Boryl Radical-Mediated Halogen-Atom Transfer (XAT) Enables the Sonogashira-Like Alkynylation of Alkyl Halides

Javier Corpas,^a Maialen Alonso, ^a and Daniele Leonori*^a

^a Institute of Organic Chemistry, RWTH Aachen University, Aachen 52056, Germany daniele.leonori@rwth-aachen.de

Table of Contents

1.	General experimental details	3
2.	Synthesis of starting materials	4
3.	Reaction optimization	7
4.	General procedures for alknylation of alkyl halides	10
5.	Pictures of reaction set-up	12
6.	Spectra of lamps	13
7.	Starting materials	14
8.	Substrate scope	15
9.	Copies of NMR spectra for new compounds	31
10.	References	75

1. General experimental details

All chemicals were used directly without purification. All air and moisture sensitive reactions were carried out under nitrogen atmosphere using standard Schlenk manifold technique. All solvents were bought from Acros as 99.8% purity. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were acquired at various field strengths as indicated and were referenced to CHCl₃ (7.26 and 77.16 ppm for ¹H and ¹³C respectively). ¹H NMR coupling constants are reported in Hertz and refer to apparent multiplicities and not true coupling constants. Data are reported as follows: chemical shift, integration, multiplicity (s = singlet, bs = broad singlet, d = doublet, bd = broad doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = doubletof doublets, etc.). ¹⁹F NMR spectra were recorded and reported unreferenced. High-resolution mass spectra were obtained using a JEOL JMS-700 spectrometer or a Fissions VG Trio 2000 quadrupole mass spectrometer. Spectra were obtained using electron impact ionization (EI), positive electrospray (ESI) or atmospheric-pressure chemical ionization (APCI). Analytical TLC: aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60 F254. Compounds were visualized by exposure to UV-light or by dipping the plates in permanganate (KMnO₄) stain followed by heating. Flash column chromatography was performed using Merck Silica Gel 60 (40–63 µm). All mixed solvent eluents are reported as v/v solutions. The following alkyl halides were prepared according to reported procedures:¹ 1aa, 1ab, 1ac,

1ad, **1ae**, **1ag**, and **1ah**. Alkynyl sulfones were prepared following a reported procedure² and some of them are known compounds: **2a**,² **2b**,² **2c**,³ **2d**,³ **2e**,⁴ **2f**,⁴ **2h**,⁵ **2j**,² **2k**,³ **2l**,⁶ and **2n**.³

2. Synthesis of starting materials

General procedure for the synthesis of alkynyl sulfones – GP1.²

$$Ar \longrightarrow \begin{bmatrix} I_2 (50 \text{ mol}\%) \\ TBHP (3.0 \text{ equiv}) \\ \hline NaSO_2p\text{-Tol} (2.0 \text{ equiv}) \\ \hline THE, 0 \ ^{\circ}C \text{ to rt. 16 h} \end{bmatrix} Ar \longrightarrow SO_2p\text{-Tol}$$

In a 100 mL round-bottom flask provided with a stir bar the terminal alkyne (5.6 mmol, 1.0 equiv), sodium *p*-toluenesulfinate (2 g, 11.2 mmol, 2.0 equiv) and I₂ (710 mg, 2.8 mmol, 0.5 equiv) were dissolved in THF (20 mL) under air. The solution was cooled down to 0 °C using an ice bath, followed by the dropwise addition of TBHP (2.4 mL, 16.8 mmol, 3.0 equiv., 70% aq. sol. in H₂O). The solution was allowed to stir for 16 h ar room temperature and then it was treated with sat. aq. Na₂S₂O₃ (50 mL) and stirred for 15 min. The layers were separated and the aqueous phase was extracted with EtOAc (2 x 50 mL). The layers were separated and the organic layer was washed with sat. aq. NaCl (3 x 50 mL). The organic layer was dried (MgSO₄), filtered and evaporated. The crude was purified via column chromatography on silica gel eluting with *n*-pentane–EtOAc.

(4-(Tosylethynyl)phenyl)methanol (2g)

Following **GP1** using (4-ethynylphenyl)methanol (740 mg, 5.6 mmol, 1.0 equiv) gave the titled compound as a solid (74%). $R_f 0.32$ [*n*-pentane:EtOAc (3:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.95 (2H, d, J = 8.4 Hz), 7.55–7.48 (2H, m), 7.39 (2H, d, J = 8.0 Hz), 7.37 (2H, d, J = 8.0 Hz), 4.73 (2H, s), 2.47 (3H, s). ¹³C NMR (151 MHz, CDCl₃) δ 145.5, 144.8, 139.0, 133.1, 130.1, 127.7, 126.9, 117.1, 93.1, 85.7, 64.6, 21.9. HRMS (EI) calculated C₁₆H₁₄O₃SK [M+K⁺] 325.02952 found 325.02917.

3-(Tosylethynyl)aniline (2l)

Following **GP1** using 3-ethynylaniline (656 mg, 5.6 mmol, 1.0 equiv) gave the titled compound as an oil (51%). $R_f 0.35$ [*n*-pentane: EtOAc (4:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (2H, d, J = 8.0 Hz), 7.37 (2H, d, J = 8.0 Hz), 7.10 (1H, t, J = 7.8 Hz), 6.86 (1H, d, J = 7.6 Hz), 6.79–6.61 (2H, m), 3.80 (2H, s), 2.45 (3H, s). ¹³C NMR (101 MHz, CDCl₃, one quaternary carbon

does not appear due to long relaxation time) δ 146.8, 145.4, 138.9, 130.0, 129.6, 127.4, 122.6, 118.3, 118.1, 93.9, 84.8, 21.7. HRMS (EI) calculated for C₁₅H₁₃NO₂S [M⁺] 271.0660 found 271.0665.

9-(Tosylethynyl)phenanthrene (2m)

Following **GP1** using 9-ethynylphenanthrene (1.13 g, 5.6 mmol, 1.0 equiv) gave the titled compound as a solid (62%). $R_f 0.43$ [*n*-pentane: EtOAc (6:1)]. ¹H NMR (600 MHz, CDCl₃) δ 8.67 (1H, d, J = 8.2 Hz), 8.64 (1H, d, J = 8.3Hz), 8.17 (1H, dd, J = 7.9, 1.4 Hz), 8.12 (1H, s), 8.08 – 8.03 (2H, m), 7.85 (1H, dd, J = 8.1, 1.4 Hz), 7.76–7.70 (2H, m), 7.67 (1H, ddd, J = 8.2, 7.0, 1.3 Hz), 7.63 (1H, ddd, J = 8.0, 6.9, 1.1 Hz), 7.43 (2H, d, J = 8.1 Hz), 2.49 (3H, s). ¹³C NMR (151 MHz, CDCl₃) δ 145.6, 139.3, 135.9, 131.6, 130.4, 130.2, 130.0, 129.4, 127.9, 127.9, 127.7, 127.5, 126.4, 123.1, 122.9, 114.6, 92.3, 89.8, 21.9. HRMS (EI) calculated C₂₃H₁₆O₂S [M⁺] 356.0871 found 356.0871.

Synthesis of the synthesis of (8R,9S,13S,14S,17S)-3-methoxy-13-methyl-17-(tosylethynyl)-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-ol (20).

