated by rotary evaporation. The resulting crude oil was purified from column chromatography (55% EtOAc in hexanes) to afford **1** as an off-yellow solid. (965 mg, 4.7 mmol, 94% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.24 (m, 2H), 7.03 – 6.94 (m, 2H), 3.83 (s, 3H), 3.78 – 3.62 (m, 2H), 2.66 (tq, *J* = 8.6, 7.1 Hz, 1H), 2.39 (dddd, *J* = 12.2, 8.4, 7.2, 3.6 Hz, 1H), 1.81 (dq, *J* = 12.4, 8.5 Hz, 1H), 1.31 (d, *J* = 7.1 Hz, 3H). All characterization data match those reported.⁷

1-(4-methoxyphenyl)-3-methylpyrrolidin-2-one (2a): To a solution of *i*-Pr₂NH (710 μ L, 5.5 mmol, 1.1 equiv) in THF (15 mL) was added *n*-BuLi (2.50 M in hexanes, 2 mL, 5.5 mmol, 1.1 equiv) dropwise at -78 °C. The resulting mixture was stirred at -78 °C for 20 min. A solution of 1-(4-methoxyphenyl)-3-methylpyrrolidin-2-one **SI7** (950 mg, 5 mmol, 1.0 equiv) in THF (10 mL) was added dropwise to the reaction mixture at -78 °C. The resulting mixture was stirred for 30 min at -78 °C, then MeI (345 μ L, 5.5 mmol, 1.1 equiv) was added dropwise. The resulting mixture was stirred for 3 h at -78 °C. The reaction mixture was allowed to warm to ambient temperature overnight, diluted with EtOAc and then quenched with a saturated aqueous NH₄Cl solution. The aqueous layer was extracted three times with EtOAc, and the resulting organic layers were dried over Na₂SO₄ and concentrated by rotary evaporation. The crude oil was purified by column chromatography (50% EtOAc in hexanes) to afford **2a** as a colorless solid (970 mg, 4.73 mmol, 95% yield); ¹H NMR 400 MHz, CDCl₃) δ 7.53 (d, *J* = 9.1 Hz, 2H), 6.90 (d, *J* = 9.1 Hz, 2H), 3.80 (s, 3H), 3.78 - 3.68 (m, 1H), 2.74 - 2.57 (m, 1H), 2.36 (dddd, *J* = 12.3, 8.5, 6.7, 3.6 Hz, 1H), 1.76 (ddt, *J* = 12.5, 9.4, 8.6 Hz, 1H) 1.30 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.43,

156.51, 133.08, 121.57, 114.11, 55.59, 47.06, 38.17, 27.21, 16.42; All characterization data match those reported.⁷

3-ethyl-1-(4-methoxyphenyl)pyrrolidin-2-one (2b): Compound **2b** was prepared from iodoethane using General Procedure 2. The resulting crude oil was purified by column chromatography (50% EtOAc in hexanes) to afford **2b** as a colorless solid (710 mg, 3.3 mmol, 92% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.41 (m, 2H), 7.08 – 6.74 (m, 2H), 3.81 (s, 3H), 3.78 – 3.69 (m, 2H), 2.54 (qd, *J* = 9.0, 4.3 Hz, 1H), 2.32 (dddd, *J* = 12.6, 8.7, 6.9, 3.9 Hz, 1H), 1.98 (dqd, *J* = 13.7, 7.5, 4.2 Hz, 1H), 1.81 (dq, *J* = 12.6, 8.7 Hz, 1H), 1.51 (ddt, *J* = 13.7, 9.0, 7.3 Hz, 1H), 1.02 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.80, 156.54, 133.07, 121.66, 114.14, 55.63, 47.31, 44.75, 24.42, 24.38, 11.63. All characterization data match those reported.⁸

1-(4-methoxyphenyl)-3-(3-methylbut-2-en-1-yl)pyrrolidin-2-one (2c): Compound **2c** was prepared from prenyl chloride using General Procedure 2. The resulting crude oil was purified by column chromatography (50% EtOAc in hexanes) to afford **2c** as on off-brown amorphous solid. (1.15 g, 4.5 mmol, 45% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.68 – 7.43 (m, 2H), 7.04 – 6.80 (m, 2H), 5.16 (tp, *J* = 7.2, 1.4 Hz, 1H), 3.80 (s, 3H), 3.73 (ddd, *J* = 8.5, 5.5, 2.7 Hz, 2H), 2.66 (td, *J* = 8.8, 4.3 Hz, 1H), 2.63 – 2.53 (m, 1H), 2.32 – 2.21 (m, 2H), 1.82 (dq, *J* = 12.7, 8.5 Hz, 1H), 1.73 (d, *J* = 1.5 Hz, 3H), 1.66 (d, *J* = 1.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.51, 156.53, 134.09, 133.06, 121.61, 121.09, 114.11, 55.60, 47.31, 43.66, 29.61, 26.00, 24.23, 18.09; IR (Neat Film, NaCl) 2954, 1680, 1519, 1253, 1225, 1031, 916, 825, 715 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₁₆H₂₂NO₂ [M+H]⁺: 260.1651, found 260.1660.

3-allyl-1-(4-methoxyphenyl)pyrrolidin-2-one (2d): Compound **2d** was prepared from allyl bromide using General Procedure 2. The resulting crude oil was purified by column chromatography (50% EtOAc in hexanes) to afford **2d** as an off-yellow amorphous solid. (1.18 g, 4.75 mmol, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.47 (m, 2H), 7.00 – 6.84 (m, 2H), 5.91 – 5.79 (m, 1H), 5.18 – 5.12 (m, 1H), 5.09 (ddt, *J* = 10.1, 2.0, 1.1 Hz, 1H), 3.81 (s, 3H), 3.80 – 3.62 (m, 2H), 2.77 – 2.63 (m, 2H), 2.35 – 2.22 (m, 2H), 1.87 (dq, *J* = 12.8, 8.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.07, 156.63, 135.64, 132.94, 121.70, 117.20, 114.16, 55.63, 47.29, 42.85, 35.64, 24.13; IR (Neat Film, NaCl) 2954, 1680, 1519, 1253, 1225, 1031, 916, 825, 715 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₁₄H₁₈NO₂ [M+H]⁺: 232.1338, found 232.1358.

3-benzyl-1-(4-methoxyphenyl)pyrrolidin-2-one (2e): Compound **2e** was prepared from bromobenzene using General Procedure 2. The resulting crude oil was purified by column chromatography (50% EtOAc in hexanes) to afford **2e** as a colorless solid (1.32 g, 4.75 mmol, 95 % yield); ¹H NMR (400 MHz, CDCl₃) δ 7.61 – 7.40 (m, 2H), 7.42 – 7.28 (m, 2H), 7.26 – 7.18 (m, 3H), 7.04 – 6.70 (m, 2H), 3.81 (s, 3H), 3.68 (dt, *J* = 9.5, 7.7 Hz, 1H), 3.56 (ddd, *J* = 9.5, 8.6, 3.5 Hz, 1H), 3.31 (dd, *J* = 13.6, 4.0 Hz, 1H), 2.92 (dtd, *J* = 9.4, 8.6, 4.0 Hz, 1H), 2.80 (dd, *J* = 13.6, 9.4 Hz, 1H), 2.17 (dddd, *J* = 12.7, 8.6, 7.7, 3.5 Hz, 1H), 1.86 (dtd, *J* = 12.7, 8.6, 7.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 174.94, 156.68, 139.46, 132.88, 129.23, 128.64, 126.53, 121.80, 114.16, 55.62, 47.26, 45.06, 37.24, 24.31. All characterization data match those reported.⁸

3-(2-bromobenzyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (2f): Compound **2f** was prepared from 1-bromo-2-(bromomethyl)benzene using General Procedure 2. The resulting crude oil was purified by column chromatography (55% EtOAc in hexanes) to afford **2f** as a yellow amorphous solid. (1.36 g, 3.73 mmol, 98% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 8.0, 1.3 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.35 – 7.30 (m, 1H), 7.30 – 7.22 (m, 1H), 7.13 – 7.07 (m, 1H), 6.98 –

6.87 (m, 2H), 3.81 (s, 3H), 3.75 - 3.63 (m, 2H), 3.50 (dd, J = 13.7, 4.4 Hz, 1H), 3.04 (tdd, J = 9.3, 8.3, 4.3 Hz, 1H), 2.93 (dd, J = 13.7, 9.5 Hz, 1H), 2.16 (dddd, J = 12.7, 8.4, 6.8, 3.6 Hz, 1H), 1.92 (ddt, J = 12.7, 9.5, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.64, 156.65, 139.13, 133.09, 132.91, 131.27, 128.25, 127.68, 125.03, 121.64, 114.16, 55.62, 47.21, 44.00, 36.82, 24.45; IR (Neat Film, NaCl) 2952, 1692, 1512, 1469, 1441, 1397, 1248, 1181, 1025, 830, 751 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₁₈H₁₉BrNO₂ [M+H]⁺: 360.0599, found 360.0613.

2-((1-(4-methoxyphenyl)-2-oxopyrrolidin-3-yl)methyl)benzonitrile (2g): Compound **2g** was prepared from 2-(bromomethyl)benzonitrile using General Procedure 2. The resulting crude oil was purified by column chromatography (50% EtOAc in hexanes) to afford **2g** as an off-brown amorphous solid. (660 mg, 2.13 mmol, 97% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (ddd, J = 7.7, 1.4, 0.6 Hz, 1H), 7.59 – 7.52 (m, 1H), 7.52 – 7.46 (m, 3H), 7.35 (td, J = 7.5, 1.4 Hz, 1H), 6.95 – 6.85 (m, 2H), 3.81 (s, 3H), 3.78 – 3.61 (m, 2H), 3.47 (dd, J = 14.0, 5.0 Hz, 1H), 3.14 (dd, J = 14.0, 8.6 Hz, 1H), 3.00 (dtd, J = 9.4, 8.5, 5.0 Hz, 1H), 2.23 (dddd, J = 12.7, 8.4, 7.1, 3.3 Hz, 1H), 1.93 (ddt, J = 12.7, 9.4, 8.5 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.93, 156.80, 143.65, 133.18, 132.93, 132.65, 130.51, 127.22, 121.81, 118.44, 114.20, 113.25, 55.62, 47.17, 44.96, 35.16, 24.28; IR (Neat Film, NaCl) 2942, 2223, 1692, 1513, 1486, 1397, 1285, 1248, 1181, 1034, 831, 762 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₁₉H₁₉N₂O₂ [M+H]⁺: 307.1447, found 307.1453.

3-cyclopropyl-1-(4-methoxyphenyl)pyrrolidin-2-one (2h): Compound **2h** was prepared from bromocyclopropane using General Procedure 2. The resulting crude oil was purified by column chromatography (50% EtOAc in hexanes) to afford **2h** as a yellow crystalline solid. (150 mg, 0.65 mmol, 30% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.58 – 7.53 (m, 2H), 6.94 – 6.88 (m, 2H), 3.80 (s, 3H), 3.78 – 3.71 (m, 2H), 2.32 – 2.15 (m, 2H), 1.95 – 1.82 (m, 1H), 1.08 – 0.98 (m, 1H), 0.71 – 0.63 (m, 1H), 0.55 – 0.42 (m, 2H), 0.32 – 0.23 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.12,

156.47, 133.06, 121.48, 114.07, 55.59, 47.09, 46.82, 24.54, 12.48, 3.52, 1.89; IR (Neat Film, NaCl) 3077, 3003, 2954, 2838, 1681, 1512, 1384, 1286, 1245, 1180, 1032, 824, 704 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₁₄H₁₈NO₂ [M+H]⁺: 232.1338, found 232.1349.

Inseparable from lactam dimerization impurity (*E*)-1,1'-bis(4-methoxyphenyl)-1,3,4,4',5,5'hexahydro-[2,3'-bipyrrolylidene]-2'(1'*H*)-one (SI4) (20 % yield with 2h); ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2H), 7.21 – 7.15 (m, 2H), 7.11 – 7.03 (m, 2H), 6.92 – 6.86 (m, 2H), 3.83 (s, 3H), 3.78 (s, 3H), 3.70 – 3.64 (m, 2H), 3.53 (dd, *J* = 7.8, 6.8 Hz, 2H), 3.36 (tt, *J* = 7.6, 1.8 Hz, 2H), 2.13 – 1.99 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 171.26, 157.15, 155.40, 153.40, 137.99, 136.65, 134.63, 129.15, 128.34, 127.03, 125.41, 120.55, 113.91, 94.96, 56.86, 46.00, 31.65, 24.26, 22.69, 21.58.

1-(4-methoxyphenyl)-3-(1-phenylethyl)pyrrolidin-2-one (2i): Compound **2i** was prepared from (1-bromoethyl)benzene using General Procedure 2. The resulting crude oil was purified by column chromatography (45% EtOAc in hexanes) to afford **2i** as an off-yellow amorphous solid. (570 mg, 1.93 mmol, 88% yield, 9:1 dr); 1H NMR (400 MHz, CDCl3) δ 7.35 (d, J = 9.2 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.25 – 7.15 (m, 1H), 6.87 (d, J = 9.2 Hz, 2H), 3.79 (s, 3H), 3.53 – 3.42 (m, 2H), 3.09 (ddd, J = 9.4, 8.4, 5.4 Hz, 1H), 2.82 (ddd, J = 9.2, 6.7, 5.5 Hz, 1H), 2.08 (dddd, J = 12.8, 9.1, 8.4, 5.5 Hz, 1H), 1.80 (dddd, J = 12.8, 8.4, 6.7, 5.8 Hz, 1H), 1.50 (d, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 174.98, 156.71, 143.15, 132.71, 128.38, 128.15, 126.74, 122.16, 114.09, 55.60, 49.75, 47.39, 39.89, 21.16, 19.53; IR (Neat Film, NaCl) 2959, 1681, 1512, 1452, 1396, 1294, 1247, 1034, 831, 701 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₁₉H₂₂NO₂ [M+H]⁺: 296.1651, found 296.1667.

1-(4-methoxyphenyl)-3,5-dimethylpyrrolidin-2-one (2j): Compound **2j** was prepared from lactam **SI3** and methyl iodide using General Procedure 2. The resulting crude oil was purified by column chromatography (70% EtOAc in hexanes) to afford **2j** as an off-brown amorphous solid. (1.035 g, 4.7 mmol, 94% yield, 5:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.28 (m, 2H), 6.96 – 6.87 (m, 2H), 4.17 (pd, J = 6.4, 4.5 Hz, 1H), 3.80 (s, 3H), 2.74 (ddt, J = 15.7, 8.6, 7.1 Hz, 1H), 2.05 – 1.94 (m, 2H), 1.27 (d, J = 7.2 Hz, 3H), 1.18 (d, J = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.55, 157.38, 131.00, 125.31, 114.36, 55.55, 54.06, 36.27, 35.32, 19.70, 16.41; IR (Neat Film, NaCl) 2966, 1693, 1513, 1461, 1392, 1295, 1247, 1181, 1034, 830 cm⁻¹; (MM:ESI⁺) m/z calc'd for C₁₃H₁₈NO₂ [M+H]⁺: 220.1338, found 220.1330.

Synthesis of Isolated Mannich Acceptors: Experimental Procedures and Spectroscopic Data Procedure 3: Synthesis of *N*-trimethylsilyl

1-phenyl-*N***-(trimethylsilyl)methanimine (3b):** *N***-**TMS imine **3b** was prepared from a previously reported procedure.³ To a solution of benzaldehyde **SI11** (5.2 mL, 50 mmol, 1.0 equiv) in THF (50 mL) was added LiHMDS (8.35 g, 50 mmol, 1.0 equiv) at 0 °C under a positive stream of N₂. The reaction mixture was stirred at 0 °C for 1 hour. The solvent was removed by rotary evaporation and the crude oil was purified by vacuum distillation (77 °C, 0.8 torr: Lit = 45 °C at 0.15 torr) to afford imine **3b** as a pale-yellow oil (5.5 g, 31.0 mmol, 62% yield), which was stored under argon at –20 °C. All characterization data match those reported.

Procedure 4: Synthesis of N-Bz benzaldimine

N-benzylidenebenzamide (3a): *N*-Bz imine 3a was prepared from a previously reported procedure.³ To a solution of *N*-TMS imine 3a (177.3 mg, 1.0 mmol, 1.0 equiv) in DCM (2 mL) was added BzCl in one portion at -78 °C. Let warm up to ambient temperature and stir for 2 hours. The solvent and TMSCl were removed *in vacuo* to afford the *N*-Bz imine 3a. The crude product was used directly without further purification.

Diastereoselective Mannich Reaction: Experimental Procedures and Spectroscopic Data General Procedure 5: Indirect Mannich Reaction with Isolated *N*-Bz benzaldimine

N-((R*)-((S*)-1-(2-methoxyphenyl)-3-methyl-2-oxopyrrolidin-3-

yl)(phenyl)methyl)benzamide (4'): To a solution of *N*-OMP lactam **1** (42 mg, 0.2 mmol, 1.0 equiv) in toluene (2 mL) was added LiHMDS (40.2 mg, 0.24 mmol, 1.2 equiv) at 25 °C. A solution of *N*-benzoyl imine **3a** (42.4 mg, 0.2 mmol, 1.0 equiv) in toluene (1 mL) was added to the reaction mixture, and the reaction was stirred at 25 °C for 36 hours. The reaction was quenched with saturated NH₄Cl (10 mL) and the aqueous layer was extracted with ethyl acetate (3 x 15 mL). The combined organic layers were dried over Na₂SO₄, and the solvent was removed via rotary evaporator. The crude mixture was purified directly from column chromatography (80% EtOAc in hexanes) to afford Mannich product **4'** as a pale-yellow oil. (56 mg, 0.14 mmol, 70% yield, 2:1 dr). Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 5.8 Hz, 1H), 7.88 – 7.79 (m, 2H), 7.56 – 7.49 (m, 2H), 7.49 – 7.44 (m, 1H), 7.43 – 7.38 (m, 2H), 7.38 – 7.33 (m, 2H), 7.33 – 7.28 (m, 2H), 7.20 (dd, *J* = 7.7, 1.7 Hz, 1H), 6.99 (td, *J* = 7.6, 1.2 Hz, 1H), 6.94 (d, *J* = 1.2 Hz, 1H), 5.22 (d, *J* = 5.8 Hz, 1H), 3.79 – 3.72 (m, 1H), 3.70 (s, 3H), 3.69 – 3.62 (m, 1H), 2.49 (ddd, *J* = 13.0, 7.8, 5.2 Hz, 1H), 1.94 (ddd, *J* = 13.0, 8.1, 6.3 Hz, 1H), 1.25 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.75, 167.35, 154.82, 138.75, 134.54, 131.43, 129.26, 128.69, 128.59, 128.53, 128.39, 128.13, 127.52, 127.17, 120.96, 111.99, 58.73, 55.58, 47.15, 46.94, 32.08, 19.94; IR (Neat Film,
NaCl) 3325, 2930, 1667, 1504, 1416, 1303, 1122, 1046, 1026, 914, 782, 728 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₂₆H₂₇N₂O₃ [M+H]⁺: 415.2016, found 415.2023.

General Procedure 5: Indirect Mannich Reaction with Isolated N-TMS benzaldimine

(S*)-3-((R*)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-3-methylpyrrolidin-2-one (4a): To a solution of N-PMP lactam 2a (42 mg, 0.2 mmol, 1.0 equiv) in toluene (2 mL) was added potassium tert-butoxide (27 mg, 0.22 mmol, 1.1 equiv) at -40 °C. A solution of N-TMS imine 3b (35.4 mg, 0.2 mmol, 1.0 equiv) in toluene (1 mL) was added to the reaction mixture. The reaction mixture was stirred at -40 °C for 2 hours. The reaction was allowed to warm to ambient temperature and loaded directly onto a silica gel column. The crude mixture was purified directly from column chromatography (80% EtOAc in hexanes, 1% TEA) to afford Mannich product 4a as a pale-yellow oil. (56 mg, 0.18 mmol, 90% yield, >20:1). This procedure was scaled up to 1 mmol of *N*-PMP lactam **2a** to afford Mannich product **4a** as a pale-yellow oil (255 mg, 0.82 mmol, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.47 (m, 2H), 7.42 – 7.28 (m, 5H), 6.94 – 6.88 (m, 2H), 4.29 (s, 1H), 3.81 (s, 3H), 3.63 (dt, J = 9.4, 7.9 Hz, 1H), 3.47 (td, J = 9.2, 3.1 Hz, 1H), 2.71 (ddd, J = 12.5, 9.1, 8.1 Hz, 1H), 2.11 – 1.85 (br, 2H, NH₂), 1.50 (ddd, J = 12.5, 7.7, 3.1 Hz, 1H), 1.17 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.40, 156.72, 142.11, 132.84, 128.25, 128.01, 127.65, 121.91, 114.12, 60.64, 55.60, 50.89, 45.91, 26.19, 22.24; IR (Neat Film, NaCl) 3367, 2955, 1681, 1513, 1455, 1402, 1296, 1249, 1088, 833, 707 cm⁻¹; (MM:ESI⁺) m/z calc'd for C₁₉H₂₃N₂O₂ [M+H]⁺: 311.1760, found 311.1747.

(S*)-3-((R*)-(((E)-benzylidene)amino)(phenyl)methyl)-1-(2-methoxyphenyl)-3-

methylpyrrolidin-2-one (5): An isolable imine transfer product **5** was also observed and purified from via column from the above procedure (40% EtOAc in hexanes); ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.77 – 7.66 (m, 2H), 7.55 (dt, *J* = 6.7, 1.6 Hz, 2H), 7.40 – 7.33 (m, 5H), 7.33 – 7.28 (m, 3H), 6.81 – 6.72 (m, 2H), 4.71 (s, 1H), 3.88 – 3.80 (m, 1H), 3.75 (s, 3H), 3.74 – 3.65 (m, 1H), 3.12 (ddd, *J* = 12.7, 8.8, 6.0 Hz, 1H), 1.75 – 1.66 (m, 1H), 1.18 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.95, 161.84, 156.70, 140.85, 136.52, 132.85, 130.70, 128.80, 128.52, 128.49, 128.18, 127.49, 122.42, 114.01, 78.79, 55.58, 51.71, 46.78, 26.37, 22.53; IR (Neat Film, NaCl) 2958, 1682, 1512, 1453, 1402, 1289, 1249, 1180, 1089, 1030, 829, 755, 702, 637 cm⁻¹; (MM:ESI⁺) *m/z* calc'd for C₂₆H₂₇N₂O₂ [M+H]⁺: 399.2067, found 399.2074. Structure and relative configuration was confirmed via X-ray crystallography. Crystals were obtained from slow evaporation of a solution of **5** in CDCl₃. CCDC 2253012

(*S**)-3-((*R**)-amino(phenyl)methyl)-3-ethyl-1-(4-methoxyphenyl)pyrrolidin-2-one (4b): Compound 4b was prepared from *N*-PMP lactam 2b using General procedure 5. The crude reaction mixture was purified directly from column chromatography (80% EtOAc in hexanes, 1% TEA) to afford Mannich product 4b as a pale-yellow oil (52 mg, 0.16 mmol, 80% yield, 13:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.28 (m, 3H), 6.95 – 6.86 (m, 2H), 4.26 (s, 1H), 3.81 (s, 3H), 3.51 (td, *J* = 9.1, 6.1 Hz, 1H), 3.24 (td, *J* = 9.4, 4.7 Hz, 1H), 2.55 (ddd, *J* = 13.0, 9.5, 6.1 Hz, 1H), 1.89 – 1.74 (m, 3H, overlap NH₂), 1.71 (ddd, *J* = 13.4, 8.9, 4.7 Hz, 1H), 1.54 (dq, *J* = 13.6, 7.5 Hz, 1H), 0.95 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.58, 156.84, 142.61, 132.63, 128.30, 127.99, 127.67, 122.22, 114.14, 60.19, 55.62, 54.63, 46.75, 29.73, 24.10, 8.92; IR (Neat Film, NaCl) 3314, 2965, 1681, 1513, 1455, 1404, 1296, 1249, 1034, 833, 721 cm⁻¹; (MM:ESI⁺) C₂₀H₂₅N₂O₂ *m/z* calc'd for [M+H]⁺: 325.1916, found 325.1931.