Mestranol sulfide **S1** was prepared according to a known procedure.⁷ In a 25 mL round-bottom flask provided with a stir bar, the sulfide **S1** (606 mg, 1.4 mmol, 1.0 equiv) was dissolved in EtOH (0.16 M). To this solution, ammonium heptamolybdate (173 mg, 0.14 mmol, 10 mol%) and H₂O₂ (43 μ L, 1.4 mmol, 1.0 equiv, 30% in H₂O) were added at 0 °C and the reaction was stirred at room temperature. After 16 h the solvent was evaporated under vacuo and the crude was dissolved in H₂O (20 ml) and EtOAc (15 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (15 ml x 2). The organic layer was dried (MgSO₄), filtered and evaporated. The crude product was purified by column chromatography to obtain the desired sulfone **20** (95%) as a solid. R_f 0.45 [*n*-pentane: EtOAc (4:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (2H, d, *J* = 8.0 Hz), 7.37 (2H, d, *J* = 8.0 Hz), 7.16 (1H, d, *J* = 8.6 Hz), 6.72 (1H, SI-5

dd, J = 8.6, 2.8 Hz), 6.63 (1H, d, J = 2.8 Hz), 3.78 (3H, s), 2.93–2.71 (2H, m), 2.42 (3H, s), 2.37–2.20 (2H, m), 2.10–1.89 (3H, m), 1.92–1.72 (1H, m), 1.68 (1H, d, J = 12.3 Hz), 1.53–1.22 (6H, m), 0.85 (3H, s). ¹³C NMR (101 MHz, CDCl₃) δ 157.7, 138.0, 132.2, 130.1, 127.5, 126.4, 114.0, 111.7, 98.3, 80.2, 77.4, 55.4, 50.2, 48.7, 43.4, 39.4, 38.5, 33.0, 29.9, 27.3, 26.3, 23.1, 21.9, 12.8. HRMS (APCI) calculated for C₂₈H₃₃O₄S [M+H⁺] 465.2100 found 465.2099.

3. Reaction optimization

General procedure for optimization reactions: An oven-dried 8 mL microwave provided with a stir bar was charged with the corresponding alkyl halide (1.0–2.0 equiv), **2a** (26 mg, 0.1 mmol, 1.0 equiv), the base (0.2 mmol, 2.0 equiv), the ligated amine-borane (0.15 mmol, 1.5 equiv) and anthraquinone (2 mg, 0.01 mmol, 10 mol%). The vial was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). Then, degassed solvent (1.0 mL), was added. The vial was sealed with parafilm and the reaction was placed approximately 4 cm from purple LEDs (390 nm Kessil lamp). The LEDs were switched on and the mixture was stirred under irradiation at the specified temperature for 16 h. The tube was opened and the aqueous layer was extracted with EtOAc (2 × 5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2 × 5 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. A solution of trichloroethylene (0.1 mL, 1.0 M in CDCl₃) was added, the crude was solubilised in CDCl₃ (0.6 mL) and the mixture analysed by ¹H NMR spectroscopy to obtain the reaction NMR yield.

$Boc^{-N} \overset{I}{1a} + \begin{array}{c} SO_{2}p\text{-Tol} \\ Ph \\ Ph \\ 2a \end{array} \xrightarrow{\begin{array}{c} \text{SO}_{2}p\text{-Tol} \\ \text{Solvent (0.1M), r.t., 16 h} \\ \lambda = 390 \text{ nm} \end{array}} \begin{array}{c} \text{Boc}^{-N} \overset{I}{\text{Boc}} \overset{Ph}{\text{Boc}} Ph$					
Entry	(n equiv)	Solvent	1a (n equiv)	Vield 3 (%) ^a	
1 Entry				40	
1		EIOAC	1.2	40	
2	Me ₂ HN–BH ₃	EtOAc	1.2	55	
3 ^a	Me ₃ N–BH ₃	EtOAc	1.2	86	
4	Et ₂ PhN–BH ₃	EtOAc	1.2	12	
5	pyr–BH ₃	EtOAc	1.2	25	
6	Ph ₃ P–BH ₃	EtOAc	1.2	39	
7	Me ₃ N–BH ₃	CH ₂ Cl ₂	1.2	_	
8	Me ₃ N–BH ₃	DCE	1.2	_	
9	Me ₃ N–BH ₃	THF	1.2	57	
10	Me ₃ N–BH ₃	1,4-dioxane	1.2	62	
11	Me ₃ N–BH ₃	Toluene	1.2	50	
12	Me ₃ N–BH ₃	PhCF ₃	1.2	41	
13	Me ₃ N–BH ₃	CH ₃ CN	1.2	69	
14	Me ₃ N–BH ₃	MeOH	1.2	35	
15	Me ₃ N–BH ₃	EtOAc	1.0	70	
16	Me ₃ N–BH ₃	EtOAc	2.0	88	
17	_	EtOAc	1.2	_	
18 ^b	Me ₃ N–BH ₃	EtOAc	1.2	_	
19 ^c	Me ₃ N–BH ₃	EtOAc	1.2		
20	Me ₃ N–BH ₃	EtOAc	1.2	26	

 Table S1. Optimization of amine-borane.

^aDetermined in the reaction crude by ¹H NMR spectroscopy employing trichloroethylene as an internal standard. ^bReaction run in the dark. ^cNo AQ was added. ^dReaction run in the absence of base.

$\begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $					
Entry	base	Yield 3 (%)			
1	K ₃ PO ₄	86			
2	pyridine	46			
3	2,6-lutidine	57			
4	Cs_2CO_3	69			
5	K ₂ CO ₃	75			
6	Na ₂ CO ₃	69			
7	K ₂ HPO ₄	77			
8	DBU	_			
9	TMG	_			

 Table S2. Optimization of base.

 Table S3. Optimization for alkyl bromides.

4. General procedures for alknylation of alkyl halides General procedure for the alkynylation at room temperature – GP2

An oven-dried 8 mL microwave provided with a stir bar was charged with the alkyl halide if solid (0.12 mmol, 1.2 equiv), the corresponding sulfone (0.1 mmol, 1.0 equiv), K₃PO₄ (43 mg, 0.2 mmol, 2.0 equiv), Me₃N–BH₃ (11 mg, 0.15 mmol, 1.5 equiv) and anthraquinone (2 mg, 0.01 mmol, 10 mol%). The vial was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N₂ (x 3). Then, degassed EtOAc (1.0 mL), and the alkyl halide if liquid (0.12 mmol, 1.2 equiv) were added. The vial was sealed with parafilm and the reaction was placed approximately 4 cm from purple LEDs (390 nm Kessil lamp). The LEDs were switched on and the mixture was stirred under irradiation at room temperature for 16 h with a fan. The tube was opened and the aqueous layer was extracted with EtOAc (2 × 5 mL). The layers were separated and the aqueous layer was extracted. The crude was purified by flash column chromatography on silica gel to give the corresponding product. **General procedure for the alkynylation at 55 °C – GP3**

An oven-dried 8 mL microwave provided with a stir bar was charged with the alkyl halide if solid (0.12 mmol, 1.2 equiv), the corresponding sulfone (0.1 mmol, 1.0 equiv), K_3PO_4 (43 mg, 0.2 mmol, 2.0 equiv), Me_3N-BH_3 (11 mg, 0.15 mmol, 1.5 equiv) and anthraquinone (2 mg, 0.01 mmol, 10 mol%). The vial was capped with a Supelco aluminium crimp seal with septum (PTFE/butyl), evacuated and refilled with N_2 (x 3). Then, degassed EtOAc (1.0 mL), and the alkyl halide if liquid (0.12 mmol, 1.2 equiv) were added. The vial was sealed with parafilm and the reaction was placed approximately 4 cm from purple LEDs (390 nm Kessil lamp). The LEDs were switched on and the mixture was stirred under irradiation, reaching a constant temperature of 55 °C. The tube was allowed to cool down to room temperature and then was

opened, diluting the mixture with brine (10 mL) and EtOAc (5 mL). The layers were separated and the aqueous layer was extracted with EtOAc (2×5 mL). The combined organic layers were dried (MgSO₄), filtered and evaporated. The crude was purified by flash column chromatography on silica gel to give the corresponding product.

5. Pictures of reaction set-up

Figure S1. Set up for photochemical reactions under 390 nm with a Kessil lamp.

6. Spectra of lamps

The spectra of the Kessil lamps were taken from the Kessil website: https://www.kessil.com/products/science_PR160L.php

Figure S2.

7. Starting materials

Figure S4. Alkynyl sulfones employed for the substrate scope.