(*S*)-3-((*R*)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-3-(3-methylbut-2-en-1-yl)pyrrolidin-2-one (4c): Compound 4c was prepared from *N*-PMP lactam 2c using General Procedure 5. The crude reaction mixture was purified directly from column chromatography (65% EtOAc in hexanes, 1% TEA) to afford Mannich product 4c as a pale-yellow oil (70 mg, 0.192 mmol, 96% yield, 7:1 dr) ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.39 (m, 2H), 7.38 – 7.27 (m, 5H), 6.94 – 6.86 (m, 2H), 5.17 (dddd, *J* = 6.9, 5.4, 2.8, 1.4 Hz, 1H), 4.24 (s, 1H), 3.81 (s, 3H), 3.43 (td, *J* = 8.9, 6.2 Hz, 1H), 3.14 (td, *J* = 9.2, 4.6 Hz, 1H), 2.54 – 2.41 (m, 2H), 2.25 (dd, *J* = 14.2, 8.3 Hz, 1H), 2.08 – 1.79 (br, 2H, NH₂), 1.77 – 1.68 (m, 1H)*, 1.68 (s, 3H), 1.57 – 1.56 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 176.45, 156.80, 142.57, 135.13, 132.68, 128.29, 127.98, 127.64, 122.28, 119.07, 114.11, 60.48, 55.59, 54.46, 46.71, 35.26, 26.21, 24.50, 18.17; IR (Neat Film, NaCl) 3234, 2930, 1681, 1513, 1453, 1402, 1293, 1250, 1033, 827, 703 cm⁻¹; (MM:ESI⁺) C₂₃H₂₉N₂O₂ *m/z* calc'd for [M+H]⁺: 365.2229, found 365.2240.

General Procedure 6: Direct Mannich Reaction Using *In-Situ* Generated *N*-SiMe₂Ph Benzaldimine Mannich Acceptor

(S^*)-3-((R^*)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-3-methylpyrrolidin-2-one (4a): B(C₆F₅)₃ (4 mg, 0.009 mmol, 0.06 equiv) was added to a solution of H-SiMe₂Ph (112 µL, 0.8 mmol, 4.0 equiv) in toluene (1 mL). Benzonitrile **6a** (55 µL, 0.6 mmol, 3.0 equiv) was added to

the reaction mixture and stirred at ambient temperature for 1 hour. Meanwhile, *N*-PMP lactam **2a** (42 mg, 0.2 mmol, 1.0 equiv) was added to a solution of potassium *tert*-butoxide (28 mg, 0.24 mmol, 1.2 equiv) in toluene (2 mL) and cooled to -78 °C. After 1 hour, the yellow imine mixture **3ca** was added to the cooled reaction mixture at -78 °C dropwise. The reaction mixture was stirred at -78 °C for 2 hours and allowed to warm to ambient temperature overnight. The reaction was quenched with 1 N HCl (4 mL) and diluted with EtOAc (10 mL) and stirred vigorously for 1 hour at ambient temperature. The aqueous layer was separated and extracted with EtOAc (2 x 4 mL) The combined organic layer can be purified to recover any unreacted lactam or aryl nitrile. The aqueous layer was basified with a saturated solution of NaHCO₃ (6 mL) and diluted with EtOAc (10 mL). The biphasic mixture was stirred vigorously for 1 hour at ambient temperature. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na₂SO₄ and concentrated by rotary evaporation. The crude oil was purified by column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product **4a** as a pale-yellow oil (60 mg, 0.194 mmol, 97% yield, 20:1 dr); The characterization data matches the data acquired from the product obtained using General Procedure 5.

(*S**)-3-((*R**)-amino(phenyl)methyl)-3-ethyl-1-(4-methoxyphenyl)pyrrolidin-2-one (4b): Compound 4b was prepared from *N*-PMP lactam 2b using General procedure 6. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4b as a pale-yellow oil (55 mg, 0.17 mmol, 85% yield, 14:1 dr); The characterization data matches the data acquired from the product obtained using General Procedure 5.

S41

(S*)-3-((R*)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-3-(3-methylbut-2-en-1-

yl)pyrrolidin-2-one (4c): Compound 4c was prepared from *N*-PMP lactam 2c using General Procedure 6. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4c as a pale-yellow oil (66 mg, 0.18 mmol, 90% yield, 10:1 dr); The characterization data matches the data acquired from the product obtained using General Procedure 5.

(*S**)-3-allyl-3-((*R**)-amino(phenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4d): Compound 4d was prepared from *N*-PMP lactam 2d using General Procedure 6. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4d as a pale-yellow oil (60 mg, 0.18 mmol, 90% yield, 19:1 dr). On a 1 mmol scale, Mannich product 4d was isolated as a pale-yellow oil (289 mg, 0.86 mmol, 86% yield, 14:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.39 – 7.34 (m, 2H), 7.34 – 7.29 (m, 3H), 6.96 – 6.87 (m, 2H), 5.79 (dddd, *J* = 16.7, 10.1, 8.4, 6.5 Hz, 1H), 5.17 – 5.05 (m, 2H), 4.25 (s, 1H), 3.81 (s, 3H), 3.47 (td, *J* = 9.0, 6.2 Hz, 1H), 3.21 (td, *J* = 9.4, 4.6 Hz, 1H), 2.63 – 2.47 (m, 2H), 2.19 (ddt, *J* = 13.5, 8.3, 0.9 Hz, 1H), 2.05-1.80 (br, 2H, NH₂) 1.77 (ddd, *J* = 13.2, 8.8, 4.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.06, 156.89, 142.34, 133.77, 132.54, 128.37, 128.01, 127.77, 122.31, 118.96, 114.14, 60.53, 55.62, 54.21, 46.68, 41.47, 24.04; IR (Neat Film, NaCl) 3054, 2917, 1681, 1512, 1454, 1401, 1295, 1248, 1036, 827, 703 cm⁻¹; (MM:ESI⁺) C₂₁H₂₅N₂O₂ *m/z* calc'd for [M+H]⁺: 337.1916, found 337.1930.

(*S**)-3-((*R**)-amino(phenyl)methyl)-3-benzyl-1-(4-methoxyphenyl)pyrrolidin-2-one (4e): Compound 4e was prepared from *N*-PMP lactam 2e using General Procedure 6. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4e as a yellow oil (65 mg, 0.172 mmol, 86% yield, 7:1 dr); ¹H NMR (400 MHz, C₆D₆) δ 7.48 – 7.41 (m, 2H), 7.31 – 7.25 (m, 2H), 7.16 – 7.11 (m, 3H), 7.10 – 7.05 (m, 2H), 6.98 – 6.94 (m, 3H), 6.80 – 6.73 (m, 2H), 4.38 (s, 1H), 3.28 (s, 3H), 3.27 – 3.23 (m, 1H), 2.71 – 2.59 (m, 1H), 2.57 – 2.47 (m, 2H), 2.12 (td, *J* = 8.4, 7.3 Hz, 1H), 1.43 (ddd, *J* = 12.5, 8.3, 2.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.90, 156.82, 142.08, 137.28, 132.18, 129.98, 128.33, 128.15, 128.09, 127.75, 126.73, 122.55, 113.90, 60.74, 55.81, 55.45, 46.35, 42.84, 22.90; IR (Neat Film, NaCl) 3254, 2923, 1676, 1513, 1405, 1295, 1248, 1035, 823, 702 cm⁻¹; (MM:ESI⁺) C₂₅H₂₇N₂O₂ *m/z* calc'd for [M+H]⁺: 387.2073, found 387.2064

(*S**)-3-((*R**)-amino(phenyl)methyl)-3-(2-bromobenzyl)-1-(4-methoxyphenyl)pyrrolidin-2one (4f): Compound 4f was prepared from *N*-PMP lactam 2f using a slightly modified General Procedure 6 that involves adding 0.5 mL of Et₂O to the reaction mixture to ensure solubility of *N*-PMP lactam 2f. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4f as a yellow oil (36 mg, 0.077 mmol, 39% yield, 8.5:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.39 – 7.32 (m, 3H), 7.30 – 7.21 (m, 3H), 7.13 – 6.99 (m, 2H), 6.91 – 6.83 (m, 2H), 4.39 (s, 1H), 3.80 (s, 3H), 3.29 (d, *J* = 13.4 Hz, 1H), 3.18 (d, *J* = 13.4 Hz, 1H), 3.03 – 2.88 (m, 1H), 2.57 – 2.45 (m, 2H), 2.41 – 2.08 (br, NH₂, 2H), 2.08 – 1.87 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.99, 156.95, 141.99, 137.66, 132.95, 132.25, 131.93, 128.48, 128.20, 127.98, 127.53, 125.93, 122.39, 114.06, 61.57, 56.30, 55.59, 46.69, 40.57, 22.45; IR (Neat Film, NaCl) 3216, 2923, 1681, 1512, 1295, 1249, 1036, 823, 744 cm⁻¹; (MM:ESI⁺) C₂₅H₂₆BrN₂O₂ *m/z* calc'd for [M+H]⁺: 465.1178, found 465.1179

2-(((S*)-3-((R*)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-2-oxopyrrolidin-3-

yl)methyl)benzonitrile (4g): Compound 4g was prepared from *N*-PMP lactam 2g using a slightly modified General Procedure 6 that involves adding 0.5 mL of Et₂O to the reaction mixture to ensure solubility of *N*-PMP lactam 2g. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4g as a yellow oil (40 mg, 0.1 mmol, 50% yield, 5:1); ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.57 (m, 1H), 7.51 (dd, *J* = 8.0, 1.4 Hz, 2H), 7.47 – 7.29 (m, 6H), 7.24 – 7.15 (m, 2H), 6.90 – 6.83 (m, 2H), 4.32 (s, 1H), 3.80 (s, 3H), 3.46 (d, *J* = 13.4 Hz, 1H), 3.11 (d, *J* = 13.5 Hz, 1H), 2.92 – 2.82 (m, 1H), 2.63 – 2.48 (m, 2H), 2.02 – 1.86 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.20, 157.03, 142.11, 141.98, 132.84, 132.79, 132.04, 131.41, 128.66, 128.18, 127.96, 127.49, 122.31, 118.36, 114.10, 61.81, 56.06, 55.59, 46.36, 40.07, 23.40; IR (Neat Film, NaCl) 3254, 2923, 2250, 1681, 1512, 1295, 1249, 1034, 823, 701 cm⁻¹; (MM:ESI⁺) C₂₆H₂₆N₃O₂ *m/z* calc'd for [M+H]⁺: 412.2025, found 412.2012.

(*S**)-3-((*R**)-amino(phenyl)methyl)-3-cyclopropyl-1-(4-methoxyphenyl)pyrrolidin-2-one (4h): Compound 4h was prepared from *N*-PMP lactam 2h using General Procedure 6. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4h as a pale-yellow oil (58 mg, 0.172 mmol, 86% yield, 8.5:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.43 (m, 4H), 7.40 – 7.28 (m, 3H), 6.98 – 6.87 (m, 2H), 4.51 (s, 1H), 3.81 (s, 3H), 3.76 – 3.62 (m, 1H), 3.53 (td, *J* = 9.2, 2.1 Hz, 1H), 2.77 (dt, *J* = 12.4, 9.2 Hz, 1H), 2.09 – 1.84 (br, 2H, NH₂), 1.51 (ddd, *J* = 12.4, 7.4, 2.1 Hz, 1H), 0.68 (tdd, *J* = 6.9, 5.2, 2.4 Hz, 2H), 0.49 – 0.38 (m, 2H), 0.05 – -0.03 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 174.67, 156.79, 142.22, 132.58, 128.13, 128.07, 127.54, 122.04, 114.17, 59.81, 55.63, 54.46, 46.38, 24.85, 16.53, 2.26, 0.30; IR (Neat Film, NaCl) 3254, 2930, 1681, 1512, 1452, 1401, 1297, 1248, 1180, 1034, 833, 702, 680 cm⁻¹; (MM:ESI⁺) C₂₁H₂₅N₂O₂ *m/z* calc'd for [M+H]⁺: 337.1916, found 337.1913.

(3*S**)-3-((*R**)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-3-(1-phenylethyl)pyrrolidin-2one (4i): Compound 4i was prepared from *N*-PMP lactam 2i using a slightly modified General Procedure 6 that involves adding 0.5 mL of Et₂O to the reaction mixture to ensure solubility of *N*-PMP lactam 2i. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4i as a yellow oil (30 mg, 0.075 mmol, 37% yield, 9:1); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.39 – 7.34 (m, 3H), 7.30 – 7.22 (m, 4H), 7.22 – 7.15 (m, 1H), 6.83 (d, *J* = 9.3 Hz, 2H), 6.80 – 6.74 (m, 2H), 4.13 (q, *J* = 7.1 Hz, 1H), 4.04 (s, 1H), 3.76 (s, 3H), 3.01 – 2.57 (br, NH₂, 2H), 2.47 – 2.37 (m, 1H), 2.29 – 2.19 (m, 1H), 2.18 – 2.09 (m, 1H), 1.79 (ddd, *J* = 13.5, 9.1, 4.5 Hz, 1H), 1.54 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 175.45, 157.08, 144.21, 142.93, 131.83, 129.56, 128.44, 128.34, 128.00, 127.61, 126.69, 123.25, 113.95, 61.54, 56.59, 55.55, 46.16, 40.41, 22.19, 14.53; IR (Neat Film, NaCl) 2964, 1673, 1512, 1295, 1248, 1034, 703 cm⁻¹; (MM:ESI⁺) C₂₆H₂₉N₂O₂ *m/z* calc'd for [M+H]⁺: 401.2229, found 401.2209.

(3*S**,5*R**)-3-((*R**)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-3,5-dimethylpyrrolidin-2one (4j): Compound 4j was prepared from *N*-PMP lactam 2j using General Procedure 6. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4j as a yellow oil (70 mg, 0.195 mmol, 95% yield, 10:1); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 7.13 – 7.05 (m, 2H), 7.00 – 6.87 (m, 2H), 4.09 (s, 1H), 3.82 (s, 3H), 3.40 (dp, *J* = 8.2, 6.3 Hz, 1H), 2.69 (dd, *J* = 13.2, 8.2 Hz, 1H), 1.84 (br, 4H*, NH₂), 1.40 (s, 3H), 1.33 (dd, *J* = 13.2, 6.2 Hz, 1H), 1.01 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 177.31, 157.78, 142.61, 130.30, 128.39, 127.94, 127.76, 126.03, 114.36, 62.63, 55.61, 52.99, 49.59, 37.26, 25.63, 21.36; IR (Neat Film, NaCl) 3374, 2967, 2932, 1682, 1514, 1455, 1394, 1296, 1248, 1181, 1134, 1032, 829, 800, 763, 706 cm⁻¹; (MM:ESI⁺) $C_{20}H_{25}N_2O_2 m/z$ calc'd for [M+H]⁺: 325.1916, found 325.1909.

General Procedure 7: Direct Mannich Reaction Using *In-Situ* Generated *N*-SiMe₂Ph Aryl Imine Mannich Acceptor.

(S*)-3-allyl-3-((R*)-amino(naphthalen-2-yl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4k): B(C₆F₅)₃ (4 mg, 0.009 mmol, 0.06 equiv) was added to a solution of H-SiMe₂Ph (112 μ L, 0.8 mmol, 4.0 equiv) in toluene (1 mL). 2-napthonitrile 6b (55 µL, 0.6 mmol, 3.0 equiv) was added to the reaction mixture and stirred at ambient temperature for 1 hour. Meanwhile, N-PMP lactam 2d (42 mg, 0.2 mmol, 1.0 equiv) was added to a solution of potassium tert-butoxide (28 mg, 0.24 mmol, 1.2 equiv) in toluene (2 mL) and cooled to -78 °C. After 1 hour, the yellow imine mixture 3cb was added to the cooled reaction mixture at -78 °C dropwise. The reaction mixture was stirred at -78 °C for 2 hours and allowed to warm to ambient temperature overnight. The reaction was quenched with 1 N HCl (4 mL) and diluted with EtOAc (10 mL) and stirred vigorously for 1 hour at ambient temperature. The aqueous layer was separated and extracted with EtOAc (2 x 4 mL) The combined organic layer can be purified to recover any unreacted lactam or aryl nitrile. The aqueous layer was basified with a saturated solution of NaHCO₃ (6 mL) and diluted with EtOAc (10 mL). The biphasic mixture was stirred vigorously for 1 hour at ambient temperature. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na₂SO₄ and concentrated by rotary evaporation. The crude oil was purified by column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4k as a vellow powder (75 mg, 0.194 mmol, 97% yield, 10:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.90 – 7.76 (m, 4H), 7.62 – 7.49 (m, 3H), 7.47 – 7.39 (m, 2H), 6.96 – 6.85 (m, 2H), 5.81 (dddd, J = 16.7, 10.1, 8.4, 6.4 Hz, 1H), 5.16 - 5.05 (m, 2H), 4.43 (s, 1H), 3.82 (s, 3H), 3.48 (td, J = 9.0, 6.4Hz, 1H), 3.25 (gd, J = 9.4, 4.1 Hz, 1H), 2.75 - 2.58 (m, 2H), 2.22 (dd, J = 13.5, 8.4 Hz, 1H), 1.78(ddd, J = 13.1, 8.8, 4.4 Hz, 1H) (C₆H₆ present); ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101

MHz, CDCl₃) δ 176.14, 156.93, 139.90, 133.74, 133.27, 133.09, 128.48, 128.10, 127.97, 127.75, 126.92, 126.32, 126.10, 126.06, 122.38, 119.04, 114.16, 60.66, 55.64, 54.38, 46.78, 41.58, 24.05; IR (Neat Film, NaCl) 3054, 2923, 1681, 1512, 1455, 1296, 1249, 1035, 922, 826, 753 cm⁻¹; (MM:ESI⁺) C₂₅H₂₇N₂O₂ *m/z* calc'd for [M+H]⁺: 387.2073, found 387.2070.

(S*)-3-allyl-3-((R*)-amino(2-(trifluoromethyl)phenyl)methyl)-1-(4-

Compound methoxyphenyl)pyrrolidin-2-one (4l): 41 2was prepared from (trifluoromethyl)benzonitrile 6c using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4I as a paleyellow oil (40 mg, 0.10 mmol, 50% yield, 20:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.62 (m, 2H), 7.63 – 7.45 (m, 1H), 7.48 – 7.41 (m, 2H), 7.41 – 7.32 (m, 1H), 6.96 – 6.86 (m, 2H), 5.81 (dddd, J = 17.0, 10.1, 8.5, 6.3 Hz, 1H), 5.25 - 5.16 (m, 1H), 5.14 (dddd, J = 10.1, 2.0, 1.2, 0.6 Hz)1H), 4.67 - 4.54 (m, 1H), 3.82 (s, 3H), 3.50 - 3.44 (m, 1H), 3.03 (td, J = 9.3, 4.8 Hz, 1H), 2.71(ddt, J = 13.6, 6.3, 1.4 Hz, 1H), 2.42 (dd, J = 13.6, 8.6 Hz, 1H), 2.22 (ddd, J = 13.2, 9.2, 6.1 Hz)1H), 2.04 (ddd, J = 13.4, 8.8, 4.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.33, 156.99, 143.34, 133.32, 132.43 (d, J = 2.2 Hz), 132.38, 128.57, 128.53 (q, J = 29.3 Hz), 127.46, 126.01 (q, J = 6.0Hz), 125.87 (q, J = 274.0 Hz), 122.17, 119.40, 114.20, 55.64, 55.26 (d, J = 2.5 Hz), 53.22, 46.39, 41.14, 25.08; ¹⁹F NMR (282 MHz, CDCl₃) δ –56.68; IR (Neat Film, NaCl) 2924, 1684, 1511, 1405, 1308, 1249, 1158, 1121, 1036, 772 cm⁻¹; (MM:ESI⁺) C₂₂H₂₄F₃N₂O₂ *m/z* calc'd for [M+H]⁺: 405.1790, found 405.1789.

(S*)-3-allyl-3-((S*)-amino(3-(trifluoromethyl)phenyl)methyl)-1-(4-

methoxyphenyl)pyrrolidin-2-one (4m): Compound **4m** was prepared from 3-(trifluoromethyl)benzonitrile **6d** using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product **4m** as a pale-

yellow oil (30 mg, 0.75 mmol, 38% yield, 7:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 1H), 7.63 – 7.50 (m, 3H), 7.46 (d, *J* = 9.1 Hz, 2H), 6.97 – 6.87 (m, 2H), 5.93 – 5.71 (m, 1H), 5.22 – 5.06 (m, 2H), 4.36 (s, 1H), 3.82 (s, 3H), 3.55 (ddd, *J* = 9.4, 8.7, 6.7 Hz, 1H), 3.32 (td, *J* = 9.5, 4.0 Hz, 1H), 2.62 – 2.49 (m, 2H), 2.13 (dd, *J* = 13.6, 8.2 Hz, 1H), 1.79 – 1.55 (br, NH₂, 2H), 1.73 (ddd, *J* = 12.8, 8.7, 4.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.63, 157.04, 143.17, 133.30, 132.34, 131.58, 130.97 (q, *J* = 32.8 Hz), 128.84, 124.73 (m), 122.30, 119.34, 114.21, 59.96, 55.64, 54.15, 46.66, 41.31, 23.68 (not identified, J¹_{C-F}); ¹⁹F NMR (282 MHz, CDCl₃) –62.54; IR (Neat Film, NaCl) 2923, 1681, 1512, 1422, 1328, 1249, 1163, 1122, 1073, 833 cm⁻¹; (MM:ESI⁺) C₂₂H₂₄F₃N₂O₂ *m/z* calc'd for [M+H]⁺: 405.1790, found 405.1773.

(S*)-3-allyl-3-((R*)-amino(4-(trifluoromethyl)phenyl)methyl)-1-(4-

methoxyphenyl)pyrrolidin-2-one (4n): Compound 4n was prepared from 4-(trifluoromethyl)benzonitrile 6e using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4n as a paleyellow oil (57 mg, 0.14 mmol, 70% yield, 17:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.56 (m, 2H), 7.51 (d, J = 8.0 Hz, 2H), 7.47 – 7.39 (m, 2H), 6.95 – 6.87 (m, 2H), 5.79 (dddd, J = 16.8, 10.1, 10.8.3, 6.6 Hz, 1H), 5.19 – 5.07 (m, 2H), 4.35 (s, 1H), 3.82 (s, 3H), 3.58 – 3.47 (m, 1H), 3.40 – 3.27 (m, 1H), 2.63 - 2.48 (m, 2H), 2.12 (ddt, J = 13.5, 8.3, 1.0 Hz, 1H), 1.95 - 1.68 (br, NH₂, 2H*), 1.73 (ddd, J = 12.8, 8.6, 4.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.66, 157.03, 146.36, 136.18 (d, J = 30.9 Hz), 133.32, 132.36, 130.43–125.2 (m), 128.46, 125.30 (q, J = 3.9 Hz), 122.28, 119.30, 114.23, 60.02, 55.64, 54.22, 46.67, 41.38, 23.63; ¹⁹F NMR (282 MHz, CDCl₃) δ –62.48; IR (Neat Film, NaCl) 2923, 1681, 1512, 1405, 1325, 1250, 1165, 1122, 1068, 833 cm⁻¹; $(MM:ESI^+)$ C₂₂H₂₄F₃N₂O₂ *m/z* calc'd for $[M+H]^+$: 405.1790, found 405.1790.

(S*)-3-allyl-3-((S*)-amino(2-fluorophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (40): Compound 40 was prepared from 2-fluorobenzonitrile 6f using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 40 as a pale-yellow oil (68 mg, 0.194 mmol, 97% yield, 3.5:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.38 (m, 2.7H), 7.30 – 7.22 (m, 1.3H), 7.18 – 6.98 (m, 2H), 6.92 – 6.86 (m, 2H), 5.87 - 5.73 (m, 1H), 5.16 (dtd, J = 16.9, 1.8, 1.0 Hz, 1H), 5.12 - 5.06 (m, 1H), 4.66 (s, 0.78H), 4.62 (s, 0.22H), 3.81 (s, 2.34H), 3.80 (s, 0.66H), 3.55 (dd, J = 7.9, 6.4 Hz, 0.44H), 3.47 (td, J =9.1, 5.6 Hz, 0.78H), 3.13 (td, J = 9.3, 5.1 Hz, 0.78H), 2.95 (ddt, J = 13.6, 5.8, 1.5 Hz, 0.22H), 2.69 (ddq, J = 13.5, 6.3, 1.3 Hz, 0.78H), 2.43 (ddd, J = 13.1, 9.2, 5.7 Hz, 0.78H), 2.31 - 2.15 (m, 1.22H),2.03 – 1.93 (m, 0.22H), 1.93 – 1.84 (m, 1H), 1.83 – 1.72 (br, NH₂, 2H); ¹³C NMR (101 MHz, CDCl₃) (minor diastereomer denoted with*, overlap**) δ 175.80,* 175.75, 160.70 (d, J = 244.1 Hz),* 160.30 (d, J = 244.9 Hz), 156.92, 156.89,* 134.36,* 133.57, 132.54,* 132.39, 130.54 (d, J = 4.0 Hz, * 129.74 (d, J = 13.5 Hz), 129.08 (d, J = 8.9 Hz), * 129.04 (d, J = 8.5 Hz), 128.90 (d, J= 4.0 Hz, 128.47,* 124.48 (d, J = 3.5 Hz), 124.20 (d, J = 3.4 Hz),* 122.32,* 122.29, 119.12,** 115.44 (d, J = 23.5 Hz), ** 114.14, ** 55.61, ** 54.23, 53.86, * 53.47, * 52.49, 46.63, 46.55, * 41.01, 37.11,* 25.57 (d, J= 2.1 Hz),* 24.09 (d, J= 2.2 Hz) ¹⁹F NMR (282 MHz, CDCl₃) δ –115.83 (m); IR (Neat Film, NaCl) 2923, 1681, 1512, 1487, 1455, 1403, 1296, 1249, 1182, 1100, 1035, 923, 826, 761 cm⁻¹; (MM:ESI⁺) $C_{21}H_{24}FN_2O_2 m/z$ calc'd for $[M+H]^+$: 355.1822, found 355.1812.

(*S**)-3-allyl-3-((*R**)-amino(3-fluorophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4p): Compound 4p was prepared from 3-fluorobenzonitrile 6g using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4p as a pale-yellow oil (65 mg, 0.186 mmol, 93% yield, 20:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.40 (m, 2H), 7.33 – 7.23 (m, 1H), 7.16 – 7.10 (m, 2H), 6.99 (tdd, *J* = 8.4, 2.6, 1.0 Hz, 1H), 6.95 – 6.87 (m, 2H), 5.78 (dddd, *J* = 16.8, 10.1, 8.3, 6.5 Hz, 1H), 5.18 – 5.06 (m, 2H), 4.28 (s, 1H), 3.81 (s, 3H), 3.53 (ddd, *J* = 9.3, 8.7, 6.6 Hz, 1H), 3.34 (td, *J* = 9.4, 4.1 Hz, 1H), 2.62 – 2.50 (m, 1H), 2.14 (ddt, *J* = 13.6, 8.3, 1.0 Hz, 2H), 1.86 – 1.77 (br, NH₂, 2H), 1.77 – 1.69 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.82, 162.85 (d, *J* = 246.1 Hz), 156.99, 144.90 (d, *J* = 6.6 Hz), 133.47, 132.41, 129.77 (d, *J* = 8.2 Hz), 123.87 (d, *J* = 2.8 Hz), 122.35, 119.17, 114.88 (d, J = 20.92 Hz), 114.67 (d, J = 20.46 Hz), 114.19, 59.96 (d, J = 1.7 Hz), 55.62, 54.20, 46.73, 41.42, 23.72; ¹⁹F NMR (282 MHz, CDCl₃) δ –112.81 - –112.94 (m); IR (Neat Film, NaCl) 2909, 1681, 1613, 1588, 1513, 1487, 1404, 1296, 1249, 1181, 1101, 1036, 922, 834, 793 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄FN₂O₂ *m/z* calc'd for [M+H]⁺: 355.1822, found 355.1819.

(S*)-3-allyl-3-((R*)-amino(4-fluorophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one

(4q): Compound 4q was prepared from 4-fluorobenzonitrile 6h using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4q as a pale-yellow oil (67 mg, 0.190 mmol, 95% yield, 10:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.42 (m, 2H), 7.37 – 7.31 (m, 2H), 7.06 – 6.97 (m, 2H), 6.94 – 6.87 (m, 2H), 5.78 (dddd, J = 16.7, 10.1, 8.3, 6.5 Hz, 1H), 5.17 – 5.06 (m, 2H), 4.25 (s, 1H), 3.81 (s, 3H), 3.50 (td, J = 8.9, 6.4 Hz, 1H), 3.26 (td, J = 9.4, 4.4 Hz, 1H), 2.58 – 2.45 (m, 2H), 2.21 – 2.10 (m, 1H), 2.11 – 1.94 (br, NH₂, 2H), 1.74 (ddd, J = 13.0, 8.8, 4.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.91, 162.39 (d, J = 245.9 Hz), 156.95, 137.99 (d, J = 3.2 Hz), 133.56, 132.43, 129.49 (d, J = 7.9 Hz), 122.27, 119.09, 115.20 (d, J = 21.1 Hz), 114.18, 59.75, 55.62, 54.19, 46.65, 41.43, 23.85; ¹⁹F NMR (282 MHz, CDCl₃) δ –114.82 (tt, J = 8.5, 5.3 Hz); IR (Neat Film, NaCl) 2909, 1681, 1603, 1512, 1403, 1295, 1249, 1181, 1035, 833 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄FN₂O₂ *m/z* calc'd for [M+H]⁺: 355.1822, found 355.1829.

(*S**)-3-allyl-3-((*R**)-amino(3-chlorophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4s): Compound 4s was prepared from 3-chlorobenzonitrile 6j using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4s as a pale-yellow (72 mg, 0.195 mmol, 97% yield, 20:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.39 (ddd, *J* = 2.2, 1.5, 0.9 Hz, 1H), 7.28 – 7.22 (m, 3H), 6.92 -6.87 (m, 2H), 5.77 (dddd, J = 16.8, 10.1, 8.3, 6.5 Hz, 1H), 5.18 – 5.05 (m, 2H), 4.23 (s, 1H), 3.80 (s, 3H), 3.56 – 3.47 (m, 1H), 3.29 (td, J = 9.4, 4.2 Hz, 1H), 2.52 (ddd, J = 13.0, 9.4, 6.6 Hz, 2H), 2.14 (ddt, J = 13.5, 8.3, 1.0 Hz, 1H), 1.75 (ddd, J = 13.0, 8.7, 4.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.75, 156.99, 144.45, 134.33, 133.44, 132.36, 129.60, 128.06, 127.95, 126.36, 122.39, 119.19, 114.18, 60.03, 55.61, 54.13, 46.71, 41.37, 23.79; IR (Neat Film, NaCl) 2891, 1681, 1512, 1486, 1430, 1404, 1296, 1249, 1180, 1100, 1035, 826, 790 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄ClN₂O₂ *m/z* calc'd for [M+H]⁺: 371.1526, found 371.1547.

(*S**)-3-allyl-3-((*R**)-amino(4-chlorophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4t): Compound 4t was prepared from 4-chlorobenzonitrile 6k using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4t as a pale-yellow oil (70 mg, 0.190 mmol, 95% yield, 20:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.35 – 7.31 (m, 2H), 7.31 – 7.28 (m, 2H), 6.95 – 6.88 (m, 2H), 5.78 (dddd, *J* = 16.8, 10.1, 8.3, 6.5 Hz, 1H), 5.16 – 5.06 (m, 2H), 4.25 (s, 1H), 3.82 (s, 3H), 3.57 – 3.48 (m, 1H), 3.32 (td, *J* = 9.4, 4.2 Hz, 1H), 2.52 (ddd, *J* = 12.9, 9.6, 6.6 Hz, 2H), 2.18 – 2.08 (m, 1H), 1.72 (ddd, *J* = 12.9, 8.7, 4.2 Hz, 1H), 1.61 (br, NH₂, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 175.85, 156.98, 140.80, 133.53, 133.50, 132.44, 129.39, 128.52, 122.28, 119.15, 114.21, 59.80, 55.64, 54.21, 46.69, 41.43, 23.71; IR (Neat Film, NaCl) 2908, 1681, 1512, 1403, 1295, 1249, 1179, 1090, 1035, 922, 833 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄ClN₂O₂ *m/z* calc'd for [M+H]⁺: 371.1526, found 371.1523.

(*S**)-3-allyl-3-((*S**)-amino(2-bromophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4u): Compound 4u was prepared from 2-bromobenzonitrile 6l using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4u as a pale-yellow oil (29 mg, 0.07 mmol, 35% yield, 7:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.53 (m, 1H), 7.43 (dd, J = 7.8, 1.8 Hz, 1H), 7.39 – 7.35 (m, 1H), 7.21 (td, J = 7.5, 1.5 Hz, 1H), 7.14 – 7.10 (m, 1H), 6.92 – 6.87 (m, 2H), 5.92 – 5.78 (m, 1H), 5.25 – 5.18 (m, 1H), 5.18 – 5.13 (m, 1H), 4.79 (s, 1H), 3.81 (s, 3H), 3.40 (td, J = 9.2, 4.9 Hz, 1H), 2.87 (td, J = 9.1, 6.0 Hz, 1H), 2.77 (ddt, J = 13.7, 6.2, 1.5 Hz, 1H), 2.52 – 2.38 (m, 1H), 2.04 – 1.95 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.78, 156.92, 142.69, 133.62, 133.05, 132.32, 129.02, 128.96, 127.95, 122.30, 122.18, 119.23, 114.14, 58.11, 55.62, 53.98, 46.53, 40.88, 24.72; IR (Neat Film, NaCl) 2923, 1683, 1511, 1296, 1248, 1024, 822, 760 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄BrN₂O₂ *m/z* calc'd for [M+H]⁺: 415.1021, found 415.1027.

(*S**)-3-allyl-3-((*R**)-amino(3-bromophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4v): Compound 4v was prepared from 3-bromobenzonitrile 6m using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4v as a pale-yellow oil (45 mg, 0.108 mmol, 55% yield, 20:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.55 (t, *J* = 1.9 Hz, 1H), 7.50 – 7.40 (m, 3H), 7.29 (dt, *J* = 7.8, 1.5 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 6.96 – 6.87 (m, 2H), 5.79 (dddd, *J* = 16.8, 10.1, 8.3, 6.5 Hz, 1H), 5.19 – 5.06 (m, 2H), 4.22 (s, 1H), 3.81 (s, 3H), 3.56 – 3.49 (m, 1H), 3.29 (td, *J* = 9.4, 4.3 Hz, 1H), 2.60 – 2.45 (m, 2H), 2.16 (ddt, *J* = 13.5, 8.3, 1.0 Hz, 1H), 1.76 (ddd, *J* = 13.0, 8.7, 4.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.60, 156.88, 144.63, 133.33, 132.25, 130.84, 130.79, 129.79, 126.71, 122.48, 122.27, 119.09, 114.07, 59.92, 55.51, 54.00, 46.58, 41.24, 23.71; IR (Neat Film, NaCl) 2950, 1681, 1512, 1429, 1403, 1295, 1249, 1180, 1101, 1035, 923, 833, 792 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄BrN₂O₂ *m/z* calc'd for [M+H]⁺: 415.1021, found 415.1036.

(*S**)-3-allyl-3-((*R**)-amino(4-bromophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4w): Compound 4w was prepared from 4-bromobenzonitrile 6n using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product **4w** as a pale-yellow oil (79 mg, 0.190 mmol, 95% yield, 20:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 4H), 7.36 – 7.23 (m, 2H), 6.99 – 6.87 (m, 2H), 5.79 (dddd, J = 16.7, 10.1, 8.3, 6.5 Hz, 1H), 5.20 – 5.07 (m, 2H), 4.26 (s, 1H), 3.83 (s, 3H), 3.54 (ddd, J = 9.3, 8.7, 6.6 Hz, 1H), 3.35 (td, J = 9.4, 4.1 Hz, 1H), 2.61 – 2.49 (m, 2H), 2.14 (ddt, J = 13.5, 8.3, 1.0 Hz, 1H), 1.74 (td, J = 8.8, 4.4 Hz, 1H), 1.69 (br, NH₂, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 175.81, 156.97, 141.30, 133.47, 132.42, 131.46, 129.75, 122.27, 121.63, 119.16, 114.20, 59.84, 55.63, 54.16, 46.68, 41.41, 23.66; IR (Neat Film, NaCl) 2923, 1681, 1512, 1486, 1404, 1295, 1249, 1178, 1073, 1010, 825 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄BrN₂O₂ *m/z* calc'd for [M+H]⁺: 415.1021, found 415.1015. Relative configuration was determined via X-ray diffraction. Crystals were obtained via a slow evaporation of a solution of **4w** in toluene. CCDC 2253010

(S*)-3-allyl-3-((R*)-amino(3-iodophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one

(4y): Compound 4y was prepared from 3-iodobenzonitrile 6p using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4y as a pale-yellow oil (30 mg, 0.065 mmol, 32% yield, 10:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.75 (t, *J* = 1.8 Hz, 1H), 7.63 (ddd, *J* = 7.9, 1.8, 1.0 Hz, 1H), 7.56 – 7.38 (m, 2H), 7.32 (d, *J* = 1.5 Hz, 1H), 7.05 (t, *J* = 7.8 Hz, 1H), 7.01 – 6.78 (m, 2H), 5.79 (dddd, *J* = 16.8, 10.1, 8.2, 6.5 Hz, 1H), 5.24 – 5.03 (m, 2H), 4.18 (s, 1H), 3.81 (s, 3H), 3.57 – 3.46 (m, 1H), 3.32 – 3.21 (m, 1H), 2.61 – 2.43 (m, 2H), 2.17 (ddt, *J* = 13.5, 8.3, 1.0 Hz, 1H), 1.77 (td, *J* = 8.7, 4.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.72, 157.01, 144.81, 136.88, 133.46, 132.36, 130.10, 127.44, 122.40, 119.22, 114.21, 94.47, 59.99, 55.64, 54.07, 46.69, 41.33, 23.91; IR (Neat Film, NaCl) 2932, 1681, 1563, 1512, 1429, 1403, 1296, 1248, 1180, 1100, 1035, 922, 832, 791, 701 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄IN₂O₂ *m/z* calc'd for [M+H]⁺: 463.0883, found 463.0892.

(*S**)-3-allyl-3-((*R**)-amino(4-iodophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4z): Compound 4z was prepared from 4-iodobenzonitrile 6q using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4z as a pale-yellow oil (65 mg, 0.14 mmol, 70% yield, 9:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.54 (m, 2H), 7.53 – 7.39 (m, 2H), 7.16 – 7.07 (m, 2H), 6.97 – 6.85 (m, 2H), 5.77 (dddd, J = 16.7, 10.1, 8.3, 6.5 Hz, 1H), 5.17 – 5.06 (m, 2H), 4.24 (s, 1H), 3.81 (s, 3H), 3.52 (ddd, J = 9.4, 8.7, 6.7 Hz, 1H), 3.32 (dt, J = 9.5, 4.7 Hz, 1H), 2.57 – 2.46 (m, 2H), 2.43 – 2.17 (br, NH₂, 2H), 2.13 (ddt, J = 13.5, 8.3, 0.9 Hz, 1H), 1.73 (ddd, J = 12.9, 8.7, 4.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.77, 157.01, 141.68, 137.47, 133.39, 132.37, 130.05, 122.32, 119.25, 114.21, 93.30, 59.90, 55.64, 54.06, 46.71, 41.38, 23.68; IR (Neat Film, NaCl) 2923, 1681, 1511, 1484, 1403, 1295, 1249, 1180, 1035, 1005, 921, 823 cm⁻¹; (MM:ESI⁺) C₂₁H₂₄IN₂O₂ *m/z* calc'd for [M+H]⁺: 463.0883, found 463.0876.

Product Derivatizations: N-Protection Followed by Lactam N-PMP Deprotection.

N-((R^*)-((S^*)-3-allyl-1-(4-methoxyphenyl)-2-oxopyrrolidin-3-yl)(phenyl)methyl)-4methylbenzenesulfonamide (7): Allyl Mannich product 4d (23 mg, 0.067 mmol, 1.0 equiv) was dissolved in DCM (2 mL) and cooled to 0 °C. TEA (21 µL, 0.147 mmol, 2.2 equiv) was added to the reaction mixture followed by DMAP (0.7 mg, 0.006 mmol, 0.1 equiv) and TsCl (15 mg, 0.08 mmol, 1.2 equivs) and then stirred at 0 °C for 1 h. The reaction mixture was allowed to warm to 25 °C over the next 15 h. The reaction mixture was diluted with DCM (10 mL) and washed with NH₄Cl (10 mL). The organic layer was separated, and the aqueous layer was extracted with DCM (3 x 10 mL). The organic layers were combined, washed with NaHCO₃ (10 mL), dried over Na₂SO₄ and concentrated by rotary evaporation. The crude oil was purified by column chromatography (60% EtOAc in Hexanes, 1% TEA) to afford *N*-tosylated product 7 as a paleyellow oil (32 mg, 0.63 mmol, 95% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2H), 7.18 – 7.13 (m, 2H), 7.10 (ddt, *J* = 7.7, 6.6, 1.6 Hz, 1H), 7.02 – 6.93 (m, 4H), 6.91 – 6.84 (m, 3H), 6.86 – 6.81 (m, 2H), 5.97 – 5.82 (m, 1H), 5.35 – 5.20 (m, 2H), 4.52 (d, *J* = 8.9 Hz, 1H), 3.78 (s,

3H), 3.23 (td, J = 9.4, 3.8 Hz, 1H), 2.74 (ddd, J = 6.9, 3.6, 2.4 Hz, 2H), 2.40 – 2.32 (m, 1H), 2.24 (s, 3H), 2.10 (ddd, J = 13.5, 9.3, 6.9 Hz, 1H), 1.81 (ddd, J = 13.5, 8.7, 3.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.42, 157.31, 142.24, 138.49, 137.10, 132.51, 131.51, 128.93, 128.23, 128.21, 127.79, 126.75, 122.54, 120.40, 114.17, 62.29, 55.61, 51.51, 46.35, 40.28, 25.80, 21.44; IR (Neat Film, NaCl) 3386, 2923, 1667, 1513, 1404, 1323, 1301, 1249, 1160, 1090, 831, 702, 667 cm⁻¹; (MM:ESI⁺) : C₂₈H₃₁N₂O₄S *m*/*z* calc'd for [M+H]⁺: 491.2005, found 491.1993.

tert-butyl-((R*)-((S*)-3-allyl-1-(4-methoxyphenyl)-2-oxopyrrolidin-3-

yl)(phenyl)methyl)carbamate (8): Allyl Mannich product 4d (23 mg, 0.067 mmol, 1.0 equiv) was dissolved in DCM (2 mL) and cooled to 0 °C. Boc₂O (15 mg, 0.074 mmol, 1.1 equiv) was added to the reaction mixture followed by TEA (21 µL, 0.147 mmol, 2.2 equiv) and stirred at 0 °C for 1 h. The reaction mixture was allowed to warm to 25 °C over the next 15 h. The reaction mixture was diluted with DCM (10 mL) and washed with NH₄Cl (10 mL). The organic layer was separated, and the aqueous laver was extracted with DCM (3 x 10 mL). The organic lavers were combined, washed with NaHCO₃ (10 mL), dried over Na₂SO₄ and concentrated by rotary evaporation. The crude oil was purified by column chromatography (50% EtOAc in Hexanes, 1% TEA) to afford carbamate product 8 as a pale-yellow oil (28 mg, 0.64 mmol, 96% yield); ¹H NMR (400 MHz, CDC) δ 7.31 – 7.17 (m, 7H), 6.97 – 6.83 (m, 2H), 6.81 (d, J = 8.7 Hz, 1H), 5.91 – 5.79 (m, 1H), 5.32 - 5.18 (m, 2H), 4.65 (d, J = 8.9 Hz, 1H), 3.80 (s, 3H), 3.20 (td, J = 9.3, 2.9 Hz, 3.20 Hz1H), 2.66 (dd, J = 7.6, 3.5 Hz, 2H), 2.25 (q, J = 8.5 Hz, 1H), 2.13 (ddd, J = 13.5, 9.4, 7.9 Hz, 1H), 1.91 (ddd, J = 13.4, 8.3, 2.9 Hz, 1H), 1.38 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 175.58, 157.15, 155.40, 140.03, 133.15, 131.82, 128.45, 127.96, 127.88, 122.42, 119.92, 114.12, 79.29, 59.63, 55.61, 51.34, 46.22, 40.61, 28.53, 26.25; IR (Neat Film, NaCl) 3392, 2978, 1712, 1670, 1512, 1456, 1366, 1295, 1249, 1169, 1036, 831, 702 cm⁻¹; (MM:ESI⁺) : $C_{26}H_{33}N_2O_4 m/z$ calc'd for [M+H]⁺: 437.2440, found 437.2453.

 $N-((R^*)-((S^*)-3-allyl-2-oxopyrrolidin-3-yl)(phenyl)methyl)-4-methylbenzenesulfonamide$ (9): N-Ts protected allyl Mannich product 7 (20 mg, 0.04 mmol, 1.0 equiv) was dissolved in a 5:1 mixture of MeCN:H₂O (3.5 mL) and cooled to 0 °C. CAN (88 mg, 0.18 mmol, 4.5 equiv) was added to the reaction mixture and stirred at 0 °C for 1 h and allowed to warm to 25 °C overnight. The reaction mixture was diluted with EtOAc (10 mL) and washed with sat'd NaHCO₃ (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with EtOAc (3 x 10mL). The organic layers were combined, dried with Na₂SO₄, concentrated by rotary evaporator, and purified via column chromatography (85% EtOAc in hexanes) to afford N-H lactam product 9 as an orangeyellow amorphous solid (13 mg, 0.034 mmol, 84% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.34 -7.27 (m, 5H), 7.05 - 6.98 (m, 4H), 6.90 (d, J = 8.0 Hz, 1H), 5.94 - 5.80 (m, 1H), 5.64 (s, 1H), 5.28-5.20 (m, 2H), 4.46 (s, 1H), 2.96 (td, J = 9.0, 4.9 Hz, 1H), 2.71 -2.57 (m, 2H), 2.26 (s, 3H), 2.17 $(td, J = 9.1, 5.6 Hz, 1H), 2.11 - 2.01 (m, H), 1.80 (ddd, J = 13.6, 8.8, 4.9 Hz, 1H); {}^{13}C NMR (101)$ MHz, CDCl₃) δ 179.89, 142.26, 138.41, 137.16, 132.50, 128.94, 128.28, 128.24, 127.67, 126.78, 120.29, 61.93, 49.50, 39.65, 39.27, 28.09, 21.45; IR (Neat Film, NaCl) 3265, 2923, 2853, 1682, 1513, 1456, 1326, 1249, 1160, 1089, 924, 801, 723, 703 cm⁻¹; (MM:ESI⁺) : $C_{21}H_{25}N_2O_3S m/z$ calc'd for [M+H]⁺:385.1586, found 385.1562.

tert-butyl ((R^*)-((S^*)-3-allyl-2-oxopyrrolidin-3-yl)(phenyl)methyl)carbamate (10): *N*-Boc protected allyl Mannich product 4d (20 mg, 0.04 mmol, 1.0 equiv) was dissolved in a 5:1 mixture of MeCN:H₂O (3.5 mL) and cooled to 0 °C. CAN (88 mg, 0.18 mmol, 4.5 equiv) was added to the reaction mixture and stirred at 0 °C for 1 h and allowed to warm to 25 °C overnight. The reaction mixture was diluted with EtOAc (10 mL) and washed with sat'd NaHCO₃ (10 mL) and brine (10 mL). The aqueous layers were combined and extracted with EtOAc (3 x 10mL). The organic layers were combined, dried with Na₂SO₄, concentrated by rotary evaporator, and purified via column

chromatography (80% EtOAc in hexanes) to afford *N*-H lactam product **10** as an orange-yellow crystal (11 mg, 0.033 mmol, 83% yield);); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.20 (m, 5H), 6.78 (d, *J* = 9.0 Hz, 1H), 5.93 – 5.72 (m, 1H), 5.50 (s, 1H), 5.25 – 5.16 (m, 2H), 4.62 (d, *J* = 9.0 Hz, 1H), 3.47 – 3.23 (m, 1H), 2.92 (td, *J* = 8.6, 3.5 Hz, 1H), 2.64 – 2.45 (m, 2H), 2.18 – 1.99 (m, 1H), 1.98 – 1.88 (m, 1H), 1.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 180.06, 155.40, 140.00, 133.08, 128.44, 128.11, 127.78, 119.83, 79.35, 59.13, 49.24, 40.03, 39.18, 28.71, 28.55; IR (Neat Film, NaCl) 3264, 2924, 1694, 1494, 1363, 1325, 1248, 1172, 1161, 918, 778, 703 cm⁻¹; (MM:ESI⁺) : C₁₉H₂₇N₂O₃ *m/z* calc'd for [M+H]⁺: 331.2022, found 331.2015.