2n

20

2m

21

2j

2k

SI-14

8. Substrate scope

tert-Butyl 4-(phenylethynyl)piperidine-1-carboxylate (3)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **3** (86%) as a solid. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **3** (61%). R_f 0.50 [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.42–7.37 (2H, m), 7.29–7.26 (3H, m), 3.78–3.70 (2H, m), 3.28–3.21 (2H, m), 2.82–2.76 (1H, m), 1.89–1.82 (2H, m), 1.71–1.63 (2H, m), 1.47 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 154.8, 131.6, 128.2, 127.8, 123.6, 91.8, 82.0, 79.4, 43.2 (bs) 31.4, 28.5, 27.6. Data in accordance with the literature.⁸

tert-Butyl 4-((4-methoxyphenyl)ethynyl)piperidine-1-carboxylate (4)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2b** (29 mg, 0.1 mmol, 1 equiv) gave **4** (50%) as a solid. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **4** (41%). R_f 0.50 [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.32 (2H, d, *J*=8.8 Hz), 6.81 (2H, d, *J*=8.8 Hz), 3.79 (3H, s), 3.75–3.72 (2H, m), 3.26–3.21 (2H, m), 2.80–2.75 (1H, m), 1.86–1.82 (2H, m), 1.69–1.62 (2H, m), 1.46 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 159.3, 154.9, 133.0, 115.8, 113.9, 90.3, 81.8, 79.5, 55.3, 42.6, 42.0, 31.6, 28.5, 27.7. Data in accordance with the literature.⁹

tert- Butyl 4-((4-(methoxycarbonyl)phenyl)ethynyl)piperidine-1-carboxylate (5)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2c** (31 mg, 0.1 mmol, 1 equiv) gave **5** (56%) as a solid. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **5** (40%). R_{*f*} 0.43 [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.96 (2H, d, *J*=8.4 Hz), 7.44 (2H, d, *J*=8.4 Hz), 3.91 (3H, s), 3.81–3.67 (2H, m), 3.24 (2H, ddd, *J*=13.2, 8.5, 3.3 Hz), 2.81 (1H, tt, *J*=8.0, 3.9 Hz), 1.93–1.81 (2H, m), 1.73–1.62 (2H, m), 1.46 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 166.8, 154.9, 131.7, 129.6, 128.5, 127.3, 95.3, 81.6, 79.7, 52.3, 35.4, 31.4, 28.6, 27.9; HRMS (ESI) calculated C₂₀H₂₅O₄NNa [M+Na⁺] 366.1676 found 366.1672.

tert-Butyl 4-((4-(trifluoromethyl)phenyl)ethynyl)piperidine-1-carboxylate (6)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2d** (32 mg, 0.1 mmol, 1 equiv) gave **4** (72%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **6** (55%). R_f 0.48 [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.54 (2H, d, *J* = 8.1 Hz), 7.49 (2H, d, *J* = 8.1 Hz), 3.77–3.68 (2H, m), 3.24 (2H, ddd, *J* = 13.4, 8.5, 3.4 Hz), 2.81 (1H, tt, *J* = 8.1, 4.0 Hz), 1.90–1.81 (2H, m), 1.74–1.63 (2H, m), 1.47 (9H, s). ¹³C NMR (151 MHz, CDCl₃, quaternary carbons were not observed due to the relaxation time) δ 154.9, 133.7, 132.0, 125.3 (q, *J* = 4.0 Hz), 94.7, 80.9, 79.7, 31.4, 28.6, 27.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.78; HRMS (APCI) calculated C₁₉H₂₃F₃NO₂ [M+H⁺] 353.1603 found 353.1603.

tert-Butyl 4-((4-chlorophenyl)ethynyl)piperidine-1-carboxylate (7)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2e** (29 mg, 0.1 mmol, 1 equiv) gave **7** (>99%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **7** (69%). R_f 0.50 [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.31 (2H, d, *J*=8.5 Hz), 7.25 (2H, d, *J*=8.5 Hz), 3.77–3.70 (2H, m), 3.23 (2H, ddd, *J*=13.2, 8.5, 3.3 Hz), 2.78 (1H, tt, *J*=8.0, 3.9 Hz), 1.88–1.81 (2H, m), 1.71–1.61 (2H, m), 1.46 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 154.9, 133.9, 133.0, 128.7, 122.2, 93.0, 81.0, 79.7, 42.9, 31.5, 28.6, 27.8; HRMS (ESI) calculated C₁₈H₂₂O₂NCINa [M+Na⁺] 342.1231 found 342.1227.

tert-Butyl 4-([1,1'-biphenyl]-4-ylethynyl)piperidine-1-carboxylate (8)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2f** (33 mg, 0.1 mmol, 1 equiv) gave **8** (73%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **8** (54%). R_f 0.48 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.60–7.57 (2H, m), 7.53 (2H, d, *J*=8.4 Hz), 7.47 (2H, d, *J*=8.4 Hz), 7.44 (2H, t, *J*=7.7 Hz), 7.37–7.33 (1H, m), 3.79–3.69 (2H, m), 3.26 (2H, ddd, *J*=12.0, 8.4, 3.3 Hz), 2.82 (1H, tt, *J*=8.0, 3.9 Hz), 1.91–1.78 (2H,

m), 1.73–1.63 (2H, m), 1.47 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 140.7, 140.6, 132.1, 129.0, 127.7, 127.1, 127.0, 122.6, 92.7, 82.0, 79.6, 42.6, 31.6, 28.6, 27.8; HRMS (ESI) calculated C₂₄H₂₇O₂Na [M+Na⁺] 384.1934 found 384.1926.

tert-Butyl 4-((4-(hydroxymethyl)phenyl)ethynyl)piperidine-1-carboxylate (9)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2g** (29 mg, 0.1 mmol, 1 equiv) gave **9** (>99%) as a solid. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **9** (54%). $R_f 0.31$ [*n*-pentane: EtOAc (3:1). ¹H NMR (600 MHz, CDCl₃) δ 7.39 (2H, d, *J*=8.2 Hz), 7.29 (2H, d, *J*=8.1 Hz), 4.68 (2H, s), 3.77–3.69 (2H, m), 3.24 (2H, ddd, *J*=13.2, 8.4, 3.4 Hz), 2.79 (1H, tt, *J*=8.0, 3.9 Hz), 1.90–1.80 (2H, m), 1.70–1.63 (2H, m), 1.46 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 140.6, 131.9, 126.9, 123.0, 92.0, 81.9, 79.6, 65.1, 42.0, 31.6, 28.6, 27.8; HRMS (ESI) calculated C₁₉H₂₅O₃NNa [M+Na⁺] 338.1727 found 338.1723.

tert-Butyl 4-(*m*-tolylethynyl)piperidine-1-carboxylate (10)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2h** (27 mg, 0.1 mmol, 1 equiv) gave **10** (92%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **10** (63%). $R_f 0.51$ [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.23 (1H, bs), 7.20 (1H, bd, *J*=7.7 Hz), 7.17 (1H, t, *J*=7.5 Hz), 7.09 (1H, bd, *J*=7.4 Hz), 3.77–3.68 (2H, m), 3.25 (2H, ddd, *J*=13.2, 8.3, 3.4 Hz), 2.79 (1H, tt, *J*=7.9, 3.9 Hz), 2.31 (3H, s), 1.87–1.81 (2H, m), 1.71–1.62 (2H, m), 1.47 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 138.0, 132.4, 128.8, 128.8, 128.3, 123.5, 91.6, 82.3, 79.6, 63.2, 31.6, 28.6, 27.7, 21.3; HRMS (ESI) calculated C₁₉H₂₅O₂NNa [M+Na⁺] 322.1778 found 322.1778.