Product Derivatizations: N-Functionalization via Imine Formation or N-acylation

(35,5*R*)-3-((*R*)-(((*E*)-4-bromobenzylidene)amino)(phenyl)methyl)-1-(4-methoxyphenyl)-3,5dimethylpyrrolidin-2-one (SI2): Dimethyl Mannich product 4j (35 mg, 0.108 mmol, 1.0 equiv) was dissolved in ethanol. *Para*-bromo benzaldehyde SI1 (20 mg, 0.108 mmol, 1.0 equiv) was added to the reaction mixture and the solution was heated to reflux for 16 hours. The reaction was cooled to ambient temperatures and concentrated via rotary evaporator. The crude reaction mixture was then purified via column chromatography (40% EtOAc in hexanes) to afford the *p*-Br imine product SI2 (48.7 mg, 0.99 mmol, 92% yield) as a yellow crystalline solid. The diastereomeric mixture could not be separated. Crystals suitable for X-ray diffraction were obtained via a vapor diffusion of DCM/hexanes to afford clear crystals. CCDC 2253013. ¹H NMR (400 MHz, CDCl₃) δ 8.39 (s, 0.29H), 8.20 (s, 0.71H), 7.70 – 7.65 (m, 0.58H), 7.65 – 7.59 (m, 1.52H), 7.58 – 7.49 (m, 4H)*, 7.42 – 7.34 (m, 2H), 7.34 (s, 1H), 7.01 – 6.94 (m, 0.58H), 6.86 – 6.80 (m, 2H), 6.76 – 6.69 (m, 1.52H), 4.71 (s, 0.29H), 4.62 (s, 0.71H), 4.25 – 4.15 (m, 0.71H), 4.15 – 4.05 (m, 0.29H), 3.77 (s, 0.87H), 3.75 (s, 2.12H), 3.20 (dd, *J* = 13.3, 7.6 Hz, 0.71H), 2.81 (dd, *J* = 12.6, 8.2 Hz, 0.29H), 1.82 (dd, *J* = 12.6, 7.3 Hz, 0.29H), 1.32 – 1.25 (m, 0.71H)*, 1.24 (s, 2.21H), 1.19 (d, *J* = 6.1 Hz, 0.88H), 1.16 (s, 0.88H), 1.09 (d, *J* = 6.3 Hz, 2.21H). (2.5:1 dr); ¹³C NMR (101 MHz, CDCl₃) δ 177.63, 177.09,* 160.72,* 160.34, **157.80**,* 140.64,* 140.41, 135.57,* 135.35, 131.91, 131.87,* 130.37,* 130.34, 129.92, 129.85,* 128.84, 128.64,* 128.25,* 128.17, 127.63, 127.52,* 126.62, 126.46,* 125.25, 125.11,* 114.29, 114.21,* 79.77, 77.36,* 55.56,* 55.53, 54.02, 52.25,* 51.43, 51.25,* 36.36, 34.98,* 24.43, 22.38,* 21.59, 21.08.* Carbon signals of the minor diastereomer are denoted with*, overlap of both diastereomers are bolded; IR (Neat Film, NaCl) 3264, 2922, 2853, 1691, 1494, 1454, 1377, 1319, 1242, 1150, 910, 768, 702 cm⁻¹; (MM:ESI⁺) : $C_{27}H_{28}BrN_2O_2 m/z$ calc'd for [M+H]⁺: 491.1329, found 491.1329.

4-bromo-N-((R)-((3S,5R)-1-(4-methoxyphenyl)-3,5-dimethyl-2-oxopyrrolidin-3-

yl)(phenyl)methyl)benzamide (SI4): Dimethyl Mannich product 4j (25 mg, 0.077 mmol, 1.0 equiv) was dissolved in DCM (5 mL) and cooled to 0 °C. TEA (21 μ L, 0.15 mmol, 2.0 equiv) and *para*-bromo-benzoyl chloride SI3 (18.5 mg, 0.11 mmol, 1.1 equiv) were added sequentially to the reaction mixture and stirred at 0 °C for 1 h and allowed to warm to 25 °C overnight. The reaction was diluted with DCM (10 mL) and washed with sat'd NaHCO₃ (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na₂SO₄, concentrated by rotary evaporator and purified via column chromatography (60% EtOAc in hexanes) to afford benzoyl product SI4 as a colorless amorphous solid (37 mg, 0.073 mmol, 95% yield) separable diastereomers

Major diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 8.1 Hz, 1H), 7.77 – 7.71 (m, 2H), 7.57 – 7.49 (m, 2H), 7.41 – 7.29 (m, 5H), 6.96 – 6.87 (m, 4H), 5.05 (d, J = 8.1 Hz, 1H), 3.82 (s, 3H), 2.57 (ddt, J = 14.0, 7.8, 6.2 Hz, 1H), 2.45 (dd, J = 13.5, 7.6 Hz, 1H), 1.67 – 1.58 (m, 4H), 0.90 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 177.50, 165.22, 158.36, 139.60, 132.95, 131.82, 129.20, 128.89, 128.71, 128.33, 127.96, 126.34, 126.20, 114.61, 60.94, 55.63, 53.08, 47.44, 39.82, 25.95, 20.96; IR (Neat Film, NaCl) 3362, 2931, 1666, 1588, 1510, 1479, 1455, 1327,

1291, 1248, 1180, 1133, 1028, 1010, 828, 751, 705 cm⁻¹; (MM:ESI⁺) : C₂₇H₂₈BrN₂O₃ *m/z* calc'd for [M+H]⁺: 507.1278, found 507.1291.

Minor diastereomer: ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, J = 8.5 Hz, 1H), 7.82 – 7.76 (m, 2H), 7.57 – 7.50 (m, 2H), 7.50 – 7.43 (m, 2H), 7.43 – 7.33 (m, 2H), 7.33 – 7.28 (m, 1H), 7.15 – 7.04 (m, 2H), 7.01 – 6.93 (m, 2H), 5.14 (d, J = 8.5 Hz, 1H), 4.08 – 3.99 (m, 1H), 3.82 (s, 3H), 2.17 – 2.06 (m, 1H), 1.67 – 1.55 (m, 4H), 0.63 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.68, 165.33, 158.69, 140.02, 133.14, 131.81, 129.28, 128.95, 128.75, 128.55, 128.13, 126.99, 126.25, 114.74, 60.59, 55.67, 53.32, 47.33, 37.76, 23.96, 20.20.

4-bromo-N-((1R)-((3S)-1-(4-methoxyphenyl)-2-oxo-3-(1-phenylethyl)pyrrolidin-3-

yl)(phenyl)methyl)benzamide (SI5): Benzyl Mannich product 4i (8 mg, 0.02 mmol, 1.0 equiv) was dissolved in DCM (2 mL) and cooled to 0 °C. TEA (3.2 µL, 0.04 mmol, 2.0 equiv) and parabromo-benzoyl chloride SI3 (4.8 mg, 0.022 mmol, 1.1 equiv) were added sequentially to the reaction mixture and stirred at 0 °C for 1 h and allowed to warm to 25 °C overnight. The reaction was diluted with DCM (4 mL) and washed with sat'd NaHCO₃ (4 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 5 mL). The organic layers were combined, dried over Na₂SO₄, concentrated by rotary evaporator and purified via column chromatography (60% EtOAc in hexanes) to afford benzoyl product SI4 as a colorless amorphous solid (10.7 mg, 0.0184 mmol, 92% yield single diastereomer); ¹H NMR (400 MHz, CDCl₃) δ 9.43 (d, J = 8.6 Hz, 1H), 7.89 – 7.78 (m, 2H), 7.61 – 7.56 (m, 2H), 7.47 – 7.43 (m, 2H), 7.41 – 7.38 (m, 2H), 7.34 – 7.27 (m, 5H), 7.26 - 7.21 (m, 1H), 6.82 (s, 4H), 5.42 (d, J = 8.6 Hz, 1H), 3.87 - 3.79 (m, 1H), 3.78(s, 3H), 2.43 (ddd, *J* = 7.9, 6.0, 1.6 Hz, 2H), 2.21 (ddd, *J* = 13.5, 8.1, 6.5 Hz, 1H), 1.91 (ddd, *J* = 13.6, 8.6, 6.3 Hz, 1H), 1.51 (d, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.57, 164.92, 157.80, 141.84, 139.55, 133.04, 131.92, 130.98, 129.16, 129.00, 128.71, 128.69, 128.27, 128.19, 127.19, 126.42, 123.87, 114.29, 57.55, 55.85, 55.60, 47.07, 41.55, 21.42, 14.73; IR (Neat Film, NaCl) 3362, 2958, 1731, 1666, 1589, 1512, 1478, 1409, 1329, 1292, 1250, 1180, 1151, 1032,

1009, 828, 753, 735, 702 cm⁻¹; (MM:ESI⁺) : $C_{33}H_{32}BrN_2O_3 m/z$ calc'd for [M+H]⁺: 583.1591, found 583.1617.

N-((*S*)-((*S*)-3-allyl-1-(4-methoxyphenyl)-2-oxopyrrolidin-3-yl)(2-fluorophenyl)methyl)-4bromobenzamide (SI6): Ortho-fluoro-Mannich product 40 (14 mg, 0.04 mmol, 1.0 equiv) was dissolved in DCM (2 mL) and cooled to 0 °C. TEA (6.5 µL, 0.08 mmol, 2.0 equiv) and parabromo-benzoyl chloride SI3 (9.6 mg, 0.044 mmol, 1.1 equiv) were added sequentially to the reaction mixture and stirred at 0 °C for 1 h and allowed to warm to 25 °C overnight. The reaction was diluted with DCM (8 mL) and washed with sat'd NaHCO₃ (8 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na₂SO₄, concentrated by rotary evaporator and purified via column chromatography (60% EtOAc in hexanes) to afford benzoyl product SI6 as a colorless amorphous solid (14.4 mg, 0.0367 mmol, 67% yield, single diastereomer); ¹H NMR (400 MHz, CDCl₃) δ 8.90 (d, J = 8.1 Hz, 1H), 7.75 – 7.66 (m, 2H), 7.51 – 7.43 (m, 2H), 7.26 – 7.12 (m, 1H), 7.06 – 6.98 (m, 4H), 6.94 (td, J = 7.6, 1.2 Hz, 1H), 6.89 - 6.79 (m, 2H), 5.80 (dddd, J = 16.8, 10.4, 8.3, 6.5 Hz, 1H), 5.60 (d, J= 8.1 Hz, 1H), 5.22 - 5.12 (m, 2H), 3.74 (s, 3H), 3.33 (td, J = 9.4, 4.0 Hz, 1H), 2.73 - 2.64 (m, 1H), 2.64 - 2.50 (m, 2H), 2.15 (ddd, J = 13.8, 9.3, 6.9 Hz, 1H), 1.97 - 1.87 (m, 1H); ¹³C NMR $(101 \text{ MHz}, \text{CDCl}_3) \delta 176.13, 164.94, 160.55 \text{ (d}, J = 244.1 \text{ Hz}), 157.52, 132.67, 132.23, 131.80,$ 131.79 (d, J = 23.0 Hz), 131.18, 129.67 (d, J = 8.2 Hz), 128.78, 128.40, 126.76 (d, J = 13.6 Hz), 126.37, 124.52 (d, J = 3.4 Hz), 122.91, 120.43, 115.58 (d, J = 22.6 Hz), 114.27, 55.52, 51.11, 46.95, 40.69, 25.12; IR (Neat Film, NaCl) 3361, 2922, 1681, 1666, 1512, 1481, 1329, 1292, 1251, 753, 702 cm⁻¹; (MM:ESI⁺) : $C_{28}H_{27}BrFN_2O_3$ m/z calc'd for [M+H]⁺: 537.1184, found 537.1200.

Product Derivatizations: Acrylamide Formation Followed by Ring Closing Metathesis

 $N-((R^*)-((S^*)-3-allyl-1-(4-methoxyphenyl)-2-oxopyrrolidin-3-yl)(phenyl)methyl)acrylamide$ (12): Allyl Mannich product 4d (27 mg, 0.08 mmol, 1.0 equiv) was dissolved in DCM (5 mL) and cooled to 0 °C. TEA (21 µL, 0.15 mmol, 2.0 equiv) and acryloyl chloride 11 (10 µL, 0.11 mmol, 1.4 equiv) were added sequentially to the reaction mixture and stirred at 0 °C for 1 h and allowed to warm to 25 °C overnight. The reaction was diluted with DCM (10 mL) and washed with sat'd NaHCO₃ (10 mL). The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na₂SO₄, concentrated by rotary evaporator and purified via column chromatography (60% EtOAc in hexanes) to afford acrylamide product 12 as a yellow oil (28 mg, 0.072 mmol, 90% yield); ¹H NMR (400 MHz, CDCl₃) δ 8.01 $(d, J = 8.5 \text{ Hz}, 1\text{H}), 7.27 - 7.20 \text{ (m, 2H)}, 7.20 - 7.16 \text{ (m, 3H)}, 7.17 - 7.11 \text{ (m, 2H)}, 6.90 - 6.73 \text{ (m, 2H)}, 7.20 - 7.16 \text{ (m, 2H)}, 7.17 - 7.11 \text{ (m, 2H)}, 7.20 - 7.16 \text{ (m, 3H)}, 7.17 - 7.11 \text{ (m, 2H)}, 7.17 - 7.11 \text{ ($ 2H), 6.18 (dd, J = 17.1, 1.9 Hz, 1H), 6.13 – 6.01 (m, 1H), 5.77 (dddd, J = 16.2, 10.8, 8.2, 6.6 Hz, 1H), 5.55 (dd, J = 9.8, 1.9 Hz, 1H), 5.20 – 5.07 (m, 2H), 5.00 (d, J = 8.6 Hz, 1H), 3.73 (s, 3H), 3.18 (td, J = 9.5, 3.4 Hz, 1H), 2.66 - 2.56 (m, 1H), 2.52 (ddt, J = 13.8, 8.2, 1.0 Hz, 1H), 2.33 (ddd, J = 9.5, 8.7, 7.4 Hz, 1H), 2.07 (ddd, J = 13.4, 9.4, 7.4 Hz, 1H), 1.86 (ddd, J = 13.5, 8.6, 3.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 176.03, 164.75, 157.42, 139.30, 132.74, 131.55, 131.19, 128.61, 128.13, 126.50, 122.72, 120.24, 114.26, 58.14, 55.63, 51.07, 46.58, 40.73, 29.85, 25.99; IR (Neat Film, NaCl) 3350, 2922, 1674, 1634, 1513, 1404, 1298, 1249, 1182, 1034, 922, 830, 800, 704 cm⁻¹; (MM:ESI⁺) : $C_{24}H_{27}N_2O_3$ *m/z* calc'd for [M+H]⁺ 391.2022, found 391.2037.

 $(5S^*, 6R^*)$ -2-(4-methoxyphenyl)-6-phenyl-2,7-diazaspiro[4.6]undec-9-ene-1,8-dione (13): Acrylamide product 12 (15 mg, 0.04 mmol, 1.0 equiv) was dissolved in DCM (8 mL). The resulting solution was sparged with argon for 10 minutes. The Grubbs' second generation catalyst (2 mg, 0.002 mmol, 5 mol %) was added to the reaction mixture under a positive pressure of argon.

The reaction was bubbled with argon for 5 minutes and heated to 40 °C for 16 h. The crude reaction mixture was concentrated by rotary evaporation and purified directly via column chromatography (90% EtOAc in hexanes with 1% Et₃N) in order afford ε -lactam **13** as a brown amorphous solid (11 mg, 0.03 mmol, 75% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.35 (m, 2H), 7.34 – 7.28 (m, 3H), 7.17 – 7.10 (m, 2H), 6.84 – 6.75 (m, 2H), 6.57 (ddd, *J* = 11.0, 8.3, 5.8 Hz, 1H), 6.25 – 6.16 (m, 2H), 4.48 (d, *J* = 5.6 Hz, 1H), 3.78 (s, 3H), 3.43 – 3.24 (m, 3H), 2.74 (dt, *J* = 9.7, 7.9 Hz, 1H), 2.28 (dd, *J* = 14.2, 8.2 Hz, 1H), 2.25 – 2.11 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.52, 170.30, 157.02, 136.78, 136.20, 131.93, 129.16, 129.13, 128.90, 128.29, 122.33, 114.07, 64.64, 58.77, 45.98, 45.36, 36.29, 30.39; IR (Neat Film, NaCl) 2922, 1661, 1512, 1401, 1298, 1247, 1032, 825, 701 cm⁻¹; (MM:ESI⁺) : C₂₂H₂₃N₂O₃ *m/z* calc'd for [M+H]⁺ 363.1709, found 363.1710. Et₃N•HCl Present (1:1 ratio)

Product Derivatizations: C-N Cross-Coupling Reactions

General Procedure 8: Wolfe-type two-step, one-pot carboamination spirocyclization

(5*R**,6*R**,8*R**)-8-benzyl-2-(4-methoxyphenyl)-6,7-diphenyl-2,7-diazaspiro[4.4]nonan-1-one (15a): Pd(OAc)₂ (0.6 mg, 0.0027 mmol, 5 mol %) and *rac*-BINAP (4 mg, 0.0065 mmol, 12 mol %) were dissolved in toluene (1.0 mL) and stirred for 10 minutes at 25 °C. Meanwhile, allyl Mannich product 4d (18 mg, 0.054 mmol, 1.0 equiv) was added to a solution of bromobenzene (12 μ L, 0.12 mmol, 2.2 equiv) and NaO*t*-Bu (17 mg, 0.18 mmol, 3.4 equiv) in toluene (1.0 mL). The metal-ligand complex solution was added to the reaction mixture. The resulting solution was sparged with argon for 5 minutes, then heated to 100 °C for 20 h. The reaction mixture was cooled to 25 °C, diluted with DCM, then filtered through a pad of celite. The celite was washed with copious amounts of toluene, and the resulting filtrate was concentrated via rotary evaporation and purified via column chromatography (50% EtOAc in hexanes) to afford the spirocyclic pyrrolidine product 15 as a red-orange amorphous solid (21.7 mg, 0.044 mmol, 82% yield); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.36 (m, 7H), 7.26 – 7.20 (m, 5H), 7.12 – 7.05 (m, 2H), 7.02 – 6.96 (m, 1H) 6.86 (d, *J* = 9.1 Hz, 2H), 6.75 – 6.70 (m, 2H), 4.66 (s, 1H), 4.12 – 4.05 (m, 1H), 3.96 (td, *J* = 10.2, 6.2 Hz, 1H), 3.80 (s, 3H), 3.79 - 3.77 (m, 1H), 3.75 (qd, J = 3.2, 1.7 Hz, 1H), 2.99 (dd, J = 13.3, 10.0 Hz, 1H), 2.67 (dd, J = 12.9, 9.8 Hz, 1H), 2.17 (dd, J = 12.5, 6.1 Hz, 1H), 2.05 - 1.97 (m, 1H), 1.93 (dd, J = 13.0, 6.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.87, 156.46, 147.67, 140.78, 138.93, 132.62, 129.32, 129.15, 128.64, 128.50, 127.68, 126.56, 121.45, 117.78, 114.03, 113.85, 75.32, 60.14, 56.43, 55.46, 45.43, 40.52, 39.16, 33.61; IR (Neat Film, NaCl) 2931, 1693, 1605, 1512, 1464, 1390, 1301, 1248, 1179, 1100, 1033, 901, 834, 741, 704 cm⁻¹; (MM:ESI⁺) : C_{33H33N2O2} *m/z* calc'd for [M+H]⁺ 489.2542, found 489.2549.

(5R,6R,8S)-8-(4-methoxybenzyl)-2,7-bis(4-methoxyphenyl)-6-phenyl-2,7-

diazaspiro[4.4]nonan-1-one (15b): Spirocycle 15b was synthesized using General Procedure 8 with 4-bromoanisole (28 µL, 0.22 mmol, 2.2 equiv) and allyl Mannich product 4d (33.6 mg, 0.1 mmol, 1.0 equiv). The crude oil was isolated via column chromatography (50% EtOAc in hexanes) as a yellow amorphous solid (25 mg, 0.046 mmol, 46% yield, 4:1 dr). Note: the major diastereomer coelutes with the retro-Mannich product 2d after column chromatography as a 2:1 mixture of **15b:2d**: ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.81 (m, 2H), 7.61 – 7.57 (m, 2H), 7.50 – 7.47 (m, 2H), 7.42 - 7.37 (m, 3H), 7.32 (ddd, J = 8.7, 5.7, 2.6 Hz, 2H), 7.23 (d, J = 8.7 Hz, 2H), 6.94 (d, J= 9.2 Hz, 2H), 6.88 (d, J = 6.8 Hz, 2H), 4.66 (s, 1H)*, 3.91 - 3.86 (m, 2H), 3.84 (m, 6H), 3.82 (s, 3H), 3.80 - 3.75 (m, 2H), 3.44 (d, J = 16.2 Hz, 1H), 2.85 (d, J = 16.2 Hz, 1H), 2.65 - 2.58 (m, 1H), 2.16 (ddd, J = 13.3, 6.7, 3.2 Hz, 1H), 2.05 – 1.93 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.10, 174.58, 173.60, 158.76, 158.73, 158.47, 157.00, 156.64, 149.66, 135.62, 134.57, 133.40, 132.92, 132.84, 132.56, 132.48, 132.34, 131.33, 130.68, 130.39, 129.26, 128.81, 128.65, 128.61, 126.70, 121.72, 121.63, 121.57, 117.20, 114.33, 114.15, 113.79, 113.01, 60.98, 55.67, 55.62, 55.58, 55.44, 55.40, 47.30, 46.47, 44.06, 42.85, 35.63, 30.38, 24.12; IR (Neat Film, NaCl) 2928, 1692, 1602, 1510, 1475, 1445, 1384, 1301, 1249, 1171, 1115, 1033, 909, 827, 741, 730, 701 cm⁻ ¹; (MM:ESI⁺) : C₃₅H₃₇N₂O₄ m/z calc'd for [M+H]⁺ 549.2748, found 549.2749. (Bold is compound 2d)

(5*R*,6*R*,8*S*)-8-(3,5-dimethylbenzyl)-7-(3,5-dimethylphenyl)-2-(4-methoxyphenyl)-6-phenyl-2,7-diazaspiro[4.4]nonan-1-one (15c): Spirocycle 15c was synthesized using General Procedure 8 with 3,5-dimethyl bromobenzene (30 μL, 0.22 mmol, 2.2 equiv) and allyl Mannich product 4d (33.6 mg, 0.1 mmol, 1.0 equiv). The crude oil was isolated via column chromatography (50% EtOAc in hexanes) as a yellow amorphous solid (43 mg, 0.079 mmol, 79% yield, 9:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.39 (m, 2H), 7.30 (ddd, J = 6.1, 3.2, 1.5 Hz, 3H), 7.23 (dd, J = 7.8, 1.7 Hz, 2H), 7.02 (s, 2H), 6.93 (s, 1H), 6.87 (d, J = 9.2 Hz, 2H), 6.48 (s, 1H), 6.36 (s, 2H), 4.65 (s, 1H), 4.10 – 4.02 (m, 1H), 3.98 (dt, J = 10.1, 5.0 Hz, 1H), 3.80 (d, J = 0.9 Hz, 3H), 3.79 – 3.74 (m, 1H), 3.67 (dd, J = 13.1, 2.6 Hz, 1H), 2.85 (dd, J = 13.1, 10.0 Hz, 1H), 2.70 – 2.60 (m, 1H), 2.36 (s, 6H), 2.26 (s, 6H), 2.18 – 2.09 (m, 1H), 2.04 – 1.97 (m, 1H), 1.97 – 1.90 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 171.96, 156.42, 147.85, 140.95, 139.04, 138.69, 138.12, 132.73, 128.42, 128.14, 127.56, 127.02, 126.58, 121.36, 119.77, 114.03, 111.77, 74.91, 60.11, 56.50, 55.46, 45.42, 40.69, 39.25, 33.46, 21.84, 21.38; IR (Neat Film, NaCl) 2928, 1692, 1602, 1510, 1475, 1445, 1384, 1301, 1249, 1171, 1115, 1033, 909, 827, 741, 730, 701 cm⁻¹; (MM:ESI⁺) : C₃₇H₄₁N₂O₂ *m/z* calc'd for [M+H]⁺ 545.3163, found 545.3173.

tert-butyl (1*R*,3*S*,5*R*)-3-(4-methoxybenzyl)-7-(4-methoxyphenyl)-6-oxo-1-phenyl-2,7diazaspiro[4.4]nonane-2-carboxylate (16a): Pd(OAc)₂ (0.6 mg, 0.0027 mmol, 5 mol %) and *rac*-BINAP (4 mg, 0.0065 mmol, 12 mol %) were dissolved in toluene (1.0 mL) and stirred for 10 minutes at 25 °C. Meanwhile, allyl Mannich product **8** (23.5 mg, 0.054 mmol, 1.0 equiv) was

added to a solution of bromobenzene (12 μ L, 0.12 mmol, 2.2 equiv) and NaOt-Bu (17 mg, 0.18 mmol, 3.4 equiv) in toluene (1.0 mL). The metal-ligand complex solution was added to the reaction mixture. The resulting solution was sparged with argon for 5 minutes, then heated to 100 °C for 20 h. The reaction mixture was cooled to 25 °C, diluted with DCM, then filtered through a pad of celite. The celite was washed with copious amounts of toluene, and the resulting filtrate was concentrated via rotary evaporation and purified via column chromatography (50% EtOAc in hexanes) to afford the spirocyclic pyrrolidine product 16a as a yellow amorphous solid (24.1 mg, 0.044 mmol, 76% yield, 5:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.27 (m, 2H), 7.25 – 7.20 (m, 5H), 7.09 (d, J = 7.2 Hz, 2H), 6.88 – 6.84 (m, 2H), 6.84 – 6.79 (m, 2H), 4.96 (br, 1H), 4.23 – 3.98 (m, 1H), 3.84 (dd, J = 6.1, 5.1 Hz, 1H), 3.81 (s, 3H), 3.78 (s, 3H), 3.75 - 3.69 (m, 2H), 3.11(br, 1H), 2.49 (dd, J = 13.3, 9.1 Hz, 1H), 2.29 (dd, J = 12.5, 6.1 Hz, 1H), 2.15 – 1.98 (m, 1H), 1.76 $(dd, J = 13.3, 7.0 \text{ Hz}, 1\text{H}), 1.55 - 1.13 (br, 9\text{H}); {}^{13}\text{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \delta 171.96, 158.23,$ 156.62, 155.18, 139.85, 132.37, 130.99, 130.60, 128.04, 127.41, 126.44, 121.92, 114.00, 113.88, 80.20, 70.83, 60.24, 55.61, 55.44, 55.27, 45.65, 38.45, 34.00, 29.72, 28.38; IR (Neat Film, NaCl) 2935, 1693, 1611, 1512, 1454, 1384, 1298, 1248, 1177, 1144, 1111, 1032, 910, 828, 730, 700 cm⁻ ¹; (MM:ESI⁺) : $C_{33}H_{39}N_2O_5 m/z$ calc'd for [M+H]⁺ 543.2853, found 543.2866.

tert-butyl (1*R*,3*S*,5*R*)-3-(3,5-dimethylbenzyl)-7-(4-methoxyphenyl)-6-oxo-1-phenyl-2,7diazaspiro[4.4]nonane-2-carboxylate (16b): Spirocycle 16b was synthesized using General Procedure 9 with 3,5-dimethyl bromobenzene (30 μ L, 0.22 mmol, 2.2 equiv) and allyl Mannich product 8 (23.5 mg, 0.054 mmol, 1.0 equiv). The crude oil was isolated via column chromatography (50% EtOAc in hexanes) as a yellow amorphous solid (25.4 mg, 0.047 mmol, 87% yield, 10:1 dr); ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.19 (m, 5H), 7.11 (d, *J* = 7.2 Hz, 2H), 6.98 (s, 2H), 6.89 – 6.87 (m, 1H), 6.85 – 6.80 (m, 2H), 4.95 (s, 1H), 4.08 (d, *J* = 13.2 Hz, 1H), 4.02 – 3.88 (m, 1H), 3.84 – 3.79 (m, 1H), 3.78 (s, 3H), 3.76 – 3.70 (m, 2H), 3.04 (s, 1H), 2.51 (dd, *J* = 13.3, 9.2 Hz, 1H), 2.30 (s, 6H), 2.11 – 2.01 (m, 1H), 1.78 (dd, *J* = 13.3, 7.0 Hz, 1H), 1.52 – 1.18 (m, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 177.01, 172.04, 156.73, 155.33, 138.93, 138.06, 132.53, 129.85, 128.18, 128.11, 127.54, 126.58, 122.00, 114.13, 80.34, 71.08, 60.26, 55.76, 55.57, 45.76, 38.59, 34.09, 29.71, 28.51, 21.40; IR (Neat Film, NaCl) 2927, 1691, 1604, 1511, 1455, 1381, 1248, 1172, 1142, 1115, 1033, 909, 828, 730, 697 cm⁻¹; (MM:ESI⁺) : C₃₄H₄₁N₂O₄ *m/z* calc'd for [M+H]⁺ 541.3061, found 541.3072.

(2'R*,3S*)-1-(4-methoxyphenyl)-2'-phenyl-1',4'-dihydro-2'H-spiro[pyrrolidine-3,3'-

quinolin]-2-one (17): BrettPhos Pd G4 (2.5 mg, 0.0025 mmol, 5 mol %) was added to a flame dried vial charged with BrettPhos (1.5 mg, 0.0025 mmol, 5 mol %) and K₃PO₄ (15 mg, 0.07 mmol, 1.4 equiv). The ortho-Br benzyl Mannich product 4f (23 mg, 0.05 mmol, 1.0 equiv, 5:1 dr) was dissolved in a mixture of t-BuOH:toluene (0.6 mL:0.2mL) and added to the reaction mixture. The reaction was then heated to 100 °C for 16 h. After the stirring period, the reaction was then cooled to 25 °C, diluted with DCM and filtered through a pad of celite. The celite pad was washed with copious amounts of DCM. The filtrate was concentrated via rotary evaporation and purified via column chromatography (50% EtOAc in hexanes) to afford spirocyclic tetrahydroquinoline 17 as a pale-yellow solid (15.5 mg, 0.04 mmol, 80% yield, 4:1 dr); Note: The major diastereomer was observed to be unstable to silica gel chromatography or when dissolved in CDCl₃, as there was an identified product 18 assigned as the dihydroquinoline observed arising from the NMR sample of the *trans* diastereomer; ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.35 (m, 2H), 7.35 – 7.30 (m, 3H), 7.28 - 7.23 (m, 2H), 7.11 - 7.06 (m, 2H), 6.85 - 6.81 (m, 2H), 6.74 (td, J = 7.4, 1.2 Hz, 1H), 6.66- 6.62 (m, 1H), 4.36 (s, 1H), 3.84 (s, 1H), 3.79 (s, 3H), 3.39 (td, J = 9.4, 1.7 Hz, 1H), 3.18 (d, J = 16.7 Hz, 1H), 2.92 (d, J = 16.6 Hz, 1H), 2.73 (td, J = 9.5, 7.4 Hz, 1H), 2.22 (ddd, J = 13.3, 7.3, 1.8 Hz, 1H), 2.11 – 1.99 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 173.56, 156.38, 143.70, 140.25, 132.82, 129.39, 128.60, 128.51, 128.08, 127.10, 121.35, 117.94, 113.89, 62.61, 55.56, 46.43, 45.00, 36.43, 30.94; IR (Neat Film, NaCl) 2931, 1690, 1587, 1559, 1512, 1454, 1427, 1399, 1297,

1250, 1181, 1120, 1084, 1033, 909, 829, 768, 730, 692 cm⁻¹; (MM:ESI⁺) : C₂₅H₂₅N₂O₂ *m/z* calc'd for [M+H]⁺ 385.1911, found 385.1906.

(2'*S*,*3S*)-1-(4-methoxyphenyl)-2'-phenyl-1',4'-dihydro-2'*H*-spiro[pyrrolidine-3,3'-quinolin]-2-one (syn-17): ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.53 (m, 2H), 7.35 – 7.27 (m, 3H), 7.20 – 7.12 (m, 2H), 7.08 (dd, *J* = 7.4, 0.9 Hz, 2H), 6.85 – 6.79 (m, 2H), 6.72 (td, *J* = 7.4, 1.2 Hz, 1H), 6.65 (d, *J* = 1.2 Hz, 1H), 4.77 (s, 1H), 4.18 (s, 1H), 3.78 (s, 3H), 3.66 (dd, *J* = 16.6, 8.5 Hz, 1H), 3.35 (td, *J* = 9.6, 3.0 Hz, 1H), 2.66 (d, *J* = 16.1 Hz, 1H), 2.63 – 2.57 (m, 1H), 2.43 (ddd, *J* = 13.5, 8.6, 3.0 Hz, 1H), 1.79 (ddd, *J* = 13.6, 9.7, 7.7 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 175.10, 156.90, 143.71, 139.32, 132.30, 129.94, 128.55, 128.49, 127.51, 127.32, 122.57, 117.88, 114.04, 114.01, 59.43, 55.57, 48.29, 46.35, 38.73, 24.70. IR (Neat Film, NaCl) 2931, 1690, 1587, 1559, 1512, 1454, 1427, 1399, 1297, 1250, 1181, 1120, 1084, 1033, 909, 829, 768, 730, 692 cm⁻¹; (MM:ESI⁺) : C₂₅H₂₅N₂O₂ *m/z* calc'd for [M+H]⁺ 385.1911, found 385.1906.

(*S*)-1-(4-methoxyphenyl)-2'-phenyl-4'*H*-spiro[pyrrolidine-3,3'-quinolin]-2-one (18): ¹³C NMR (101 MHz, CDCl₃) δ 174.96, 157.21, 153.58, 146.38, 145.78, 132.17, 128.63, 128.52, 128.27, 128.08, 127.81, 122.11, 119.84, 114.33, 113.95, 55.65, 45.83, 34.53, 30.95, 28.41; (MM:ESI⁺) : C₂₅H₂₃N₂O₂ *m/z* calc'd for [M+H]⁺ 383.1754, found 383.1763.

General Procedure 9: Asymmetric Mannich reaction variation using K-Box catalyst

(S*)-3-((R*)-amino(phenyl)methyl)-1-(4-methoxyphenyl)-3-methylpyrrolidin-2-one (4a): $B(C_6F_5)_3$ (4 mg, 0.009 mmol, 0.06 equiv) was added to a solution of H-SiMe₂Ph (112 µL, 0.8 mmol, 4.0 equiv) in toluene (1 mL). Benzonitrile 6a (55 µL, 0.6 mmol, 3.0 equiv) was added to the reaction mixture and stirred at ambient temperature for 1 hour. Meanwhile, a vial containing bis((3aR,8aS)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)methane (L1, 9.9 mg, 0.03 mmol, 0.15 equiv) and KHMDS (6 mg, 0.03 mmol, 0.15 equiv) cooled to 0 °C and dissolved in THF (0.75 mL). This mixture was allowed to stir for 30 minutes. Meanwhile, N-PMP lactam 2a (42 mg, 0.2 mmol, 1.0 equiv) was added to a solution of potassium *tert*-butoxide (7 mg, 0.07 mmol, 0.35 equiv) in toluene (2 mL) and cooled to -78 °C. After the K-Box catalyst generation, that mixture was added to the lactam mixture at -78 °C and allowed to stir for 15 minutes. After the 1 hr hydrosilylation, the yellow imine mixture 3a was added to the cooled reaction mixture at -78 °C dropwise. The reaction mixture was stirred at -78 °C for 2 hours and allowed to warm to ambient temperature overnight. The reaction was quenched with 1 N HCl (4 mL) and diluted with EtOAc (10 mL) and stirred vigorously for 1 hour at ambient temperature. The aqueous layer was separated and extracted with EtOAc (2 x 4 mL) The combined organic layer can be purified to recover any unreacted lactam or aryl nitrile. The aqueous layer was basified with a saturated solution of NaHCO₃ (6 mL) and diluted with EtOAc (10 mL). The biphasic mixture was stirred vigorously for 1 hour at ambient temperature. The layers were separated, and the aqueous layer was extracted with EtOAc (3 x 10 mL). The organic layers were combined, dried over Na₂SO₄ and concentrated by rotary evaporation. The crude oil was purified by column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4a as a pale-yellow oil (59 mg, 0.193 mmol, 96% yield, 15:1 dr, 71% ee); The characterization data matches the data acquired from the product obtained using General Procedure 5.

Chiral SFC Separation: 15% MeOH, 2.5 mL/min, Ad-H column, 1 = 254 nm, t_R (min): major = 6.742 (area: 85.4 %), minor = 10.493 (area: 14.6%), 71% enantiomeric excess.

(*S**)-3-((*R**)-amino(phenyl)methyl)-3-ethyl-1-(4-methoxyphenyl)pyrrolidin-2-one (4b): Compound 4b was prepared from *N*-PMP lactam 2b using General procedure 6. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4b as a pale-yellow oil (59 mg, 0.18 mmol, 90% yield, 13:1 dr, 72% ee); The characterization data matches the data acquired from the product obtained using General Procedure 5.

Chiral SFC Separation: 15% MeOH, 2.5 mL/min, Ad-H column, 1 = 254 nm, t_R (min): major = 6.668 (area: 84.8 %), minor = 11.635 (area: 15.2%), 71% enantiomeric excess


```
Signal 2: DAD1 C, Sig=254,16 Ref=370,60
```

4w

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 6.668 BB	0.2007	2.25236e4	1816.11169	84.7938
2 11.635 BB	0.3064	4039.20508	204.50429	15.2062
Totals :		2.65628e4	2020.61598	
Signal 1: DAD1 A,	Sig=210	,16 Ref=370	,60	
Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	۶
1 6.673 BB	0.1570	2561.90527	251.17792	45.2068
2 11.594 VB		3105.17358	146.09259	54.7932
Totals :		5667.07886	397.27051	
	Br			

(S*)-3-allyl-3-((R*)-amino(4-bromophenyl)methyl)-1-(4-methoxyphenyl)pyrrolidin-2-one (4w): Compound 4w was prepared from 4-bromobenzonitrile 6n using General Procedure 7. The crude oil was purified from column chromatography (3% MeOH in EtOAc, 1% TEA) to afford Mannich product 4w as a pale-yellow oil (77 mg, 0.188 mmol, 94% yield, 12:1 dr, 72% ee). The characterization data matches the data acquired from the product obtained using General Procedure 6.

Chiral SFC Separation: 15% MeOH, 2.5 mL/min, Ad-H column, 1 = 254 nm, t_R (min): major = 9.718 (area: 86.4%), minor = 11.434 (area: 13.6%), 72% enantiomeric excess

Signal 2: DAD1 C, Sig=254,16 Ref=370,60

References:

(7) Hayashi, M.; Bachman, S.; Hashimoto, S.; Eichman, C. C.; Stoltz, B. M. Ni-Catalyzed Enantioselective C-Acylation of α-Substituted Lactams. *J. Am. Chem. Soc.* 2016, *138* (29), 8997–9000.

(8) Jette, C. I.; Geibel, I.; Bachman, S.; Hayashi, M.; Sakurai, S.; Shimizu, H.; Morgan, J. B.; Stoltz, B. M. Palladium-Catalyzed Construction of Quaternary Stereocenters by Enantioselective Arylation of γ -Lactams with Aryl Chlorides and Bromides. *Angew. Chem. Int. Ed.* **2019**, *58* (13), 4297–4301.

S72

The crystal structure of **4w** was registered in the Cambridge crystallographic data center and can be found as CCDC# 2253010 Experimental details for **4w**

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS KAPPA APEX II diffractometer coupled to an PHOTON 100 CMOS detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of compound D21009. The structure was solved by direct methods using SHELXS and refined against F^2 on all data by fullmatrix least squares with SHELXL-2017 using established refinement techniques. All nonhydrogen atoms were refined anisotropically. Unless otherwise noted, all hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

Compound D21009 crystallizes in the monoclinic space group $P2_1/n$ with one molecule in the asymmetric unit. The coordinates for the hydrogen atoms bound to N2 were located in the difference Fourier synthesis and refined semi-freely with the help of a restraint on the N-H distance (0.91(4) Å).

Table 1. Crystal data and structure refinement for D21009.

Identification code	D21009	
Empirical formula	C21 H23 Br N2 O2	
Formula weight	415.32	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21/n	
Unit cell dimensions	a = 9.430(3) Å	a = 90°.
	b = 9.489(2) Å	b=93.651(18)°.
	c = 21.189(5) Å	$g = 90^{\circ}$.
Volume	1892.2(9) Å ³	
Z	4	
Density (calculated)	1.458 Mg/m ³	
Absorption coefficient	2.190 mm ⁻¹	
--	---	
F(000)	856	
Crystal size	0.500 x 0.300 x 0.300 mm ³	
Theta range for data collection	1.926 to 36.430°.	
Index ranges	-15<=h<=15, -15<=k<=15, -35<=l<=35	
Reflections collected	53031	
Independent reflections	9140 [R(int) = 0.0291]	
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7471 and 0.5241	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	9140 / 2 / 242	
Goodness-of-fit on F ²	1.019	
Final R indices [I>2sigma(I)]	R1 = 0.0267, wR2 = 0.0680	
R indices (all data)	R1 = 0.0342, $wR2 = 0.0710$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.656 and -0.498 e.Å ⁻³	

	X	У	Z	U(eq)
N(1)	8230(1)	6655(1)	5441(1)	14(1)
C(1)	8442(1)	7918(1)	5154(1)	13(1)
O(1)	8819(1)	9011(1)	5422(1)	17(1)
C(2)	8070(1)	7776(1)	4446(1)	12(1)
C(5)	6679(1)	8602(1)	4295(1)	16(1)
C(6)	5492(1)	8192(1)	4695(1)	18(1)
C(7)	4282(1)	7615(1)	4474(1)	22(1)
C(8)	9294(1)	8437(1)	4089(1)	12(1)
N(2)	10651(1)	7820(1)	4338(1)	17(1)
C(3)	7908(1)	6181(1)	4351(1)	16(1)
C(4)	7639(1)	5576(1)	5003(1)	16(1)
C(11)	8328(1)	6449(1)	6104(1)	13(1)
C(12)	7326(1)	5631(1)	6388(1)	16(1)
C(13)	7406(1)	5413(1)	7040(1)	17(1)
C(14)	8500(1)	6034(1)	7412(1)	15(1)
O(2)	8695(1)	5880(1)	8053(1)	19(1)
C(17)	7799(1)	4889(1)	8345(1)	21(1)
C(15)	9514(1)	6853(1)	7129(1)	16(1)
C(16)	9437(1)	7054(1)	6480(1)	16(1)
C(21)	9093(1)	8247(1)	3379(1)	12(1)
C(22)	9536(1)	7023(1)	3080(1)	15(1)
C(23)	9351(1)	6867(1)	2427(1)	15(1)
C(24)	8731(1)	7954(1)	2070(1)	14(1)
Br(1)	8522(1)	7739(1)	1178(1)	19(1)
C(25)	8286(1)	9187(1)	2350(1)	16(1)
C(26)	8473(1)	9320(1)	3003(1)	15(1)

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for D21009. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(1)	1.3643(11)
N(1)-C(11)	1.4161(12)
N(1)-C(4)	1.4671(12)
C(1)-O(1)	1.2236(10)
C(1)-C(2)	1.5262(13)
C(2)-C(3)	1.5333(12)
C(2)-C(5)	1.5441(13)
C(2)-C(8)	1.5522(12)
C(5)-C(6)	1.4984(13)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-C(7)	1.3239(14)
C(6)-H(6)	0.9500
C(7)-H(7A)	0.9500
C(7)-H(7B)	0.9500
C(8)-N(2)	1.4736(12)
C(8)-C(21)	1.5133(12)
C(8)-H(8)	1.0000
N(2)-H(2N1)	0.892(13)
N(2)-H(2N2)	0.909(14)
C(3)-C(4)	1.5319(13)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(11)-C(12)	1.3890(12)
C(11)-C(16)	1.3969(13)
C(12)-C(13)	1.3948(13)
C(12)-H(12)	0.9500
C(13)-C(14)	1.3896(14)
С(13)-Н(13)	0.9500
C(14)-O(2)	1.3658(11)
C(14)-C(15)	1.3956(13)
O(2)-C(17)	1.4311(13)

Table 3. Bond lengths [Å] and angles $[\circ]$ for D21009.

C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(15)-C(16)	1.3860(13)
C(15)-H(15)	0.9500
C(16)-H(16)	0.9500
C(21)-C(26)	1.3978(12)
C(21)-C(22)	1.4005(12)
C(22)-C(23)	1.3903(13)
С(22)-Н(22)	0.9500
C(23)-C(24)	1.3864(13)
C(23)-H(23)	0.9500
C(24)-C(25)	1.3891(12)
C(24)-Br(1)	1.8983(10)
C(25)-C(26)	1.3912(13)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
C(1)-N(1)-C(11)	124.10(7)
C(1)-N(1)-C(4)	113.08(7)
C(11)-N(1)-C(4)	121.98(7)
O(1)-C(1)-N(1)	125.77(8)
O(1)-C(1)-C(2)	124.93(8)
N(1)-C(1)-C(2)	109.24(7)
C(1)-C(2)-C(3)	103.31(7)
C(1)-C(2)-C(5)	107.31(7)
C(3)-C(2)-C(5)	113.44(7)
C(1)-C(2)-C(8)	108.23(7)
C(3)-C(2)-C(8)	114.00(7)
C(5)-C(2)-C(8)	110.02(7)
C(6)-C(5)-C(2)	113.98(8)
C(6)-C(5)-H(5A)	108.8
C(2)-C(5)-H(5A)	108.8
C(6)-C(5)-H(5B)	108.8
C(2)-C(5)-H(5B)	108.8
H(5A)-C(5)-H(5B)	107.7

C(7)-C(6)-C(5)	124.43(9)
C(7)-C(6)-H(6)	117.8
C(5)-C(6)-H(6)	117.8
C(6)-C(7)-H(7A)	120.0
C(6)-C(7)-H(7B)	120.0
H(7A)-C(7)-H(7B)	120.0
N(2)-C(8)-C(21)	111.07(7)
N(2)-C(8)-C(2)	108.67(7)
C(21)-C(8)-C(2)	112.68(7)
N(2)-C(8)-H(8)	108.1
C(21)-C(8)-H(8)	108.1
C(2)-C(8)-H(8)	108.1
C(8)-N(2)-H(2N1)	110.0(10)
C(8)-N(2)-H(2N2)	112.8(11)
H(2N1)-N(2)-H(2N2)	100.0(14)
C(4)-C(3)-C(2)	105.86(7)
C(4)-C(3)-H(3A)	110.6
C(2)-C(3)-H(3A)	110.6
C(4)-C(3)-H(3B)	110.6
C(2)-C(3)-H(3B)	110.6
H(3A)-C(3)-H(3B)	108.7
N(1)-C(4)-C(3)	103.35(7)
N(1)-C(4)-H(4A)	111.1
C(3)-C(4)-H(4A)	111.1
N(1)-C(4)-H(4B)	111.1
C(3)-C(4)-H(4B)	111.1
H(4A)-C(4)-H(4B)	109.1
C(12)-C(11)-C(16)	119.25(8)
C(12)-C(11)-N(1)	120.15(8)
C(16)-C(11)-N(1)	120.60(8)
C(11)-C(12)-C(13)	121.04(8)
С(11)-С(12)-Н(12)	119.5
C(13)-C(12)-H(12)	119.5
C(14)-C(13)-C(12)	119.40(8)
C(14)-C(13)-H(13)	120.3
C(12)-C(13)-H(13)	120.3