tert-Butyl 4-((3-aminophenyl)ethynyl)piperidine-1-carboxylate (11)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2i** (27 mg, 0.1 mmol, 1 equiv) gave **11** (85%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **11** (57%). $R_f 0.46$ [*n*-pentane: EtOAc (2:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.06 (1H, t, *J*=7.8 Hz),

6.80 (1H, d, J=7.6 Hz), 6.72 (1H, bs), 6.61 (1H, dd, J=8.0, 2.1 Hz), 3.76–3.67 (2H, m), 3.64 (2H, bs), 3.25 (2H, ddd, J=13.1, 8.3, 3.3 Hz), 2.82–2.74 (1H, m), 1.87–1.80 (2H, m), 1.70–1.62 (2H, m), 1.46 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 154.8, 146.2, 129.2, 124.2, 122.0, 117.9, 114.8, 91.2, 82.1, 79.4, 63.6, 31.4, 28.4, 27.5; HRMS (ESI) calculated C₁₈H₂₅O₂N₂ [M+H⁺] 301.1911 found 301.1905.

tert-Butyl 4-((3-fluorophenyl)ethynyl)piperidine-1-carboxylate (12)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2j** (27 mg, 0.1 mmol, 1 equiv) gave **12** (>99%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **12** (60%). $R_f 0.50$ [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.25–7.22 (1H, m), 7.16 (1H, dt, *J*=7.7, 1.2 Hz), 7.08 (1H, ddd, *J*=9.6, 2.4, 1.4 Hz), 7.00–6.96 (1H, m), 3.77–3.68 (2H, m), 3.27–3.19 (2H, m), 2.79 (1H, tt, *J*=8.0, 3.9 Hz), 1.88–1.81 (2H, m), 1.69–1.63 (2H, m), 1.46 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 162.5 (d, *J*=246.0 Hz), 154.9, 129.9 (d, *J*=8.8 Hz), 127.6 (d, *J*=2.9 Hz), 125.6 (d, *J*=9.7 Hz), 118.6 (d, *J*=22.6 Hz), 115.3 (d, *J*=21.2 Hz), 93.0, 81.0, 79.7, 62.6, 31.5, 28.6, 27.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -113.30; HRMS (ESI) calculated C₁₈H₂₂O₂NFNa [M+Na⁺] 326.1527 found 326.1512.

tert-Butyl 4-(o-tolylethynyl)piperidine-1-carboxylate (13)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2k** (27 mg, 0.1 mmol, 1 equiv) gave **13** (81%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **13** (62%). $R_f 0.48$ [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.36 (1H, d, *J*=7.5 Hz), 7.22–7.14 (2H, m), 7.11–7.09 (1H, m), 3.77–3.64 (2H, m), 3.31 (2H, ddd, *J*=13.2, 8.0, 3.4 Hz), 2.87 (1H, tt, *J*=7.8, 4.0 Hz), 2.41 (3H, s), 1.91–1.84 (2H, m), 1.76–1.65 (2H, m), 1.47 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 140.1, 131.9, 129.5, 127.9, 125.6, 123.4, 96.0, 81.0, 79.6, 62.7, 31.7, 28.6, 27.8, 21.0; HRMS (ESI) calculated C₁₉H₂₅O₂NNa [M+Na⁺] 322.1778 found 322.1778.

tert-Butyl 4-(naphthalen-1-ylethynyl)piperidine-1-carboxylate (14)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2l** (31 mg, 0.1 mmol, 1 equiv) gave **14** (85%) as an oil. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **14** (64%). R_f 0.43 [*n*-pentane: EtOAc (15:1)]. ¹H NMR (600 MHz, CDCl₃) δ 8.30 (1H, d, *J*=8.3 Hz), 7.84 (1H, d, *J*=8.1 Hz), 7.79 (1H, d, *J*=8.3 Hz), 7.63 (1H, d, *J*=7.1 Hz), 7.58–7.54 (1H, m), 7.52–7.49 (1H, m), 7.43–7.38 (1H, m), 3.85–3.74 (2H, m), 3.32 (2H, ddd, *J*=13.1, 8.3, 3.4 Hz), 2.97 (1H, tt, *J*=8.0, 4.0 Hz), 2.00–1.92 (2H, m), 1.85–1.73 (2H, m), 1.48 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 133.5, 133.3, 130.3, 128.4, 128.4, 126.8, 126.4, 126.2, 125.3, 121.3, 97.0, 80.1, 79.7, 42.2, 31.8, 28.6, 28.1; HRMS (ESI) calculated C₂₂H₂₅O₂NNa [M+Na⁺] 358.1778 found 358.1763.

tert-Butyl 4-(phenanthren-9-ylethynyl)piperidine-1-carboxylate (15)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2m** (36 mg, 0.1 mmol, 1 equiv) gave **15** (50%) as a solid. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **15** (31%). $R_f 0.42$ [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 8.70–8.67 (1H, m), 8.65 (1H, d, *J*=8.2 Hz), 8.41 (1H, dd, *J*=7.7, 1.5 Hz), 7.95 (1H, s), 7.83 (1H, d, *J*=7.8 Hz), 7.71–7.63 (3H, m), 7.61–7.56 (1H, m), 3.88–3.79 (2H, m), 3.34 (2H, ddd, *J*=13.1, 8.4, 3.3 Hz), 3.00 (1H, tt, *J*=7.9, 3.9 Hz), 2.04–1.92 (2H, m), 1.87–1.80 (2H, m), 1.49 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 131.6, 131.5, 131.4, 130.3, 130.2, 128.5, 127.4, 127.1, 127.1, 127.0, 127.0, 122.9, 122.7, 120.0, 96.7, 80.3, 79.7, 42.1, 31.8, 28.6, 28.2; HRMS (ESI) calculated C₂₆H₂₇O₂NNa [M+Na⁺] 408.1934 found 408.1929.

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and **2n** (26 mg, 0.1 mmol, 1 equiv) gave **16** (76%) as a solid. Following **GP3** using **1b** (26 mg, 0.12 mmol, 1.2 equiv) gave **16** (32%). $R_f 0.50$ [*n*-pentane: EtOAc (15:1). ¹H NMR (600 MHz, CDCl₃) δ 7.36 (1H, dd, J = 3.0, 1.2 Hz), 7.24 (1H, dd, J = 5.0, 3.0 Hz), 7.07 (1H, dd, J = 5.0, 1.2 Hz), 3.79–3.66 (2H, m), 3.22 (2H, ddd, J = 13.5, 8.5, 3.4 Hz), 2.77 (1H, tt, J = 8.1, 4.0 Hz), 1.89–1.79 (2H, m), 1.71–1.60 (2H, m), 1.46 (9H, s). ¹³C NMR (151 MHz, CDCl₃) δ 155.0, 130.1, 128.0, 125.3, 122.7, 91.5, 79.6, 77.1, 31.6, 28.6, 28.6, 27.8. HRMS (ESI) calculated C₁₆H₂₁NO₂S [M⁺] 291.1293 found 291.1293.

3-(Phenylethynyl)tetrahydro-2H-pyran (17)

Following **GP2** using **1c** (14 µL, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **17** (74%) as an oil. R_f 0.52 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.36 (2H, m), 7.32–7.18 (3H, m), 4.02 (1H, dd, *J*=11.0, 3.4 Hz), 3.90–3.81 (1H, m), 3.51–3.45 (1H, m), 3.47–3.43 (1H, m), 2.77 (1H, tt, *J*=9.6, 4.2 Hz), 2.16–2.09 (1H, m), 1.72–1.63 (3H, m); ¹³C NMR (151 MHz, CDCl₃) δ 131.8, 128.3, 128.0, 123.6, 90.0, 82.0, 71.8, 68.3, 30.2, 29.7, 25.1; HRMS (EI) calculated C₁₃H₁₄ONa [M+Na⁺] 209.0934 found 209.0937. *tert*-Butyl 3-(phenylethynyl)pyrrolidine-1-carboxylate (18)

Following **GP2** using **1d** (30 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **18** (90%) as an oil. R_f 0.50 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.40–7.28 (5H, m), 3.74–3.15 (5H, m), 3.24–3.19 (1H, m), 2.06–1.98 (1H, m), 1.47 (9H, m); ¹³C NMR (151 MHz, CDCl₃) δ 154.5, 131.8, 128.4, 128.1, 123.4, 89.6, 82.0, 79.6, 51.9, 45.1, 33.0, 30.7, 28.7. Data in accordance with the literature.¹⁰

Following **GP2** using **1e** (21 µL, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **19** (71%) as an oil. Following **GP2** using **1f** (20 µL, 0.12 mmol, 1.2 equiv) gave **19** (74%). $R_f 0.53$ [*n*-pentane: EtOAc (10:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.39 (2H, m), 7.32–7.28 (3H, m), 4.21 (2H, t, *J*=8.5 Hz), 4.02 (2H, dd, *J*=8.2, 6.5 Hz), 3.53 (1H, tt, *J*=8.7, 6.4 Hz), 1.45 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 156.2, 131.7, 128.4, 128.3, 123.1, 89.4, 83.7, 79.9, 63.1, 28.5, 20.0; HRMS (ESI) calculated C₁₆H₁₉NO₂Na [M+Na⁺] 280.1313 found 280.1313.

3-(Phenylethynyl)oxetane (20)

Following **GP2** using **1g** (10 µL, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **20** (55%) as an oil. R_f 0.50 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.41 (2H, m), 7.32–7.30 (3H, m), 4.88 (2H, dd, J = 8.5, 5.5 Hz), 4.82 (2H, dd, J = 7.4, 5.6 Hz), 4.12–4.04 (1H, m); ¹³C NMR (101 MHz, CDCl₃) δ 131.5, 128.3, 128.1, 123.0, 88.2, 84.1, 76.7, 26.5. Data in accordance with the literature.¹¹

3-(Phenylethynyl)tetrahydro-2,6-methanofuro[3,2-b]furan-5(2H)-one (21)

Following **GP2** using **1h** (27 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **21** (88%) as an oil. R_f 0.61 [*n*-pentane: EtOAc (3:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.45–7.38 (2H, m), 7.34–7.27 (3H, m), 5.44 (1H, t, *J*=4.9 Hz), 4.89 (1H, d, *J*=4.9 Hz), 4.83 (1H, d, *J*=4.8 Hz), 2.95 (1H, s), 2.84–2.67 (1H, m), 2.26 (1H, ddd, *J*=13.2, 11.5, 4.9 Hz), 2.07 (1H, dd, *J*=13.3, 1.7 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 176.9, 131.9, 128.5, 128.4, 122.7, 86.5, 84.8, 83.7, 82.0, 81.7, 43.6, 39.0, 35.8; HRMS (EI) calculated C₁₅H₁₂O₃ [M ⁺] 240.0781 found 240.0780.

Following **GP2** using **1i** (34 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **22** (88%) as an oil. R_f 0.40 [*n*-pentane: EtOAc (6:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.39 (2H, dd, *J*=6.6, 3.0 Hz), 7.35 (2H, t, *J*=7.7 Hz), 7.32–7.29 (3H, m), 7.27–7.22 (3H, m), 4.87 (1H, d, *J*=4.8 Hz), 3.33 (1H, t, *J*=4.5 Hz), 3.26 (1H, bs), 2.95–2.90 (1H, m), 2.86 (2H, bs), 2.15 (1H, d, *J*=11.4 Hz), 1.99 (1H, d, *J*=11.4 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 179.5, 141.7, 131.7, 128.9, 128.5, 128.4, 127.2, 127.0, 123.0, 88.2, 85.8, 84.2, 51.0, 49.2, 46.3, 46.1, 43.0, 33.7; HRMS (EI) calculated C₂₂H₁₈O₂Na [M+Na⁺] 337.1199 found 337.1191.

rac-(1R,2R)-2-(Phenylethynyl)-2,3-dihydro-1H-inden-1-ol (23)

Following **GP2** using **1j** (21 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **23** (56%) as an oil. $R_f 0.39$ [*n*-pentane: EtOAc (6:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.44 (2H, dd, *J*=6.6, 3.0 Hz), 7.42 (1H, dd, *J*=5.0, 3.6 Hz), 7.35–7.26 (5H, m), 7.24 (1H, dd, *J*=5.2, 3.6 Hz), 5.32 (1H, t, *J*=6.4 Hz), 3.37 (1H, dd, *J*=15.4, 8.2 Hz), 3.25–3.17 (1H, m), 3.04 (1H, dd, *J*=15.4, 9.1 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 143.3, 140.5, 131.9, 128.6, 128.4, 128.1, 127.3, 124.8, 124.1, 123.6, 90.6, 82.4, 82.2, 42.2, 37.3; HRMS (ESI) calculated C₁₇H₁₄ONa [M+Na⁺] 257.0937 found 257.0938.

(8-Chlorooct-1-yn-1-yl)benzene (24)

Following **GP3** using **1k** (18 μ L, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **24** (51%) as an oil. R_f 0.52 [*n*-pentane]. ¹H NMR (600 MHz, CDCl₃) δ 7.41–7.36 (2H, m), 7.30 – 7.26 (3H, m), 3.57 (2H, t, *J*=6.7 Hz), 2.44 (2H, t, *J*=6.7 Hz), 1.84 (2H, p, *J*=6.8 Hz), 1.69–1.58 (4H, m); ¹³C NMR (151 MHz, CDCl₃) δ 131.7, 128.3, 127.7, 124.0, 89.9, 81.1, 63.5, 45.1, 32.3, 28.1, 26.3, 19.4; HRMS (EI) calculated C₁₃H₁₅Cl [M⁺] 206.0857 found 206.0857.

Following **GP3** using **11** (16 µL, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **25** (49%) as an oil. $R_f 0.50$ [*n*-pentane:EtOAc]. ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.34 (2H, m), 7.30–7.21 (3H, m), 3.64 (2H, t, *J* = 6.7 Hz), 2.41 (2H, t, *J* = 7.0 Hz), 1.68–1.53 (4H, m), 1.56–1.33 (4H, m); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.2, 127.5, 124.0, 90.3, 80.7, 62.9, 32.7, 28.7, 28.7, 25.3, 19.4. Data in accordance with the literature.¹²

Dec-9-en-1-yn-1-ylbenzene (26)

Following **GP3** using **1m** (20 µL, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **26** (89%) as an oil. R_f 0.50 [*n*-pentane]. ¹H NMR (600 MHz, CDCl₃) δ 7.42–7.38 (2H, m), 7.23–7.33 (3H, m), 5.81 (1H, ddt, *J* = 17.0, 10.1, 6.7 Hz), 5.05–5.00 (1H, m), 4.95 (1H, dm, *J* = 10.1 Hz), 2.40 (2H, t, *J* = 7.1 Hz), 2.06 (2H, q, *J* = 7.1 Hz), 1.60 (2H, p, *J* = 7.1 Hz), 1.30–1.53 (6H, m); ¹³C NMR (151 MHz, CDCl₃) δ 139.2, 131.6, 128.3, 127.6, 124.1, 114.4, 90.5, 80.7, 33.9, 28.9, 28.9, 28.8, 28.7, 18.5. Data in accordance with the literature.¹³

2-((4-Phenylbut-3-yn-1-yl)oxy)tetrahydro-2H-pyran (27)

Following **GP3** using **1n** (18 µL, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **27** (70%) as an oil. R_f 0.45 [*n*-pentane:EtOAc (20:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.34 (2H, m), 7.33–7.21 (3H, m), 4.69 (1H, t, *J* = 3.3), 4.01–3.83 (2H, m), 3.65 (1H, dtd, *J* = 9.5, 7.1, 1.0), 3.56–3.48 (1H, m), 2.72 (2H, t, *J* = 7.2), 1.95–1.78 (1H, m), 1.78–1.68 (1H, m), 1.68–1.47 (4H, m); ¹³C NMR (101 MHz, CDCl₃) δ 131.5, 128.2, 127.7, 123.7, 98.2, 86.1, 81.0, 65.1, 62.1, 30.6, 25.4, 20.9, 19.4. Data in accordance with the literature.¹⁴

(4,4-Dimethoxybut-1-yn-1-yl)benzene (28)

Following **GP3** using **10** (14 μ L, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **28** (70%) as an oil. R_f 0.50 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.36 (2H, m), 7.32–7.19 (3H, m), 4.63 (1H, t, *J*=5.6 Hz), 3.42 (6H, s), 2.75 (2H, d, *J*=5.6 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 131.8, 128.3, 128.0, 123.7, 102.9, 85.0, 82.2, 53.7, 25.0; HRMS (APCI) calculated C₁₂H₁₅O₂ [M+H⁺] 191.1072 found 191.1070.