O(2)-C(14)-C(13)	124.54(8)
O(2)-C(14)-C(15)	115.67(8)
C(13)-C(14)-C(15)	119.77(8)
C(14)-O(2)-C(17)	117.01(8)
O(2)-C(17)-H(17A)	109.5
O(2)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
O(2)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(16)-C(15)-C(14)	120.58(8)
С(16)-С(15)-Н(15)	119.7
С(14)-С(15)-Н(15)	119.7
C(15)-C(16)-C(11)	119.95(8)
C(15)-C(16)-H(16)	120.0
С(11)-С(16)-Н(16)	120.0
C(26)-C(21)-C(22)	118.13(8)
C(26)-C(21)-C(8)	120.03(7)
C(22)-C(21)-C(8)	121.83(8)
C(23)-C(22)-C(21)	121.14(8)
С(23)-С(22)-Н(22)	119.4
С(21)-С(22)-Н(22)	119.4
C(24)-C(23)-C(22)	119.08(8)
C(24)-C(23)-H(23)	120.5
С(22)-С(23)-Н(23)	120.5
C(23)-C(24)-C(25)	121.45(8)
C(23)-C(24)-Br(1)	118.52(6)
C(25)-C(24)-Br(1)	120.03(7)
C(24)-C(25)-C(26)	118.61(8)
С(24)-С(25)-Н(25)	120.7
C(26)-C(25)-H(25)	120.7
C(25)-C(26)-C(21)	121.58(8)
C(25)-C(26)-H(26)	119.2
C(21)-C(26)-H(26)	119.2

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	19(1)	12(1)	11(1)	0(1)	-1(1)	-4(1)
C(1)	14(1)	12(1)	12(1)	0(1)	1(1)	-3(1)
O(1)	23(1)	13(1)	15(1)	-3(1)	2(1)	-6(1)
C(2)	14(1)	11(1)	12(1)	0(1)	1(1)	-3(1)
C(5)	13(1)	19(1)	16(1)	3(1)	2(1)	-2(1)
C(6)	14(1)	23(1)	16(1)	3(1)	2(1)	-2(1)
C(7)	15(1)	27(1)	24(1)	7(1)	0(1)	-4(1)
C(8)	12(1)	12(1)	13(1)	0(1)	1(1)	-2(1)
N(2)	14(1)	20(1)	17(1)	0(1)	-1(1)	0(1)
C(3)	24(1)	13(1)	13(1)	-1(1)	1(1)	-6(1)
C(4)	22(1)	12(1)	14(1)	0(1)	-1(1)	-6(1)
C(11)	15(1)	14(1)	12(1)	1(1)	0(1)	-1(1)
C(12)	16(1)	19(1)	14(1)	1(1)	0(1)	-5(1)
C(13)	17(1)	20(1)	14(1)	1(1)	3(1)	-3(1)
C(14)	16(1)	15(1)	12(1)	1(1)	1(1)	2(1)
O(2)	25(1)	20(1)	11(1)	1(1)	1(1)	-1(1)
C(17)	25(1)	24(1)	15(1)	3(1)	7(1)	1(1)
C(15)	16(1)	18(1)	14(1)	1(1)	-2(1)	-2(1)
C(16)	15(1)	18(1)	14(1)	2(1)	-1(1)	-4(1)
C(21)	12(1)	11(1)	13(1)	0(1)	2(1)	-1(1)
C(22)	17(1)	12(1)	15(1)	1(1)	3(1)	2(1)
C(23)	17(1)	13(1)	15(1)	0(1)	4(1)	3(1)
C(24)	16(1)	14(1)	12(1)	0(1)	3(1)	1(1)
Br(1)	28(1)	18(1)	12(1)	0(1)	3(1)	4(1)
C(25)	22(1)	14(1)	14(1)	2(1)	3(1)	4(1)
C(26)	19(1)	12(1)	14(1)	0(1)	3(1)	2(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for D21009. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	X	у	Z	U(eq)
H(5A)	6873	9621	4354	19
H(5B)	6368	8452	3845	19
H(6)	5616	8357	5137	21
H(7A)	4123	7435	4034	26
H(7B)	3573	7380	4755	26
H(8)	9320	9471	4180	15
H(2N1)	11033(16)	8353(16)	4651(7)	25
H(2N2)	11345(16)	7879(17)	4060(8)	25
H(3A)	7099	5970	4045	20
H(3B)	8783	5774	4192	20
H(4A)	6610	5442	5051	19
H(4B)	8132	4663	5073	19
H(12)	6573	5214	6133	20
H(13)	6719	4844	7228	21
H(17A)	6805	5182	8275	32
H(17B)	8056	4852	8800	32
H(17C)	7923	3954	8160	32
H(15)	10262	7275	7384	19
H(16)	10139	7602	6291	19
H(22)	9970	6286	3326	17
H(23)	9646	6028	2229	18
H(25)	7863	9925	2100	19
H(26)	8171	10159	3199	18

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for D21009.

Table 6. Torsion angles [°] for D21009.

C(11)-N(1)-C(1)-O(1)	4.40(14)
C(4)-N(1)-C(1)-O(1)	174.10(9)
C(11)-N(1)-C(1)-C(2)	-173.11(8)
C(4)-N(1)-C(1)-C(2)	-3.42(10)
O(1)-C(1)-C(2)-C(3)	171.34(9)
N(1)-C(1)-C(2)-C(3)	-11.12(9)
O(1)-C(1)-C(2)-C(5)	-68.54(11)
N(1)-C(1)-C(2)-C(5)	109.00(8)
O(1)-C(1)-C(2)-C(8)	50.15(11)
N(1)-C(1)-C(2)-C(8)	-132.31(7)
C(1)-C(2)-C(5)-C(6)	-53.25(10)
C(3)-C(2)-C(5)-C(6)	60.20(10)
C(8)-C(2)-C(5)-C(6)	-170.78(8)
C(2)-C(5)-C(6)-C(7)	-116.39(11)
C(1)-C(2)-C(8)-N(2)	51.73(9)
C(3)-C(2)-C(8)-N(2)	-62.58(9)
C(5)-C(2)-C(8)-N(2)	168.70(7)
C(1)-C(2)-C(8)-C(21)	175.27(7)
C(3)-C(2)-C(8)-C(21)	60.95(10)
C(5)-C(2)-C(8)-C(21)	-67.77(9)
C(1)-C(2)-C(3)-C(4)	20.57(9)
C(5)-C(2)-C(3)-C(4)	-95.27(9)
C(8)-C(2)-C(3)-C(4)	137.77(8)
C(1)-N(1)-C(4)-C(3)	16.44(10)
C(11)-N(1)-C(4)-C(3)	-173.62(8)
C(2)-C(3)-C(4)-N(1)	-22.45(10)
C(1)-N(1)-C(11)-C(12)	137.17(9)
C(4)-N(1)-C(11)-C(12)	-31.65(13)
C(1)-N(1)-C(11)-C(16)	-43.40(13)
C(4)-N(1)-C(11)-C(16)	147.79(9)
C(16)-C(11)-C(12)-C(13)	0.39(14)
N(1)-C(11)-C(12)-C(13)	179.83(9)
C(11)-C(12)-C(13)-C(14)	0.55(15)
C(12)-C(13)-C(14)-O(2)	-179.15(9)

C(12)-C(13)-C(14)-C(15)	-0.80(14)
C(13)-C(14)-O(2)-C(17)	7.12(13)
C(15)-C(14)-O(2)-C(17)	-171.29(8)
O(2)-C(14)-C(15)-C(16)	178.62(8)
C(13)-C(14)-C(15)-C(16)	0.13(14)
C(14)-C(15)-C(16)-C(11)	0.81(14)
C(12)-C(11)-C(16)-C(15)	-1.06(14)
N(1)-C(11)-C(16)-C(15)	179.49(9)
N(2)-C(8)-C(21)-C(26)	-141.92(8)
C(2)-C(8)-C(21)-C(26)	95.89(9)
N(2)-C(8)-C(21)-C(22)	36.94(11)
C(2)-C(8)-C(21)-C(22)	-85.25(10)
C(26)-C(21)-C(22)-C(23)	-0.73(13)
C(8)-C(21)-C(22)-C(23)	-179.61(8)
C(21)-C(22)-C(23)-C(24)	0.71(13)
C(22)-C(23)-C(24)-C(25)	-0.30(14)
C(22)-C(23)-C(24)-Br(1)	178.74(7)
C(23)-C(24)-C(25)-C(26)	-0.06(14)
Br(1)-C(24)-C(25)-C(26)	-179.09(7)
C(24)-C(25)-C(26)-C(21)	0.03(14)
C(22)-C(21)-C(26)-C(25)	0.35(13)
C(8)-C(21)-C(26)-C(25)	179.25(8)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(8)-H(8)O(1)#1	1.00	2.38	3.1416(12)	132.1
N(2)-H(2N1)O(1)#1	0.892(13)	2.511(16)	3.0855(13)	122.6(13)
C(17)-H(17B)O(1)#2	0.98	2.62	3.2190(14)	119.7
C(23)-H(23)O(2)#3	0.95	2.49	3.3858(13)	157.1

Table 7. Hydrogen bonds for D21009 [Å and °].

#1 -x+2,-y+2,-z+1 #2 -x+3/2,y-1/2,-z+3/2 #3 -x+2,-y+1,-z+1

The crystal structure of **SI2** was registered in the Cambridge crystallographic data center and can be found as CCDC 2253013

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON II CPAD detector with Cu K_{α} radiation ($\lambda = 1.54178$ Å) from an I μ S micro-source for the structure of compound V20240. The structure was solved by direct methods using SHELXS and refined against F^2 on all data by fullmatrix least squares with SHELXL-2017 using established refinement techniques. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

Compound V20240 crystallizes in the monoclinic space group $P2_1/c$ with two molecules in the asymmetric unit. The crystal is not stable at lower temperatures and the data was collected at 200K.

Identification code	V20240	
Empirical formula	C27 H27 Br N2 O2	
Formula weight	491.41	
Temperature	200(2) K	
Wavelength	1.54178 Å	
Crystal system	Monoclinic	
Space group	P21/c	
Unit cell dimensions	a = 11.8500(11) Å	a = 90°.
	b = 49.858(4) Å	b=90.083(7)°.
	c = 8.0771(10) Å	$g = 90^{\circ}$.
Volume	4772.1(8) Å ³	
Z	8	
Density (calculated)	1.368 Mg/m ³	
Absorption coefficient	2.548 mm ⁻¹	
F(000)	2032	
Crystal size	0.300 x 0.250 x 0.050 mm ³	

Table 8. Crystal data and structure refinement for V20240.

Theta range for data collection	3.546 to 74.545°.
Index ranges	-14<=h<=14, -62<=k<=62, -9<=l<=10
Reflections collected	75046
Independent reflections	9652 [R(int) = 0.0709]
Completeness to theta = 67.679°	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7538 and 0.4919
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9652 / 0 / 583
Goodness-of-fit on F ²	1.149
Final R indices [I>2sigma(I)]	R1 = 0.0679, wR2 = 0.1654
R indices (all data)	R1 = 0.0732, $wR2 = 0.1686$
Extinction coefficient	n/a
Largest diff. peak and hole	1.211 and -0.757 e.Å ⁻³

	Х	у	Z	U(eq)
N(1)	3314(3)	1358(1)	2404(4)	33(1)
C(11)	3013(3)	1088(1)	1978(5)	31(1)
C(12)	2057(3)	1035(1)	1048(5)	34(1)
C(13)	1748(3)	771(1)	684(5)	34(1)
C(14)	2413(3)	562(1)	1246(5)	33(1)
O(2)	2215(2)	295(1)	957(4)	42(1)
C(17)	1255(5)	225(1)	23(8)	64(2)
C(15)	3362(3)	617(1)	2186(5)	38(1)
C(16)	3664(3)	877(1)	2558(5)	37(1)
C(1)	2622(3)	1522(1)	3282(5)	33(1)
O(1)	1619(2)	1488(1)	3541(4)	40(1)
C(2)	3329(3)	1753(1)	3990(5)	34(1)
C(5)	2701(4)	2018(1)	3839(6)	46(1)
C(6)	3497(3)	1678(1)	5860(5)	31(1)
C(21)	4009(3)	1902(1)	6899(5)	32(1)
C(22)	5144(3)	1968(1)	6879(5)	37(1)
C(23)	5558(4)	2170(1)	7894(6)	44(1)
C(24)	4857(4)	2306(1)	8962(5)	48(1)
C(25)	3728(4)	2240(1)	9013(6)	52(1)
C(26)	3306(4)	2041(1)	7989(6)	43(1)
N(2)	4233(3)	1440(1)	5976(4)	30(1)
C(7)	3812(3)	1236(1)	6687(4)	31(1)
C(31)	4457(3)	986(1)	6876(4)	30(1)
C(32)	5529(3)	955(1)	6229(5)	34(1)
C(33)	6128(3)	719(1)	6433(5)	37(1)
C(34)	5633(3)	511(1)	7316(5)	33(1)
Br(1)	6462(1)	190(1)	7684(1)	47(1)
C(35)	4570(4)	534(1)	7954(5)	39(1)
C(36)	3973(4)	771(1)	7725(5)	39(1)
C(3)	4401(3)	1742(1)	2950(5)	36(1)
C(4)	4490(3)	1455(1)	2267(5)	34(1)

Table 9. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for V20240. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(8)	4896(4)	1443(1)	485(5)	44(1)
N(201)	9412(3)	1360(1)	-2554(4)	35(1)
C(211)	9711(3)	1091(1)	-2970(5)	34(1)
C(212)	9050(3)	879(1)	-2431(5)	38(1)
C(213)	9334(3)	618(1)	-2792(5)	38(1)
C(214)	10298(3)	566(1)	-3726(5)	35(1)
O(202)	10490(3)	299(1)	-4048(4)	45(1)
C(217)	11414(5)	233(1)	-5088(7)	62(1)
C(215)	10976(3)	774(1)	-4267(5)	37(1)
C(216)	10669(3)	1039(1)	-3895(5)	36(1)
C(201)	10110(3)	1527(1)	-1683(5)	33(1)
O(201)	11119(2)	1493(1)	-1448(4)	39(1)
C(202)	9405(3)	1757(1)	-978(5)	34(1)
C(205)	10040(4)	2023(1)	-1132(6)	47(1)
C(206)	9246(3)	1683(1)	894(5)	32(1)
C(221)	8727(3)	1907(1)	1943(5)	35(1)
C(222)	7591(3)	1969(1)	1908(5)	39(1)
C(223)	7156(4)	2169(1)	2921(6)	46(1)
C(224)	7863(4)	2308(1)	3990(6)	50(1)
C(225)	8990(4)	2244(1)	4048(6)	53(1)
C(226)	9424(4)	2045(1)	3030(6)	46(1)
N(202)	8528(3)	1444(1)	1018(4)	32(1)
C(207)	8962(3)	1240(1)	1713(4)	32(1)
C(231)	8320(3)	989(1)	1888(4)	31(1)
C(232)	8844(4)	767(1)	2627(5)	42(1)
C(233)	8246(4)	528(1)	2840(6)	46(1)
C(234)	7158(4)	511(1)	2269(5)	38(1)
Br(2)	6311(1)	193(1)	2601(1)	61(1)
C(235)	6628(4)	726(1)	1500(5)	42(1)
C(236)	7225(3)	962(1)	1317(5)	39(1)
C(203)	8322(3)	1744(1)	-2017(5)	38(1)
C(204)	8239(3)	1458(1)	-2693(5)	36(1)
C(208)	7826(4)	1444(1)	-4468(5)	46(1)

N(1)-C(1)	1.358(5)
N(1)-C(11)	1.434(5)
N(1)-C(4)	1.479(5)
C(11)-C(12)	1.384(5)
C(11)-C(16)	1.384(5)
C(12)-C(13)	1.397(5)
C(12)-H(12)	0.9500
C(13)-C(14)	1.383(5)
С(13)-Н(13)	0.9500
C(14)-O(2)	1.375(4)
C(14)-C(15)	1.382(5)
O(2)-C(17)	1.406(5)
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(15)-C(16)	1.380(5)
С(15)-Н(15)	0.9500
C(16)-H(16)	0.9500
C(1)-O(1)	1.219(5)
C(1)-C(2)	1.535(5)
C(2)-C(5)	1.522(5)
C(2)-C(3)	1.525(6)
C(2)-C(6)	1.568(5)
C(5)-H(5A)	0.9800
C(5)-H(5B)	0.9800
C(5)-H(5C)	0.9800
C(6)-N(2)	1.476(4)
C(6)-C(21)	1.523(5)
C(6)-H(6)	1.0000
C(21)-C(22)	1.385(5)
C(21)-C(26)	1.395(6)
C(22)-C(23)	1.388(5)
С(22)-Н(22)	0.9500
C(23)-C(24)	1.378(7)

Table 10. Bond lengths [Å] and angles [°] for V20240.

C(23)-H(23)	0.9500
C(24)-C(25)	1.378(7)
C(24)-H(24)	0.9500
C(25)-C(26)	1.388(6)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
N(2)-C(7)	1.272(5)
C(7)-C(31)	1.470(5)
C(7)-H(7)	0.9500
C(31)-C(32)	1.383(5)
C(31)-C(36)	1.394(5)
C(32)-C(33)	1.385(5)
C(32)-H(32)	0.9500
C(33)-C(34)	1.388(5)
C(33)-H(33)	0.9500
C(34)-C(35)	1.367(6)
C(34)-Br(1)	1.901(4)
C(35)-C(36)	1.390(6)
C(35)-H(35)	0.9500
C(36)-H(36)	0.9500
C(3)-C(4)	1.538(5)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-C(8)	1.519(6)
C(4)-H(4)	1.0000
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
N(201)-C(201)	1.368(5)
N(201)-C(211)	1.425(5)
N(201)-C(204)	1.476(5)
C(211)-C(216)	1.384(5)
C(211)-C(212)	1.387(5)
C(212)-C(213)	1.377(6)
С(212)-Н(212)	0.9500
C(213)-C(214)	1.395(6)

C(213)-H(213)	0.9500
C(214)-O(202)	1.376(5)
C(214)-C(215)	1.385(6)
O(202)-C(217)	1.419(5)
С(217)-Н(21А)	0.9800
C(217)-H(21B)	0.9800
С(217)-Н(21С)	0.9800
C(215)-C(216)	1.403(5)
С(215)-Н(215)	0.9500
С(216)-Н(216)	0.9500
C(201)-O(201)	1.222(5)
C(201)-C(202)	1.531(5)
C(202)-C(205)	1.530(5)
C(202)-C(203)	1.534(5)
C(202)-C(206)	1.568(5)
C(205)-H(20A)	0.9800
C(205)-H(20B)	0.9800
С(205)-Н(20С)	0.9800
C(206)-N(202)	1.470(5)
C(206)-C(221)	1.528(5)
C(206)-H(206)	1.0000
C(221)-C(222)	1.382(6)
C(221)-C(226)	1.387(6)
C(222)-C(223)	1.389(6)
С(222)-Н(222)	0.9500
C(223)-C(224)	1.390(7)
С(223)-Н(223)	0.9500
C(224)-C(225)	1.374(7)
C(224)-H(224)	0.9500
C(225)-C(226)	1.389(7)
С(225)-Н(225)	0.9500
C(226)-H(226)	0.9500
N(202)-C(207)	1.270(5)
C(207)-C(231)	1.472(5)
С(207)-Н(207)	0.9500
C(231)-C(236)	1.383(5)

C(231)-C(232)	1.400(5)
C(232)-C(233)	1.396(6)
С(232)-Н(232)	0.9500
C(233)-C(234)	1.371(6)
С(233)-Н(233)	0.9500
C(234)-C(235)	1.385(6)
C(234)-Br(2)	1.897(4)
C(235)-C(236)	1.385(6)
С(235)-Н(235)	0.9500
С(236)-Н(236)	0.9500
C(203)-C(204)	1.533(5)
C(203)-H(20D)	0.9900
C(203)-H(20E)	0.9900
C(204)-C(208)	1.516(6)
C(204)-H(204)	1.0000
C(208)-H(20F)	0.9800
C(208)-H(20G)	0.9800
C(208)-H(20H)	0.9800
C(1)-N(1)-C(11)	122.7(3)
C(1)-N(1)-C(4)	114.4(3)
C(11)-N(1)-C(4)	121.4(3)
C(12)-C(11)-C(16)	119.6(3)
C(12)-C(11)-N(1)	120.7(3)
C(16)-C(11)-N(1)	119.6(3)
C(11)-C(12)-C(13)	120.5(3)
С(11)-С(12)-Н(12)	119.8
С(13)-С(12)-Н(12)	119.8
C(14)-C(13)-C(12)	119.5(3)
С(14)-С(13)-Н(13)	120.3
С(12)-С(13)-Н(13)	120.3
O(2)-C(14)-C(15)	115.0(3)
O(2)-C(14)-C(13)	125.3(3)
C(15)-C(14)-C(13)	119.6(3)
C(14)-O(2)-C(17)	117.9(3)
O(2)-C(17)-H(17A)	109.5

O(2)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
O(2)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
C(16)-C(15)-C(14)	121.0(3)
С(16)-С(15)-Н(15)	119.5
C(14)-C(15)-H(15)	119.5
C(15)-C(16)-C(11)	119.7(3)
C(15)-C(16)-H(16)	120.1
C(11)-C(16)-H(16)	120.1
O(1)-C(1)-N(1)	126.5(3)
O(1)-C(1)-C(2)	125.0(4)
N(1)-C(1)-C(2)	108.5(3)
C(5)-C(2)-C(3)	113.3(3)
C(5)-C(2)-C(1)	110.8(3)
C(3)-C(2)-C(1)	102.8(3)
C(5)-C(2)-C(6)	110.2(3)
C(3)-C(2)-C(6)	114.7(3)
C(1)-C(2)-C(6)	104.4(3)
C(2)-C(5)-H(5A)	109.5
C(2)-C(5)-H(5B)	109.5
H(5A)-C(5)-H(5B)	109.5
C(2)-C(5)-H(5C)	109.5
H(5A)-C(5)-H(5C)	109.5
H(5B)-C(5)-H(5C)	109.5
N(2)-C(6)-C(21)	108.6(3)
N(2)-C(6)-C(2)	109.1(3)
C(21)-C(6)-C(2)	114.0(3)
N(2)-C(6)-H(6)	108.3
C(21)-C(6)-H(6)	108.3
C(2)-C(6)-H(6)	108.3
C(22)-C(21)-C(26)	118.2(4)
C(22)-C(21)-C(6)	123.6(3)
C(26)-C(21)-C(6)	118.2(3)
C(21)-C(22)-C(23)	120.5(4)

С(21)-С(22)-Н(22)	119.8
C(23)-C(22)-H(22)	119.8
C(24)-C(23)-C(22)	121.0(4)
C(24)-C(23)-H(23)	119.5
C(22)-C(23)-H(23)	119.5
C(23)-C(24)-C(25)	119.2(4)
C(23)-C(24)-H(24)	120.4
C(25)-C(24)-H(24)	120.4
C(24)-C(25)-C(26)	120.1(4)
C(24)-C(25)-H(25)	119.9
C(26)-C(25)-H(25)	119.9
C(25)-C(26)-C(21)	121.0(4)
C(25)-C(26)-H(26)	119.5
C(21)-C(26)-H(26)	119.5
C(7)-N(2)-C(6)	116.2(3)
N(2)-C(7)-C(31)	121.5(3)
N(2)-C(7)-H(7)	119.2
C(31)-C(7)-H(7)	119.2
C(32)-C(31)-C(36)	118.6(3)
C(32)-C(31)-C(7)	122.1(3)
C(36)-C(31)-C(7)	119.2(3)
C(31)-C(32)-C(33)	121.4(3)
C(31)-C(32)-H(32)	119.3
С(33)-С(32)-Н(32)	119.3
C(32)-C(33)-C(34)	118.6(4)
С(32)-С(33)-Н(33)	120.7
С(34)-С(33)-Н(33)	120.7
C(35)-C(34)-C(33)	121.4(3)
C(35)-C(34)-Br(1)	119.2(3)
C(33)-C(34)-Br(1)	119.3(3)
C(34)-C(35)-C(36)	119.4(3)
C(34)-C(35)-H(35)	120.3
C(36)-C(35)-H(35)	120.3
C(35)-C(36)-C(31)	120.6(4)
С(35)-С(36)-Н(36)	119.7
C(31)-C(36)-H(36)	119.7