Methyl (S)-2-((tert-butoxycarbonyl)amino)-5-phenylpent-4-ynoate (29)

Following **GP2** using **10** (33 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **29** (54%) as an oil. R_f 0.49 [*n*-pentane: EtOAc (10:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.41–7.36 (2H, m), 7.31–7.26 (3H, m), 5.38 (1H, d, *J*=7.7 Hz), 4.56 (1H, dt, *J*=8.4, 4.3 Hz), 3.80 (3H, s), 2.98 (1H, dd, *J*=17.0, 4.5 Hz), 2.92 (1H, dd, *J*=17.0, 4.9 Hz), 1.46 (9H, s); ¹³C NMR (151 MHz, CDCl₃) δ 171.5, 155.2, 131.9, 128.4, 128.3, 123.1, 84.0, 83.8, 80.3, 52.8, 52.4, 28.5, 24.1; HRMS (APCI) calculated C₁₇H₂₂NO₄ [M+H⁺] 304.1549 found 304.1564.

tert-Butyl 4-(3-phenylprop-2-yn-1-yl)piperidine-1-carboxylate (30)

Following **GP2** using **1q** (33 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **30** (95%) as an oil. Following **GP3** using **1r** (28 mg, 0.12 mmol, 1.2 equiv) gave **30** (64%). $R_f 0.32$ [*n*-pentane: EtOAc (10:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.39 (2H, m), 7.32–7.26 (3H, m), 4.15 (2H, bs), 2.74 (2H, t, *J* = 11.8 Hz), 2.39 (2H, d, *J* = 6.6 Hz), 1.83 (2H, d, *J* = 13.2 Hz), 1.76–1.73 (1H, m), 1.48 (9H, s), 1.33–1.27 (2H, m); ¹³C NMR (101 MHz, CDCl₃) δ 155.0, 131.4, 128.0, 127.5, 123.6,87.8, 81.9, 79.2, 35.7, 31.4, 28.3, 26.2. Data in accordance with the literature.¹⁵

3-Methyl-3-(3-phenylprop-2-yn-1-yl)oxetane (31)

Following **GP2** using **1s** (15 µL, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **31** (91%) as an oil. R_f 0.52 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.42–7.36 (2H, m), 7.30–7.25 (3H, m), 4.57 (2H, d, *J*=5.8 Hz), 4.43 (2H, d, *J*=5.8 Hz), 2.72 (2H, s), 1.45 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 131.8, 128.4, 128.0, 123.6, 86.6, 82.5, 81.9, 39.3, 29.8, 23.6; HRMS (ESI) calculated C₁₃H₁₄ONa [M+Na⁺] 209.0942 found 209.0937. **Trimethyl(3-phenylprop-2-yn-1-yl)silane (32)**

Following **GP2** using **1t** (18 μ L, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **32** (46%) as an oil. R_f 0.50 [*n*-pentane: EtOAc (30:1)]. Following **GP3** using **1u** (17 μ L, 0.12 mmol, 1.2 equiv) gave **32** (50%). ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.34 (m, 2H), 7.29–7.22 (m, 3H), 1.70 (s, 2H), 0.17 (s, 9H). Data in accordance with the literature.¹⁶

2,2-Dimethyl-5-phenylpent-4-yn-1-ol (33)

Following **GP2** using **1v** (15 μ L, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **33** (19%) as an oil. R_f 0.36 [*n*-pentane: EtOAc (10:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.41 (2H, m), 7.27–7.30 (3H, m), 3.49 (2H, d, *J* = 5.4 Hz), 2.38 (s, 2H), 1.59 (1H, bs), 1.04 (6H, s). Data in accordance with the literature.¹⁷

(3r,5r,7r)-1-(Phenylethynyl)adamantane (34)

Following **GP2** using **1w** (26 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **34** (70%) as an oil. $R_f 0.51$ [*n*-pentane]. Following **GP3** using **1x** (22 mg, 0.12 mmol, 1.2 equiv) gave **34** (63%). ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.40 (2H, m), 7.24–7.27 (3H, m), 1.99 (6H, bs), 1.96 (6H, bs), 1.72 (3H, bs); ¹³C NMR (151 MHz, CDCl₃) δ 131.6, 128.1, 127.4, 124.1, 98.4, 79.4, 42.9, 36.4, 30.1, 28.1. Data in accordance with the literature.¹⁸

Methyl 3-(phenylethynyl)bicyclo[1.1.1]pentane-1-carboxylate (35)

$$MeO_2C$$
 — Ph

Following **GP2** using **1y** (25 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **35** (61%) as an oil. R_f 0.50 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.46–7.35 (2H, m), 7.33–7.18 (3H, m), 3.69 (3H, s), 2.40 (6H, s); ¹³C NMR (151 MHz, CDCl₃) δ 170.0, 131.9, 128.4, 128.4, 122.9, 87.8, 80.7, 56.0, 51.9, 40.0, 29.9; HRMS (APCI) calculated C₁₅H₁₅O₂ [M+H⁺] 227.1072 found 227.1082.

Methyl 4-(phenylethynyl)cubane-1-carboxylate (36)

Following **GP2** using **1z** (29 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **36** (79%) as a solid. R_f 0.50 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.35 (2H, m), 7.32–7.27 (3H, m), 4.28–4.21 (3H, m), 4.19–4.14 (3H, m), 3.72 (3H, s); ¹³C NMR (101 MHz, CDCl₃) δ 172.3, 131.5, 128.4, 128.0, 123.7, 89.8, 88.7, 56.2, 51.7, 49.7, 47.1, 46.7, 29.9; HRMS (EI) calculated C₁₈H₁₄O₂ [M⁺] 262.0988 found 262.0987.

rac-(3S,3aR,6aS)-3-(3-Phenylprop-2-yn-1-yl)hexahydrofuro[2,3-b]furan (37)

Following **GP2** using **1aa** (25 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **37** (60%) as an oil. Following **GP3** using **1ab** (21 mg, 0.12 mmol, 1.2 equiv) gave **37** (53%). $R_f 0.46$ [*n*-pentane: EtOAc (4:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.34 (2H, m), 7.33–7.23 (3H, m), 5.77 (1H, d, *J*=4.9 Hz), 4.07 (1H, dd, *J* = 8.4, 7.6 Hz), 3.98–3.79 (2H, m), 3.56 (1H, dd, *J*=11.1, 8.7 Hz), 2.96 (1H, tt, *J*=9.7, 5.1 Hz), 2.7– 2.63 (1H, m), 2.53 (1H, dd, *J*=17.1, 1.5 Hz), 2.50 (1H, dd, *J*=17.0, 3.0 Hz), 2.04–1.90 (2H, m); ¹³C NMR (151 MHz, CDCl₃) δ 131.5, 128.3, 127.9, 123.4, 109.8, 87.2, 81.6, 72.0, 69.3, 45.4, 41.4, 25.3, 18.0; HRMS (ESI) calculated C₁₅H₁₆O₂Na [M+Na⁺] 251.1043 found 251.1045.

Following **GP2** using **1ac** (34 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **38** (87%) as an oil. R_f 0.60 [*n*-pentane: EtOAc (10:1)]. ¹H NMR (600 MHz, CDCl₃, rotamers) δ 7.39–7.32 (2H, m), 7.29–7.20 (3H, m), 4.31–4.12 (2H, m), 3.07–2.96 (1H, m), 2.02–1.96 (2H, m), 1.96–1.86 (1H, m), 1.86–1.80 (3H, m), 1.66 (2H, q, *J*=6.9 Hz), 1.48 (9H, s); ¹³C NMR (151 MHz, CDCl₃, rotamers) δ 153.2, 131.6, 128.2, 127.7, 123.6, 92.4, 80.6, 79.3, 53.5, 52.7, 37.7, 37.0, 28.5, 28.2, 27.6, 21.9; HRMS (EI) calculated C₂₀H₂₅NO₂ [M⁺] 311.1878 found 311.1882.

(*3aR*,*4R*,*5R*,*6aS*)-2-Oxo-4-(3-phenylprop-2-yn-1-yl)hexahydro-2*H*-cyclopenta[*b*]furan-5-yl [1,1'-biphenyl]-4-carboxylate (39)

Following **GP2** using **1ad** (46 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **39** (74%) as a solid. $R_f 0.50$ [*n*-pentane: EtOAc (2:1)]. ¹H NMR (600 MHz, CDCl₃) δ 8.08 (2H, d, *J*=8.3 Hz), 7.66 (2H, d, *J*=8.3 Hz), 7.62 (2H, d, *J*=7.4 Hz), 7.47 (2H, t, *J*=7.6 Hz), 7.41–7.39 (1H, m), 7.39–7.36 (2H, m), 7.32–7.27 (3H, m), 5.43–5.35 (1H, m), 5.12 (1H, t, *J*=6.1 Hz), 3.03–2.93 (2H, m), 2.74–2.69 (2H, m), 2.68–2.65 (1H, m), 2.62 (1H, dd, *J*=17.0, 7.1 Hz), 2.48–2.44 (1H, m), 2.35 (1H, dd, *J*=15.6, 3.7 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 176.7, 166.0, 146.2, 140.1, 131.7, 130.4, 130.3, 129.1, 128.5, 128.4, 128.3, 127.4, 127.3, 123.1, 86.0, 84.3, 83.1, 79.4, 51.1, 42.6, 38.3, 36.0, 22.5; HRMS (APCI) calculated C₂₉H₂₅O₄ [M+H⁺] 437.1753 found 437.1751.

(*3aR*,*5R*,*5aS*,*8aS*,*8bR*)-2,2,7,7-Tetramethyl-5-(3-phenylprop-2-yn-1-yl)tetrahydro-5*H*-bis([1,3]dioxolo)[4,5-*b*:4',5'-*d*]pyran (40)

Following **GP2** using **1ae** (37 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **40** (52%) as a solid. R_f 0.48 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.37 (2H, m), 7.29–7.26 (3H, m), 5.54 (1H, d, *J*=5.0 Hz), 4.65 (1H, dd, *J*=7.9, 2.3 Hz),

4.42 (1H, dd, *J*=7.9, 1.7 Hz), 4.32 (1H, dd, *J*=5.0, 2.3 Hz), 4.00 (1H, ddd, *J*=8.3, 6.0, 1.5 Hz), 2.82 (1H, dd, *J*=16.4, 8.9 Hz), 2.72 (1H, dd, *J*=16.4, 6.0 Hz), 1.57 (3H, s), 1.48 (3H, s), 1.38 (3H, s), 1.35 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 131.8, 128.3, 127.9, 123.8, 109.4, 108.8, 96.7, 85.8, 82.1, 71.5, 71.0, 70.8, 67.0, 26.3, 26.1, 25.1, 24.6, 21.5; HRMS (EI) calculated C₂₀H₂₄O₅ [M⁺] 344.1618 found 344.1618.

(2R,3R,4R,5S,6R)-2-(Acetoxymethyl)-6-(phenylethynyl)tetrahydro-2H-pyran-3,4,5-triyl triacetate (41)

Following **GP2** using **1af** (49 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **42** (65%) as a solid. R_f 0.49 [*n*-pentane: EtOAc (5:2)]. ¹H NMR (600 MHz, CDCl₃) δ 7.56–7.46 (2H, m), 7.43–7.33 (3H, m), 5.57 (1H, t, *J*=9.7 Hz), 5.26 (1H, d, *J*=5.8 Hz), 5.08 (1H, t, *J*=9.6 Hz), 5.01 (1H, dd, *J*=10.1, 5.8 Hz), 4.35–4.25 (2H, m), 4.19–4.07 (1H, m), 2.10 (3H, s), 2.09 (3H, s), 2.04 (6H, bs); ¹³C NMR (151 MHz, CDCl₃) δ 170.9, 170.3, 170.1, 169.8, 132.2, 129.4, 128.6, 121.6, 90.8, 81.4, 71.3, 71.0, 70.1, 68.5, 66.2, 62.1, 20.9 (3C), 20.8; HRMS (ESI) calculated C₂₂H₂₄O₉Na [M+Na⁺] 455.1313 found 455.1312.

(*3aR*,*5S*,*6R*,*6aR*)-5-((*S*)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyl-6-(phenylethynyl)tetrahydrofuro[2,3-*d*][1,3]dioxole (42)

Following **GP2** using **1ag** (37 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **42** (66%) as an oil. R_f 0.50 [*n*-pentane: EtOAc (20:1)]. ¹H NMR (600 MHz, CDCl₃) δ 7.46–7.38 (2H, m), 7.33–7.28 (3H, m), 5.95 (1H, d, *J*=3.5 Hz), 4.83 (1H, d, *J*=3.5 Hz), 4.44 (1H, dt, *J*=8.3, 5.7 Hz), 4.17 (1H, d, *J*=8.5 Hz), 4.16 (1H, dd, *J*=8.5, 1.5 Hz), 4.08 (1H, dd, *J*=8.6, 5.2 Hz), 3.43 (1H, d, *J*=4.2 Hz), 1.54 (3H, s), 1.45 (3H, s), 1.37 (3H, s), 1.34 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 131.7, 128.3, 128.3, 122.7, 112.1, 109.4, 105.4, 85.9, 85.2, 83.9, 79.9, 74.8, 67.4, 41.0, 26.9, 26.7, 26.2, 25.3; HRMS (ESI) calculated C₂₀H₂₅O₅ [M+H⁺] 345.1697 found 345.1696.

(5*S*,8*R*,9*S*,10*S*,13*S*,14*S*)-10,13-Dimethyl-3-(phenylethynyl)hexadecahydro-17*H*cyclopenta[*a*]phenanthren-17-one (43)

Following **GP2** using **1ag** (40 mg, 0.12 mmol, 1.2 equiv) and **2a** (26 mg, 0.1 mmol, 1 equiv) gave **43** (63%) as a mixture of stereoisomers (1:1).

Data for isomer A: ¹H NMR (600 MHz, CDCl₃) δ 7.44–7.40 (2H, m), 7.30–7.26 (3H, m), 3.02 (1H, p, *J*=3.9 Hz), 2.43 (1H, dd, *J*=19.4, 8.5 Hz), 2.11–2.01 (1H, m), 1.93 (1H, ddd, *J*=13.7, 8.2, 6.1 Hz), 1.84–1.75 (2H, m), 1.73 (2H, dt, *J*=9.5, 3.8 Hz), 1.71–1.67 (1H, m), 1.65 (1H, dt, *J*=12.3, 3.3 Hz), 1.59–1.53 (4H, m), 1.50–1.43 (3H, m), 1.34–1.22 (5H, m), 1.05 (1H, qd, *J*=12.7, 4.6 Hz), 0.86 (3H, s), 0.83 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 221.6, 131.7, 128.3, 127.6, 124.3, 94.3, 81.4, 54.6, 51.6, 48.0, 41.9, 36.5, 36.0, 35.2, 34.4, 33.4, 31.7, 30.9, 28.4, 28.0, 27.0, 21.9, 20.2, 14.0, 12.0; HRMS (EI) calculated C₂₇H₃₄O [M ⁺] 374.2604 found 374.2603.