C(2)-C(3)-C(4)	106.8(3)
C(2)-C(3)-H(3A)	110.4
C(4)-C(3)-H(3A)	110.4
C(2)-C(3)-H(3B)	110.4
C(4)-C(3)-H(3B)	110.4
H(3A)-C(3)-H(3B)	108.6
N(1)-C(4)-C(8)	111.0(3)
N(1)-C(4)-C(3)	102.2(3)
C(8)-C(4)-C(3)	113.5(3)
N(1)-C(4)-H(4)	110.0
C(8)-C(4)-H(4)	110.0
C(3)-C(4)-H(4)	110.0
C(4)-C(8)-H(8A)	109.5
C(4)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(4)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(201)-N(201)-C(211)	122.8(3)
C(201)-N(201)-C(204)	114.0(3)
C(211)-N(201)-C(204)	121.8(3)
C(216)-C(211)-C(212)	119.3(4)
C(216)-C(211)-N(201)	120.6(3)
C(212)-C(211)-N(201)	120.1(3)
C(213)-C(212)-C(211)	121.2(4)
С(213)-С(212)-Н(212)	119.4
С(211)-С(212)-Н(212)	119.4
C(212)-C(213)-C(214)	119.4(4)
С(212)-С(213)-Н(213)	120.3
С(214)-С(213)-Н(213)	120.3
O(202)-C(214)-C(215)	124.8(4)
O(202)-C(214)-C(213)	114.8(3)
C(215)-C(214)-C(213)	120.5(4)
C(214)-O(202)-C(217)	117.6(3)
O(202)-C(217)-H(21A)	109.5
O(202)-C(217)-H(21B)	109.5

H(21A)-C(217)-H(21B)	109.5
O(202)-C(217)-H(21C)	109.5
H(21A)-C(217)-H(21C)	109.5
H(21B)-C(217)-H(21C)	109.5
C(214)-C(215)-C(216)	119.2(4)
С(214)-С(215)-Н(215)	120.4
С(216)-С(215)-Н(215)	120.4
C(211)-C(216)-C(215)	120.4(4)
С(211)-С(216)-Н(216)	119.8
С(215)-С(216)-Н(216)	119.8
O(201)-C(201)-N(201)	126.0(3)
O(201)-C(201)-C(202)	125.5(3)
N(201)-C(201)-C(202)	108.5(3)
C(205)-C(202)-C(201)	110.6(3)
C(205)-C(202)-C(203)	113.8(3)
C(201)-C(202)-C(203)	102.8(3)
C(205)-C(202)-C(206)	110.0(3)
C(201)-C(202)-C(206)	104.4(3)
C(203)-C(202)-C(206)	114.5(3)
С(202)-С(205)-Н(20А)	109.5
С(202)-С(205)-Н(20В)	109.5
H(20A)-C(205)-H(20B)	109.5
С(202)-С(205)-Н(20С)	109.5
H(20A)-C(205)-H(20C)	109.5
H(20B)-C(205)-H(20C)	109.5
N(202)-C(206)-C(221)	108.7(3)
N(202)-C(206)-C(202)	109.0(3)
C(221)-C(206)-C(202)	114.4(3)
N(202)-C(206)-H(206)	108.2
С(221)-С(206)-Н(206)	108.2
С(202)-С(206)-Н(206)	108.2
C(222)-C(221)-C(226)	118.7(4)
C(222)-C(221)-C(206)	123.0(3)
C(226)-C(221)-C(206)	118.2(4)
C(221)-C(222)-C(223)	120.8(4)
C(221)-C(222)-H(222)	119.6

С(223)-С(222)-Н(222)	119.6
C(222)-C(223)-C(224)	120.1(4)
С(222)-С(223)-Н(223)	120.0
C(224)-C(223)-H(223)	120.0
C(225)-C(224)-C(223)	119.3(4)
C(225)-C(224)-H(224)	120.3
C(223)-C(224)-H(224)	120.3
C(224)-C(225)-C(226)	120.5(4)
С(224)-С(225)-Н(225)	119.7
С(226)-С(225)-Н(225)	119.7
C(221)-C(226)-C(225)	120.6(4)
С(221)-С(226)-Н(226)	119.7
С(225)-С(226)-Н(226)	119.7
C(207)-N(202)-C(206)	116.6(3)
N(202)-C(207)-C(231)	121.0(3)
N(202)-C(207)-H(207)	119.5
С(231)-С(207)-Н(207)	119.5
C(236)-C(231)-C(232)	118.9(3)
C(236)-C(231)-C(207)	122.2(3)
C(232)-C(231)-C(207)	118.9(3)
C(233)-C(232)-C(231)	120.0(4)
С(233)-С(232)-Н(232)	120.0
С(231)-С(232)-Н(232)	120.0
C(234)-C(233)-C(232)	119.2(4)
С(234)-С(233)-Н(233)	120.4
С(232)-С(233)-Н(233)	120.4
C(233)-C(234)-C(235)	122.0(4)
C(233)-C(234)-Br(2)	120.1(3)
C(235)-C(234)-Br(2)	117.9(3)
C(234)-C(235)-C(236)	118.2(4)
С(234)-С(235)-Н(235)	120.9
С(236)-С(235)-Н(235)	120.9
C(231)-C(236)-C(235)	121.7(4)
С(231)-С(236)-Н(236)	119.2
С(235)-С(236)-Н(236)	119.2
C(204)-C(203)-C(202)	106.7(3)

C(204)-C(203)-H(20D)	110.4
C(202)-C(203)-H(20D)	110.4
С(204)-С(203)-Н(20Е)	110.4
С(202)-С(203)-Н(20Е)	110.4
H(20D)-C(203)-H(20E)	108.6
N(201)-C(204)-C(208)	111.1(3)
N(201)-C(204)-C(203)	102.8(3)
C(208)-C(204)-C(203)	113.6(3)
N(201)-C(204)-H(204)	109.7
C(208)-C(204)-H(204)	109.7
С(203)-С(204)-Н(204)	109.7
C(204)-C(208)-H(20F)	109.5
C(204)-C(208)-H(20G)	109.5
H(20F)-C(208)-H(20G)	109.5
С(204)-С(208)-Н(20Н)	109.5
H(20F)-C(208)-H(20H)	109.5
H(20G)-C(208)-H(20H)	109.5

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	28(2)	30(2)	41(2)	1(1)	-4(1)	-3(1)
C(11)	28(2)	32(2)	34(2)	2(1)	-2(1)	-2(1)
C(12)	31(2)	32(2)	39(2)	0(2)	-6(2)	3(1)
C(13)	28(2)	38(2)	37(2)	-1(2)	-7(2)	-5(2)
C(14)	35(2)	28(2)	36(2)	0(1)	0(2)	-4(1)
O(2)	48(2)	29(1)	50(2)	-3(1)	-13(1)	-4(1)
C(17)	65(3)	40(2)	87(4)	-14(2)	-34(3)	-7(2)
C(15)	39(2)	31(2)	45(2)	6(2)	-11(2)	5(2)
C(16)	30(2)	38(2)	42(2)	0(2)	-13(2)	-2(2)
C(1)	28(2)	31(2)	40(2)	6(2)	-7(2)	-1(1)
O(1)	28(1)	38(1)	53(2)	-1(1)	-5(1)	-1(1)
C(2)	30(2)	27(2)	45(2)	5(2)	-8(2)	-2(1)
C(5)	48(2)	32(2)	60(3)	6(2)	-15(2)	3(2)
C(6)	24(2)	28(2)	41(2)	1(1)	-2(1)	-2(1)
C(21)	31(2)	27(2)	37(2)	2(1)	0(2)	0(1)
C(22)	33(2)	34(2)	44(2)	-4(2)	-4(2)	1(2)
C(23)	39(2)	40(2)	51(2)	-4(2)	-10(2)	-7(2)
C(24)	64(3)	36(2)	44(2)	-4(2)	-7(2)	-6(2)
C(25)	65(3)	39(2)	53(3)	-9(2)	10(2)	5(2)
C(26)	41(2)	38(2)	51(2)	-3(2)	7(2)	2(2)
N(2)	29(2)	29(1)	33(2)	1(1)	-5(1)	0(1)
C(7)	31(2)	30(2)	31(2)	0(1)	-3(1)	-2(1)
C(31)	31(2)	30(2)	28(2)	2(1)	-2(1)	-1(1)
C(32)	32(2)	34(2)	38(2)	6(2)	1(2)	-2(1)
C(33)	30(2)	40(2)	40(2)	3(2)	5(2)	2(2)
C(34)	39(2)	28(2)	32(2)	0(1)	-6(2)	3(1)
Br(1)	49(1)	31(1)	61(1)	4(1)	-1(1)	7(1)
C(35)	47(2)	28(2)	42(2)	6(2)	10(2)	-4(2)
C(36)	40(2)	32(2)	47(2)	5(2)	12(2)	-1(2)
C(3)	39(2)	33(2)	36(2)	4(2)	-2(2)	-8(2)
C(4)	28(2)	36(2)	37(2)	6(2)	-5(2)	-4(1)

Table 11. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for V20240. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

C(8)	44(2)	49(2)	39(2)	2(2)	-4(2)	-4(2)
N(201)	28(2)	34(2)	42(2)	-1(1)	3(1)	4(1)
C(211)	31(2)	33(2)	37(2)	2(2)	-2(2)	2(1)
C(212)	32(2)	42(2)	41(2)	-2(2)	9(2)	1(2)
C(213)	36(2)	39(2)	40(2)	0(2)	2(2)	-5(2)
C(214)	35(2)	35(2)	35(2)	-1(2)	-2(2)	3(2)
O(202)	54(2)	33(1)	49(2)	-2(1)	10(1)	1(1)
C(217)	80(4)	40(2)	65(3)	-4(2)	24(3)	11(2)
C(215)	31(2)	39(2)	40(2)	-2(2)	3(2)	5(2)
C(216)	30(2)	36(2)	44(2)	2(2)	2(2)	-1(2)
C(201)	32(2)	32(2)	35(2)	6(1)	4(2)	2(1)
O(201)	27(1)	40(1)	51(2)	0(1)	3(1)	4(1)
C(202)	31(2)	28(2)	43(2)	3(2)	1(2)	3(1)
C(205)	47(3)	32(2)	63(3)	5(2)	11(2)	-1(2)
C(206)	24(2)	31(2)	41(2)	-1(1)	-2(1)	2(1)
C(221)	38(2)	29(2)	38(2)	1(1)	0(2)	-1(2)
C(222)	34(2)	36(2)	48(2)	-4(2)	2(2)	-1(2)
C(223)	46(2)	39(2)	52(2)	-2(2)	8(2)	8(2)
C(224)	71(3)	32(2)	47(2)	-5(2)	2(2)	5(2)
C(225)	69(3)	37(2)	54(3)	-8(2)	-15(2)	-5(2)
C(226)	45(2)	40(2)	54(3)	-2(2)	-9(2)	-4(2)
N(202)	30(2)	30(2)	36(2)	2(1)	-1(1)	0(1)
C(207)	31(2)	33(2)	31(2)	1(1)	0(1)	1(1)
C(231)	33(2)	32(2)	30(2)	2(1)	-2(1)	0(1)
C(232)	39(2)	42(2)	45(2)	10(2)	-13(2)	-3(2)
C(233)	53(3)	34(2)	51(2)	10(2)	-11(2)	-1(2)
C(234)	43(2)	36(2)	35(2)	-1(2)	2(2)	-11(2)
Br(2)	68(1)	43(1)	70(1)	5(1)	-3(1)	-21(1)
C(235)	35(2)	46(2)	45(2)	1(2)	-3(2)	-7(2)
C(236)	31(2)	39(2)	47(2)	7(2)	-2(2)	4(2)
C(203)	36(2)	37(2)	40(2)	5(2)	2(2)	8(2)
C(204)	29(2)	40(2)	38(2)	4(2)	3(2)	5(2)
C(208)	43(2)	54(3)	41(2)	1(2)	-4(2)	2(2)

H(12)16081180654 $H(13)$ 108673656 $H(17A)$ 576289588 $H(17B)$ 121830-93 $H(17C)$ 1304308-1075 $H(15)$ 38124732581 $H(16)$ 43169123210 $H(5A)$ 249920492677 $H(5B)$ 318621644231 $H(5C)$ 201420124510 $H(6)$ 274416316336 $H(22)$ 564318746164 $H(23)$ 633722157853 $H(24)$ 514824449656 $H(25)$ 323823329751 $H(26)$ 252519988029 $H(7)$ 306412457104 $H(32)$ 586110995632 $H(23)$ 68626005079	41 41 96 96 96 46 44
H(12)16081180654 $H(13)$ 108673656 $H(17A)$ 576289588 $H(17B)$ 121830-93 $H(17C)$ 1304308-1075 $H(15)$ 38124732581 $H(16)$ 43169123210 $H(5A)$ 249920492677 $H(5B)$ 318621644231 $H(5C)$ 201420124510 $H(6)$ 274416316336 $H(22)$ 564318746164 $H(23)$ 633722157853 $H(24)$ 514824449656 $H(25)$ 323823329751 $H(26)$ 252519988029 $H(7)$ 306412457104 $H(32)$ 586110995632 $H(23)$ 6862(00)5028	41 41 96 96 96 46 44
H(13)108673656 $H(17A)$ 576289588 $H(17B)$ 121830-93 $H(17C)$ 1304308-1075 $H(15)$ 38124732581 $H(16)$ 43169123210 $H(5A)$ 249920492677 $H(5B)$ 318621644231 $H(5C)$ 201420124510 $H(6)$ 274416316336 $H(22)$ 564318746164 $H(23)$ 633722157853 $H(24)$ 514824449656 $H(25)$ 323823329751 $H(26)$ 252519988029 $H(7)$ 306412457104 $H(32)$ 586110995632 $H(23)$ 69626005078	41 96 96 96 46 44
H(17A)576289588 $H(17B)$ 121830-93 $H(17C)$ 1304308-1075 $H(15)$ 38124732581 $H(16)$ 43169123210 $H(5A)$ 249920492677 $H(5B)$ 318621644231 $H(5C)$ 201420124510 $H(6)$ 274416316336 $H(22)$ 564318746164 $H(23)$ 633722157853 $H(24)$ 514824449656 $H(25)$ 323823329751 $H(26)$ 252519988029 $H(7)$ 306412457104 $H(32)$ 586110995632 $H(23)$ 6862 (00) 5078	96 96 96 46 44
H(17B)121830-93 $H(17C)$ 1304308-1075 $H(15)$ 38124732581 $H(16)$ 43169123210 $H(5A)$ 249920492677 $H(5B)$ 318621644231 $H(5C)$ 201420124510 $H(6)$ 274416316336 $H(22)$ 564318746164 $H(23)$ 633722157853 $H(24)$ 514824449656 $H(25)$ 323823329751 $H(26)$ 252519988029 $H(7)$ 306412457104 $H(32)$ 586110995632 $H(23)$ 6826005079	96 96 46 44
H(17C)1304308-1075 $H(15)$ 38124732581 $H(16)$ 43169123210 $H(5A)$ 249920492677 $H(5B)$ 318621644231 $H(5C)$ 201420124510 $H(6)$ 274416316336 $H(22)$ 564318746164 $H(23)$ 633722157853 $H(24)$ 514824449656 $H(25)$ 323823329751 $H(26)$ 252519988029 $H(7)$ 306412457104 $H(32)$ 586110995632 $H(23)$ 68626005078	96 46 44
H(15) 3812 473 2581 $H(16)$ 4316 912 3210 $H(5A)$ 2499 2049 2677 $H(5B)$ 3186 2164 4231 $H(5C)$ 2014 2012 4510 $H(6)$ 2744 1631 6336 $H(22)$ 5643 1874 6164 $H(23)$ 6337 2215 7853 $H(24)$ 5148 2444 9656 $H(25)$ 3238 2332 9751 $H(26)$ 2525 1998 8029 $H(7)$ 3064 1245 7104 $H(32)$ 5861 1099 5632 $H(23)$ 6862 600 5078	46 44
H(16)43169123210 $H(5A)$ 249920492677 $H(5B)$ 318621644231 $H(5C)$ 201420124510 $H(6)$ 274416316336 $H(22)$ 564318746164 $H(23)$ 633722157853 $H(24)$ 514824449656 $H(25)$ 323823329751 $H(26)$ 252519988029 $H(7)$ 306412457104 $H(32)$ 586110995632 $H(22)$ 586110995632	44
H(5A)249920492677H(5B)318621644231H(5C)201420124510H(6)274416316336H(22)564318746164H(23)633722157853H(24)514824449656H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632	(0
H(5B)318621644231H(5C)201420124510H(6)274416316336H(22)564318746164H(23)633722157853H(24)514824449656H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632	69
H(5C)201420124510H(6)274416316336H(22)564318746164H(23)633722157853H(24)514824449656H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632	69
H(6)274416316336H(22)564318746164H(23)633722157853H(24)514824449656H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632	69
H(22)564318746164H(23)633722157853H(24)514824449656H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632H(22)68626005079	37
H(23)633722157853H(24)514824449656H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632H(22)68626005079	44
H(24)514824449656H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632H(22)68626005079	52
H(25)323823329751H(26)252519988029H(7)306412457104H(32)586110995632H(22)68626005079	57
H(26)252519988029H(7)306412457104H(32)586110995632H(22)68626005079	63
H(7)306412457104H(32)586110995632H(22)68626005079	52
H(32) 5861 1099 5632	37
II(22) (Q(2) (00 5070	41
п(<i>ээ)</i> 0802 099 <i>э</i> 9/8	44
H(35) 4241 389 8549	47
H(36) 3229 787 8150	47
H(3A) 5069 1785 3638	43
H(3B) 4359 1873 2030	43
H(4) 4995 1345 2991	41
H(8A) 4855 1257 86	66
H(8B) 5678 1506 428	66
H(8C) 4416 1557 -207	66
H(212) 8390 915 -1801	46
H(213) 8876 474 -2408	46
H(21A) 11324 323 -6158	92

Table 12. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for V20240.

H(21B)	11438	38	-5258	92
H(21C)	12118	292	-4566	92
H(215)	11641	738	-4882	45
H(216)	11120	1183	-4281	44
H(20A)	10261	2051	-2288	71
H(20B)	10717	2018	-433	71
H(20C)	9550	2170	-774	71
H(206)	10003	1639	1367	38
H(222)	7102	1874	1182	47
H(223)	6373	2210	2883	55
H(224)	7570	2447	4675	60
H(225)	9475	2337	4790	64
H(226)	10206	2003	3078	55
H(207)	9711	1250	2127	38
H(232)	9607	779	2983	51
H(233)	8589	379	3374	56
H(235)	5874	710	1107	50
H(236)	6874	1111	786	47
H(20D)	7656	1786	-1323	45
H(20E)	8355	1875	-2938	45
H(204)	7736	1348	-1966	43
H(20F)	8316	1553	-5174	69
H(20G)	7051	1512	-4530	69
H(20H)	7842	1257	-4848	69

Table 13. Torsion angles [°] for V20240.

C(1)-N(1)-C(11)-C(12)	59.0(5)
C(4)-N(1)-C(11)-C(12)	-135.8(4)
C(1)-N(1)-C(11)-C(16)	-118.5(4)
C(4)-N(1)-C(11)-C(16)	46.7(5)
C(16)-C(11)-C(12)-C(13)	-0.3(6)
N(1)-C(11)-C(12)-C(13)	-177.8(4)
C(11)-C(12)-C(13)-C(14)	-0.7(6)
C(12)-C(13)-C(14)-O(2)	-179.0(4)
C(12)-C(13)-C(14)-C(15)	1.2(6)
C(15)-C(14)-O(2)-C(17)	179.3(4)
C(13)-C(14)-O(2)-C(17)	-0.4(6)
O(2)-C(14)-C(15)-C(16)	179.5(4)
C(13)-C(14)-C(15)-C(16)	-0.7(6)
C(14)-C(15)-C(16)-C(11)	-0.3(7)
C(12)-C(11)-C(16)-C(15)	0.8(6)
N(1)-C(11)-C(16)-C(15)	178.4(4)
C(11)-N(1)-C(1)-O(1)	-15.1(6)
C(4)-N(1)-C(1)-O(1)	178.7(4)
C(11)-N(1)-C(1)-C(2)	161.8(3)
C(4)-N(1)-C(1)-C(2)	-4.4(4)
O(1)-C(1)-C(2)-C(5)	-44.6(5)
N(1)-C(1)-C(2)-C(5)	138.5(4)
O(1)-C(1)-C(2)-C(3)	-166.0(4)
N(1)-C(1)-C(2)-C(3)	17.1(4)
O(1)-C(1)-C(2)-C(6)	74.0(4)
N(1)-C(1)-C(2)-C(6)	-102.9(3)
C(5)-C(2)-C(6)-N(2)	-172.7(3)
C(3)-C(2)-C(6)-N(2)	-43.4(4)
C(1)-C(2)-C(6)-N(2)	68.3(3)
C(5)-C(2)-C(6)-C(21)	-51.1(4)
C(3)-C(2)-C(6)-C(21)	78.2(4)
C(1)-C(2)-C(6)-C(21)	-170.1(3)
N(2)-C(6)-C(21)-C(22)	44.8(5)
C(2)-C(6)-C(21)-C(22)	-77.0(4)

N(2)-C(6)-C(21)-C(26)	-132.1(4)
C(2)-C(6)-C(21)-C(26)	106.0(4)
C(26)-C(21)-C(22)-C(23)	-1.3(6)
C(6)-C(21)-C(22)-C(23)	-178.2(4)
C(21)-C(22)-C(23)-C(24)	1.1(6)
C(22)-C(23)-C(24)-C(25)	-0.2(7)
C(23)-C(24)-C(25)-C(26)	-0.5(7)
C(24)-C(25)-C(26)-C(21)	0.3(7)
C(22)-C(21)-C(26)-C(25)	0.6(6)
C(6)-C(21)-C(26)-C(25)	177.7(4)
C(21)-C(6)-N(2)-C(7)	114.6(3)
C(2)-C(6)-N(2)-C(7)	-120.6(3)
C(6)-N(2)-C(7)-C(31)	179.7(3)
N(2)-C(7)-C(31)-C(32)	-3.1(5)
N(2)-C(7)-C(31)-C(36)	177.4(4)
C(36)-C(31)-C(32)-C(33)	-1.1(6)
C(7)-C(31)-C(32)-C(33)	179.4(4)
C(31)-C(32)-C(33)-C(34)	-0.4(6)
C(32)-C(33)-C(34)-C(35)	1.1(6)
C(32)-C(33)-C(34)-Br(1)	-177.6(3)
C(33)-C(34)-C(35)-C(36)	-0.4(6)
Br(1)-C(34)-C(35)-C(36)	178.3(3)
C(34)-C(35)-C(36)-C(31)	-1.0(6)
C(32)-C(31)-C(36)-C(35)	1.8(6)
C(7)-C(31)-C(36)-C(35)	-178.7(4)
C(5)-C(2)-C(3)-C(4)	-142.7(3)
C(1)-C(2)-C(3)-C(4)	-23.0(4)
C(6)-C(2)-C(3)-C(4)	89.6(4)
C(1)-N(1)-C(4)-C(8)	-131.4(3)
C(11)-N(1)-C(4)-C(8)	62.2(4)
C(1)-N(1)-C(4)-C(3)	-10.2(4)
C(11)-N(1)-C(4)-C(3)	-176.5(3)
C(2)-C(3)-C(4)-N(1)	20.5(4)
C(2)-C(3)-C(4)-C(8)	140.1(3)
C(201)-N(201)-C(211)-C(216)	-58.4(5)
C(204)-N(201)-C(211)-C(216)	135.8(4)

C(201)-N(201)-C(211)-C(212)	120.8(4)
C(204)-N(201)-C(211)-C(212)	-44.9(5)
C(216)-C(211)-C(212)-C(213)	0.4(6)
N(201)-C(211)-C(212)-C(213)	-178.8(4)
C(211)-C(212)-C(213)-C(214)	-0.5(6)
C(212)-C(213)-C(214)-O(202)	-178.6(4)
C(212)-C(213)-C(214)-C(215)	0.9(6)
C(215)-C(214)-O(202)-C(217)	-3.7(6)
C(213)-C(214)-O(202)-C(217)	175.8(4)
O(202)-C(214)-C(215)-C(216)	178.1(4)
C(213)-C(214)-C(215)-C(216)	-1.4(6)
C(212)-C(211)-C(216)-C(215)	-0.8(6)
N(201)-C(211)-C(216)-C(215)	178.4(4)
C(214)-C(215)-C(216)-C(211)	1.3(6)
C(211)-N(201)-C(201)-O(201)	15.6(6)
C(204)-N(201)-C(201)-O(201)	-177.6(4)
C(211)-N(201)-C(201)-C(202)	-161.7(3)
C(204)-N(201)-C(201)-C(202)	5.1(4)
O(201)-C(201)-C(202)-C(205)	43.5(5)
N(201)-C(201)-C(202)-C(205)	-139.1(3)
O(201)-C(201)-C(202)-C(203)	165.4(4)
N(201)-C(201)-C(202)-C(203)	-17.3(4)
O(201)-C(201)-C(202)-C(206)	-74.8(4)
N(201)-C(201)-C(202)-C(206)	102.6(3)
C(205)-C(202)-C(206)-N(202)	173.8(3)
C(201)-C(202)-C(206)-N(202)	-67.5(3)
C(203)-C(202)-C(206)-N(202)	44.1(4)
C(205)-C(202)-C(206)-C(221)	51.8(4)
C(201)-C(202)-C(206)-C(221)	170.5(3)
C(203)-C(202)-C(206)-C(221)	-77.8(4)
N(202)-C(206)-C(221)-C(222)	-45.7(5)
C(202)-C(206)-C(221)-C(222)	76.5(5)
N(202)-C(206)-C(221)-C(226)	131.4(4)
C(202)-C(206)-C(221)-C(226)	-106.4(4)
C(226)-C(221)-C(222)-C(223)	1.0(6)
C(206)-C(221)-C(222)-C(223)	178.1(4)

C(221)-C(222)-C(223)-C(224)	-0.2(7)
C(222)-C(223)-C(224)-C(225)	-0.9(7)
C(223)-C(224)-C(225)-C(226)	1.1(7)
C(222)-C(221)-C(226)-C(225)	-0.8(6)
C(206)-C(221)-C(226)-C(225)	-178.0(4)
C(224)-C(225)-C(226)-C(221)	-0.2(7)
C(221)-C(206)-N(202)-C(207)	-114.9(4)
C(202)-C(206)-N(202)-C(207)	119.7(3)
C(206)-N(202)-C(207)-C(231)	-179.4(3)
N(202)-C(207)-C(231)-C(236)	-0.3(6)
N(202)-C(207)-C(231)-C(232)	178.4(4)
C(236)-C(231)-C(232)-C(233)	-2.7(6)
C(207)-C(231)-C(232)-C(233)	178.6(4)
C(231)-C(232)-C(233)-C(234)	2.1(7)
C(232)-C(233)-C(234)-C(235)	-0.6(7)
C(232)-C(233)-C(234)-Br(2)	-178.1(3)
C(233)-C(234)-C(235)-C(236)	-0.3(7)
Br(2)-C(234)-C(235)-C(236)	177.3(3)
C(232)-C(231)-C(236)-C(235)	1.8(6)
C(207)-C(231)-C(236)-C(235)	-179.5(4)
C(234)-C(235)-C(236)-C(231)	-0.3(6)
C(205)-C(202)-C(203)-C(204)	142.4(3)
C(201)-C(202)-C(203)-C(204)	22.7(4)
C(206)-C(202)-C(203)-C(204)	-89.9(4)
C(201)-N(201)-C(204)-C(208)	131.3(4)
C(211)-N(201)-C(204)-C(208)	-61.8(5)
C(201)-N(201)-C(204)-C(203)	9.5(4)
C(211)-N(201)-C(204)-C(203)	176.4(3)
C(202)-C(203)-C(204)-N(201)	-20.0(4)
C(202)-C(203)-C(204)-C(208)	-140.1(3)

The crystal structure of **5** was registered in the Cambridge crystallographic data center and can be found as CCDC 2253012

X-Ray Structure Determination

Low-temperature diffraction data (ϕ -and ω -scans) were collected on a Bruker AXS KAPPA APEX II diffractometer coupled to an PHOTON 100 CMOS detector with graphite monochromated Mo K_{α} radiation ($\lambda = 0.71073$ Å) for the structure of compound D19141. The structure was solved by direct methods using SHELXS and refined against F^2 on all data by fullmatrix least squares with SHELXL-2017 using established refinement techniques. All nonhydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl groups).

Compound D19141 crystallizes in the monoclinic space group $P2_1/c$ with one molecule in the asymmetric unit.

Identification code	D19141		
Empirical formula	C26 H26 N2 O2		
Formula weight	398.49		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 19.640(5) Å	a = 90°.	
	b = 6.1440(16) Å	b=94.127(6)°.	
	c = 17.135(5) Å	$g = 90^{\circ}$.	
Volume	2062.3(9) Å ³		
Z	4		
Density (calculated)	1.283 Mg/m ³		
Absorption coefficient	0.081 mm ⁻¹		
F(000)	848		
Crystal size	0.300 x 0.300 x 0.200 mm ³		
Theta range for data collection	2.079 to 35.630°.		
Index ranges	-31<=h<=31, -10<=k<=9, -27<=l<=27		

Table 14. Crystal data and structure refinement for D19141.

Reflections collected	110686
Independent reflections	9463 [R(int) = 0.0390]
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7471 and 0.7041
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	9463 / 0 / 273
Goodness-of-fit on F ²	1.042
Final R indices [I>2sigma(I)]	R1 = 0.0400, wR2 = 0.1106
R indices (all data)	R1 = 0.0501, wR2 = 0.1175
Extinction coefficient	n/a
Largest diff. peak and hole	0.569 and -0.261 e.Å ⁻³

	X	у	Z	U(eq)
N(1)	8328(1)	3132(1)	6113(1)	12(1)
C(1)	8676(1)	3351(1)	6862(1)	12(1)
C(2)	9154(1)	1784(1)	7114(1)	15(1)
C(3)	9517(1)	1929(1)	7843(1)	15(1)
C(4)	9401(1)	3674(1)	8328(1)	13(1)
O(1)	9723(1)	3979(1)	9059(1)	17(1)
C(7)	10207(1)	2372(1)	9326(1)	18(1)
C(5)	8928(1)	5261(1)	8079(1)	16(1)
C(6)	8563(1)	5110(1)	7359(1)	15(1)
C(8)	7960(1)	4706(1)	5707(1)	11(1)
O(2)	7793(1)	6481(1)	5955(1)	16(1)
C(9)	7834(1)	3953(1)	4858(1)	11(1)
C(10)	7920(1)	1487(1)	4926(1)	14(1)
C(11)	8439(1)	1213(1)	5628(1)	14(1)
C(12)	8412(1)	4983(1)	4425(1)	16(1)
C(13)	7134(1)	4755(1)	4502(1)	11(1)
C(21)	7033(1)	4224(1)	3637(1)	12(1)
C(22)	6815(1)	2168(1)	3376(1)	15(1)
C(23)	6738(1)	1711(1)	2578(1)	18(1)
C(24)	6876(1)	3300(1)	2033(1)	18(1)
C(25)	7093(1)	5351(1)	2286(1)	18(1)
C(26)	7169(1)	5804(1)	3086(1)	15(1)
N(2)	6588(1)	3781(1)	4924(1)	13(1)
C(14)	6227(1)	5086(1)	5297(1)	14(1)
C(31)	5657(1)	4350(1)	5743(1)	15(1)
C(32)	5370(1)	5814(1)	6247(1)	21(1)
C(33)	4830(1)	5180(2)	6680(1)	26(1)
C(34)	4574(1)	3086(2)	6606(1)	27(1)
C(35)	4854(1)	1613(2)	6101(1)	25(1)
C(36)	5396(1)	2241(1)	5672(1)	19(1)

Table 15. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10^3) for D19141. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.
N(1)-C(8)	1.3677(9)
N(1)-C(1)	1.4158(9)
N(1)-C(11)	1.4682(9)
C(1)-C(2)	1.3926(9)
C(1)-C(6)	1.4031(10)
C(2)-C(3)	1.3955(10)
C(2)-H(2)	0.9500
C(3)-C(4)	1.3859(10)
C(3)-H(3)	0.9500
C(4)-O(1)	1.3737(9)
C(4)-C(5)	1.3934(10)
O(1)-C(7)	1.4236(9)
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(5)-C(6)	1.3859(10)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(8)-O(2)	1.2236(8)
C(8)-C(9)	1.5301(9)
C(9)-C(10)	1.5282(10)
C(9)-C(12)	1.5363(9)
C(9)-C(13)	1.5449(9)
C(10)-C(11)	1.5291(10)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-N(2)	1.4624(9)
C(13)-C(21)	1.5160(10)
C(13)-H(13)	1.0000

Table 16. Bond lengths [Å] and angles [°] for D19141.

C(21)-C(26)	1.3939(10)
C(21)-C(22)	1.3973(10)
C(22)-C(23)	1.3930(10)
С(22)-Н(22)	0.9500
C(23)-C(24)	1.3919(11)
C(23)-H(23)	0.9500
C(24)-C(25)	1.3901(11)
C(24)-H(24)	0.9500
C(25)-C(26)	1.3945(10)
C(25)-H(25)	0.9500
C(26)-H(26)	0.9500
N(2)-C(14)	1.2735(9)
C(14)-C(31)	1.4707(10)
C(14)-H(14)	0.9500
C(31)-C(32)	1.3943(10)
C(31)-C(36)	1.3955(12)
C(32)-C(33)	1.3922(12)
C(32)-H(32)	0.9500
C(33)-C(34)	1.3836(15)
C(33)-H(33)	0.9500
C(34)-C(35)	1.3917(13)
C(34)-H(34)	0.9500
C(35)-C(36)	1.3901(11)
C(35)-H(35)	0.9500
C(36)-H(36)	0.9500
C(8)-N(1)-C(1)	126.65(6)
C(8)-N(1)-C(11)	112.01(5)
C(1)-N(1)-C(11)	120.53(5)
C(2)-C(1)-C(6)	118.47(6)
C(2)-C(1)-N(1)	119.08(6)
C(6)-C(1)-N(1)	122.44(6)
C(1)-C(2)-C(3)	121.57(6)
C(1)-C(2)-H(2)	119.2
C(3)-C(2)-H(2)	119.2
C(4)-C(3)-C(2)	119.43(6)

C(4)-C(3)-H(3)	120.3
C(2)-C(3)-H(3)	120.3
O(1)-C(4)-C(3)	124.65(6)
O(1)-C(4)-C(5)	115.86(6)
C(3)-C(4)-C(5)	119.49(6)
C(4)-O(1)-C(7)	116.77(6)
O(1)-C(7)-H(7A)	109.5
O(1)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
O(1)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(6)-C(5)-C(4)	121.14(6)
C(6)-C(5)-H(5)	119.4
C(4)-C(5)-H(5)	119.4
C(5)-C(6)-C(1)	119.89(6)
C(5)-C(6)-H(6)	120.1
C(1)-C(6)-H(6)	120.1
O(2)-C(8)-N(1)	126.75(6)
O(2)-C(8)-C(9)	124.83(6)
N(1)-C(8)-C(9)	108.26(5)
C(10)-C(9)-C(8)	102.55(5)
C(10)-C(9)-C(12)	111.35(5)
C(8)-C(9)-C(12)	105.12(5)
C(10)-C(9)-C(13)	115.92(5)
C(8)-C(9)-C(13)	110.89(5)
C(12)-C(9)-C(13)	110.24(5)
C(9)-C(10)-C(11)	103.49(5)
C(9)-C(10)-H(10A)	111.1
С(11)-С(10)-Н(10А)	111.1
C(9)-C(10)-H(10B)	111.1
C(11)-C(10)-H(10B)	111.1
H(10A)-C(10)-H(10B)	109.0
N(1)-C(11)-C(10)	103.82(5)
N(1)-C(11)-H(11A)	111.0
C(10)-C(11)-H(11A)	111.0

N(1)-C(11)-H(11B)	111.0
C(10)-C(11)-H(11B)	111.0
H(11A)-C(11)-H(11B)	109.0
C(9)-C(12)-H(12A)	109.5
C(9)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
C(9)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
N(2)-C(13)-C(21)	110.25(5)
N(2)-C(13)-C(9)	109.73(5)
C(21)-C(13)-C(9)	111.51(5)
N(2)-C(13)-H(13)	108.4
С(21)-С(13)-Н(13)	108.4
C(9)-C(13)-H(13)	108.4
C(26)-C(21)-C(22)	118.76(6)
C(26)-C(21)-C(13)	119.69(6)
C(22)-C(21)-C(13)	121.54(6)
C(23)-C(22)-C(21)	120.38(6)
С(23)-С(22)-Н(22)	119.8
C(21)-C(22)-H(22)	119.8
C(24)-C(23)-C(22)	120.35(7)
C(24)-C(23)-H(23)	119.8
C(22)-C(23)-H(23)	119.8
C(25)-C(24)-C(23)	119.72(7)
C(25)-C(24)-H(24)	120.1
C(23)-C(24)-H(24)	120.1
C(24)-C(25)-C(26)	119.77(7)
C(24)-C(25)-H(25)	120.1
C(26)-C(25)-H(25)	120.1
C(21)-C(26)-C(25)	121.01(7)
C(21)-C(26)-H(26)	119.5
C(25)-C(26)-H(26)	119.5
C(14)-N(2)-C(13)	116.44(6)
N(2)-C(14)-C(31)	122.70(7)
N(2)-C(14)-H(14)	118.6

C(31)-C(14)-H(14)	118.6
C(32)-C(31)-C(36)	119.38(7)
C(32)-C(31)-C(14)	118.70(7)
C(36)-C(31)-C(14)	121.92(6)
C(33)-C(32)-C(31)	120.41(8)
C(33)-C(32)-H(32)	119.8
C(31)-C(32)-H(32)	119.8
C(34)-C(33)-C(32)	119.82(8)
C(34)-C(33)-H(33)	120.1
С(32)-С(33)-Н(33)	120.1
C(33)-C(34)-C(35)	120.28(8)
C(33)-C(34)-H(34)	119.9
C(35)-C(34)-H(34)	119.9
C(36)-C(35)-C(34)	119.98(9)
C(36)-C(35)-H(35)	120.0
C(34)-C(35)-H(35)	120.0
C(35)-C(36)-C(31)	120.13(7)
C(35)-C(36)-H(36)	119.9
C(31)-C(36)-H(36)	119.9

Symmetry transformations used to generate equivalent atoms:

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
N(1)	14(1)	10(1)	11(1)	-1(1)	0(1)	2(1)
C(1)	12(1)	12(1)	11(1)	0(1)	1(1)	1(1)
C(2)	18(1)	14(1)	14(1)	-2(1)	-1(1)	4(1)
C(3)	17(1)	16(1)	14(1)	0(1)	-1(1)	4(1)
C(4)	14(1)	16(1)	10(1)	1(1)	1(1)	0(1)
O(1)	20(1)	21(1)	11(1)	0(1)	-2(1)	4(1)
C(7)	18(1)	19(1)	15(1)	5(1)	-2(1)	-1(1)
C(5)	18(1)	18(1)	11(1)	-2(1)	1(1)	5(1)
C(6)	16(1)	16(1)	12(1)	-2(1)	1(1)	5(1)
C(8)	12(1)	10(1)	11(1)	0(1)	1(1)	0(1)
O(2)	22(1)	11(1)	14(1)	-2(1)	-1(1)	4(1)
C(9)	12(1)	11(1)	10(1)	-1(1)	1(1)	0(1)
C(10)	16(1)	11(1)	14(1)	-3(1)	-2(1)	2(1)
C(11)	16(1)	10(1)	15(1)	-2(1)	-1(1)	3(1)
C(12)	14(1)	19(1)	15(1)	1(1)	3(1)	-2(1)
C(13)	13(1)	11(1)	11(1)	0(1)	1(1)	0(1)
C(21)	12(1)	13(1)	11(1)	0(1)	1(1)	0(1)
C(22)	16(1)	14(1)	14(1)	-1(1)	0(1)	-1(1)
C(23)	19(1)	19(1)	16(1)	-4(1)	-1(1)	-2(1)
C(24)	16(1)	26(1)	12(1)	-3(1)	0(1)	-1(1)
C(25)	18(1)	24(1)	12(1)	3(1)	1(1)	-3(1)
C(26)	17(1)	16(1)	13(1)	2(1)	1(1)	-2(1)
N(2)	12(1)	15(1)	12(1)	1(1)	2(1)	1(1)
C(14)	14(1)	16(1)	13(1)	1(1)	1(1)	3(1)
C(31)	13(1)	21(1)	12(1)	2(1)	1(1)	5(1)
C(32)	18(1)	28(1)	18(1)	-2(1)	3(1)	8(1)
C(33)	18(1)	43(1)	18(1)	-1(1)	5(1)	11(1)
C(34)	16(1)	44(1)	22(1)	10(1)	6(1)	7(1)
C(35)	16(1)	30(1)	28(1)	9(1)	6(1)	2(1)
C(36)	16(1)	22(1)	20(1)	3(1)	4(1)	2(1)

Table 17. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for D19141. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	х	у	Z	U(eq)
H(2)	9236	588	6782	19
H(3)	9841	842	8004	19
H(7A)	9986	942	9321	26
H(7B)	10386	2723	9860	26
H(7C)	10584	2344	8980	26
H(5)	8854	6468	8409	19
H(6)	8237	6196	7201	18
H(10A)	8095	869	4446	17
H(10B)	7482	773	5022	17
H(11A)	8355	-146	5916	17
H(11B)	8911	1187	5460	17
H(12A)	8854	4512	4670	24
H(12B)	8379	6573	4452	24
H(12C)	8372	4522	3876	24
H(13)	7113	6372	4565	14
H(22)	6719	1074	3745	18
H(23)	6590	307	2406	21
H(24)	6822	2984	1489	22
H(25)	7189	6441	1917	22
H(26)	7315	7209	3256	18
H(14)	6329	6596	5287	17
H(32)	5544	7254	6296	25
H(33)	4638	6181	7024	31
H(34)	4206	2651	6901	32
H(35)	4676	179	6050	29
H(36)	5589	1232	5330	23

Table 18. Hydrogen coordinates ($x\;10^4$) and isotropic displacement parameters (Å $^2x\;10\;^3$) for D19141.

Table 19. Torsion angles [°] for D19141.

C(8)-N(1)-C(1)-C(2)	-165.03(6)
C(11)-N(1)-C(1)-C(2)	3.74(9)
C(8)-N(1)-C(1)-C(6)	14.04(10)
C(11)-N(1)-C(1)-C(6)	-177.19(6)
C(6)-C(1)-C(2)-C(3)	0.16(11)
N(1)-C(1)-C(2)-C(3)	179.27(6)
C(1)-C(2)-C(3)-C(4)	-0.12(11)
C(2)-C(3)-C(4)-O(1)	179.43(7)
C(2)-C(3)-C(4)-C(5)	-0.44(10)
C(3)-C(4)-O(1)-C(7)	-0.06(10)
C(5)-C(4)-O(1)-C(7)	179.81(6)
O(1)-C(4)-C(5)-C(6)	-178.90(6)
C(3)-C(4)-C(5)-C(6)	0.98(11)
C(4)-C(5)-C(6)-C(1)	-0.94(11)
C(2)-C(1)-C(6)-C(5)	0.37(10)
N(1)-C(1)-C(6)-C(5)	-178.71(6)
C(1)-N(1)-C(8)-O(2)	-9.85(11)
C(11)-N(1)-C(8)-O(2)	-179.43(6)
C(1)-N(1)-C(8)-C(9)	165.62(6)
C(11)-N(1)-C(8)-C(9)	-3.95(7)
O(2)-C(8)-C(9)-C(10)	-162.44(6)
N(1)-C(8)-C(9)-C(10)	21.98(7)
O(2)-C(8)-C(9)-C(12)	81.04(8)
N(1)-C(8)-C(9)-C(12)	-94.54(6)
O(2)-C(8)-C(9)-C(13)	-38.09(9)
N(1)-C(8)-C(9)-C(13)	146.33(5)
C(8)-C(9)-C(10)-C(11)	-30.46(6)
C(12)-C(9)-C(10)-C(11)	81.50(7)
C(13)-C(9)-C(10)-C(11)	-151.42(5)
C(8)-N(1)-C(11)-C(10)	-15.83(7)
C(1)-N(1)-C(11)-C(10)	173.87(6)
C(9)-C(10)-C(11)-N(1)	28.62(7)
C(10)-C(9)-C(13)-N(2)	52.92(7)
C(8)-C(9)-C(13)-N(2)	-63.45(7)

C(12)-C(9)-C(13)-N(2)	-179.44(5)
C(10)-C(9)-C(13)-C(21)	-69.53(7)
C(8)-C(9)-C(13)-C(21)	174.11(5)
C(12)-C(9)-C(13)-C(21)	58.11(7)
N(2)-C(13)-C(21)-C(26)	140.78(6)
C(9)-C(13)-C(21)-C(26)	-97.07(7)
N(2)-C(13)-C(21)-C(22)	-40.19(8)
C(9)-C(13)-C(21)-C(22)	81.96(8)
C(26)-C(21)-C(22)-C(23)	0.15(10)
C(13)-C(21)-C(22)-C(23)	-178.88(6)
C(21)-C(22)-C(23)-C(24)	-0.10(11)
C(22)-C(23)-C(24)-C(25)	0.13(11)
C(23)-C(24)-C(25)-C(26)	-0.21(11)
C(22)-C(21)-C(26)-C(25)	-0.23(10)
C(13)-C(21)-C(26)-C(25)	178.82(6)
C(24)-C(25)-C(26)-C(21)	0.26(11)
C(21)-C(13)-N(2)-C(14)	-121.09(6)
C(9)-C(13)-N(2)-C(14)	115.72(6)
C(13)-N(2)-C(14)-C(31)	179.47(6)
N(2)-C(14)-C(31)-C(32)	168.35(7)
N(2)-C(14)-C(31)-C(36)	-11.84(10)
C(36)-C(31)-C(32)-C(33)	0.23(11)
C(14)-C(31)-C(32)-C(33)	-179.96(7)
C(31)-C(32)-C(33)-C(34)	-0.27(12)
C(32)-C(33)-C(34)-C(35)	-0.03(12)
C(33)-C(34)-C(35)-C(36)	0.36(12)
C(34)-C(35)-C(36)-C(31)	-0.40(12)
C(32)-C(31)-C(36)-C(35)	0.11(11)
C(14)-C(31)-C(36)-C(35)	-179.70(7)

Symmetry transformations used to generate equivalent atoms:

References:

- 1) Sheldrick, G. M. Acta Cryst. 1990, A46, 467-473.
- 2) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
- 3) Müller, P. Crystallography Reviews 2009, 15, 57-83.

S118

Infrared spectrum (Thin Film, NaCl) of compound 2c.

Infrared spectrum (Thin Film, NaCl) of compound 2d.

Infrared spectrum (Thin Film, NaCl) of compound 2h. (SI10 impurity)

Infrared spectrum (Thin Film, NaCl) of compound 2j.

Infrared spectrum (Thin Film, NaCl) of compound 4a.

242

24.7 7.45 10

¹³C NMR (100 MHz, CDCl₃) of compound **4b**.

60

40

200

180

160

S145

Uninili

¹³C NMR (100 MHz, CDCl₃) of compound **4c**.

 $^{19}\mathrm{F}$ NMR (282 MHz, CDCl_3) of compound 41.

¹⁹F NMR (282 MHz, CDCl₃) of compound **4m**.

 $^{19}\mathrm{F}$ NMR (282 MHz, CDCl₃) of compound **4n**.

¹⁹F NMR (282 MHz, CDCl₃) of compound 40.

Infrared spectrum (Thin Film, NaCl) of compound 4p.

¹⁹F NMR (282 MHz, CDCl₃) of compound 4q.

Infrared spectrum (Thin Film, NaCl) of compound 4s.

¹³C NMR (100 MHz, CDCl₃) of compound 4u.

¹³C NMR (100 MHz, CDCl₃) of compound 4v.

¹³C NMR (100 MHz, CDCl₃) of compound **4z**.

¹³C NMR (100 MHz, CDCl₃) of compound **12**.

Infrared spectrum (Thin Film, NaCl) of compound 13.

Infrared spectrum (Thin Film, NaCl) of compound 15b.

Infrared spectrum (Thin Film, NaCl) of compound 15c.

Infrared spectrum (Thin Film, NaCl) of compound 16a.

NOESY (400 MHz, CDCl₃) of compound 16a.

¹³C NMR (100 MHz, CDCl₃) of compound **16b.**

S222

NOESY (400 MHz, CDCl₃) of compound 16b.

Infrared spectrum (Thin Film, NaCl) of compound *syn*-17.

S227

Infrared spectrum (Thin Film, NaCl) of compound anti-17 and 18.

98.7

IS'Z

τς.ς ζζ.ς ζζ.ζ

۲.53

۲.73

£7.7

47.7

57.7 97.7

97.8-47.8F02.2

=_|⊢00.1

∞

ი

10

S233

1.25 J.26 1.27

7.57

Infrared spectrum (Thin Film, NaCl) of compound SI5.