Data for isomer B: ¹H NMR (600 MHz, CDCl₃) δ 7.43–7.32 (2H, m), 7.30–7.23 (3H, m), 4.20–4.07 (1H, m), 2.47–2.39 (2H, m), 2.28–2.22 (1H, m), 2.15 (1H, qd, *J*=13.3, 4.0 Hz), 2.07 (2H, ddd, *J*=14.7, 9.5, 5.0 Hz), 2.03–1.97 (1H, m), 1.95–1.88 (2H, m), 1.84–1.76 (3H, m), 1.63–1.50 (5H, m), 1.34–1.17 (5H, m), 1.06 (1H, dd, *J*=13.3, 3.9 Hz), 0.88 (3H, s), 0.85 (3H, s); ¹³C NMR (151 MHz, CDCl₃) δ 221.3, 131.7, 128.3, 127.6, 124.1, 94.5, 80.2, 54.6, 51.5, 49.6, 47.9, 46.5, 42.9, 41.2, 38.2, 36.5, 35.9, 31.6, 30.8, 30.0, 28.1, 21.9, 20.3, 13.9, 12.4; HRMS (EI) calculated C₂₇H₃₄O [M⁺] 374.2604 found 374.2603.

tert-Butyl 4-(((8*R*,9*S*,13*S*,14*S*,17*S*)-17-hydroxy-3-methoxy-13-methyl-7,8,9,11,12,13,14, 15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-yl)ethynyl)piperidine-1-carboxylate (44)

Following **GP2** using **1a** (27 mg, 0.12 mmol, 1.2 equiv) and **2o** (46 mg, 0.1 mmol, 1 equiv) gave **44** (27%) as an oil. R_f 0.43 [*n*-pentane: EtOAc (4:1)]. ¹H NMR (600 MHz, CDCl₃) 7.22 (1H, d, *J*=8.7 Hz), 6.72 (1H, dd, *J*=8.7, 2.3 Hz), 6.63 (1H, d, *J*=2.3 Hz), 3.78 (3H, s), 3.70–

3.59 (2H, m), 3.28–3.23 (2H, ddd, J=13.2, 8.5, 3.3 Hz), 2.88–2.81 (2H, m), 2.66 (1H, tt, *J*=8.0, 3.9 Hz), 2.36 (1H, dd, *J*=13.0, 2.8 Hz), 2.26 (1H, ddd, *J*=13.9, 9.4, 5.7 Hz), 2.17 (1H, td, *J*=11.6, 3.6 Hz), 2.07–1.96 (2H, m), 1.91–1.83 (2H, m), 1.82–1.65 (7H, m), 1.57 (3H, s), 1.45 (9H, s), 1.42–1.30 (3H, m)^{: 13}C NMR (151 MHz, CDCl₃) δ 162.7, 157.6, 138.1, 132.7, 126.5, 113.9, 111.6, 87.7, 80.0, 74.1, 55.3, 49.6, 47.3, 43.6, 39.5, 39.1, 37.4, 32.9, 30.0, 28.5, 27.8, 27.4, 26.5, 22.9, 12.8; HRMS (EI) calculated C₃₁H₄₃NO₄ [M⁺] 493.3192 found 493.3191.

tert-Butyl (E)-4-styrylpiperidine-1-carboxylate (45)

mg, 0.12 Following GP2 using **1**a (37 mmol, 1.2 equiv) (E)-(2and (phenylsulfonyl)vinyl)benzene (25 mg, 0.1 mmol, 1 equiv) gave 45 (66%). ¹H NMR (600 MHz, CDCl₃) δ 7.36–7.33 (2H, m), 7.31–7.28 (2H, m), 7.22–7.18 (1H, m), 6.39 (1H, dd, J= 16.0, 1.2 Hz), 6.15 (1H, dd, J=16.0, 6.9 Hz), 4.13 (2H, d, J=12.9 Hz), 2.78 (2H, t, J=12.5 Hz), 2.33–2.24 (1H, m), 1.79–1.73 (2H, m), 1.48 (9H, s), 1.44–1.33 (2H, m). Data in accordance ith the literature.¹⁹

tert-Butyl 4-cyanopiperidine-1-carboxylate (46)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and *p*-toluenesulfonyl cyanide (20 mg, 0.1 mmol, 1 equiv) gave **46** (50%). ¹H NMR (600 MHz, CDCl₃) δ 3.65 (2H, ddd, *J*=13.8, 7.1, 3.8 Hz), 3.33 (2H, ddd, *J*=3.9, 7.8, 3.7 Hz), 2.79 (1H, tt, *J*=8.0, 4.2 Hz), 1.94–1.84 (2H, m), 1.83–1.71 (2H, m), 1.46 (9H, s). Data in accordance ith the literature.²⁰

tert-Butyl 4-chloropiperidine-1-carboxylate (47)

Following **GP2** using **1a** (37 mg, 0.12 mmol, 1.2 equiv) and *p*-toluenesulfonyl chloride (19 mg, 0.1 mmol, 1 equiv) gave **47** (26%). ¹H NMR (600 MHz, CDCl₃) δ 4.20 (1H, dq, *J*=7.7, 3.8 Hz), 3.72 (2H, ddd, *J*=13.7, 7.1, 3.7 Hz), 3.31 (2H, ddd, *J*=13.7, 7.8, 3.6 Hz), 2.05–1.99 (2H, m), 1.80 (2H, dtd, *J*=13.3, 7.7, 3.7 Hz), 1.48 (9H, s). Data in accordance ith the literature.²¹

9. Copies of NMR spectra for new compounds

SI-31

$2l - {}^{1}H$ NMR (600 MHz, CDCl₃)

$2\mathbf{m} - {}^{1}\mathbf{H} \mathbf{NMR}$ (600 MHz, CDCl₃)

 $2o - {}^{1}H$ NMR (600 MHz, CDCl₃)

 $5 - {}^{1}H$ NMR (600 MHz, CDCl₃)

SI-36

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200

$12 - {}^{19}$ F NMR (565 MHz, CDCl₃)

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100

-110 -120

-130

-140 -150 -160

-170 -180

-190 -20

23 – Quantitative NOE (600 MHz, CDCl₃)

5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5

23 – Quantitative NOE (600 MHz, CDCl₃)

3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.25 3.20 3.15 3.10 3.05 3.00 2.95 2.90 2.85 2.80 2.75 2.70 2.65 2.60 2.55

 $\textbf{37}-\text{2D COSY (600 MHz, CDCl}_3\textbf{)}$

37 –2D HMBC (151 MHz, CDCl₃)

37 – Quantitative NOE (600 MHz, CDCl₃)

37 – Quantitative NOE (600 MHz, CDCl₃)

4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1

37 – Quantitative NOE (600 MHz, CDCl₃)

39 – ¹H NMR (600 MHz, CDCl₃)

$\textbf{41}-2D \text{ NOESY (600 MHz, CDCl}_3)$

42 – ¹H NMR (600 MHz, CDCl₃)

$\textbf{42}-Quantitative \ NOE \ (600 \ MHz, \ CDCl_3)$

43 - ¹H NMR (600 MHz, CDCl₃)

44 – ¹H NMR (600 MHz, CDCl₃)

10. References

¹ (a) Z. Zhang, M. J. Tilby, and D. Leonori, *Nat. Synth.* 2024, DOI: 10.1038/s44160-024-00587-5; (b) Z. Zhang, L. Poletti and D. Leonori, *J. Am. Chem. Soc.* 2024, **146**, 22424–22430.

² J. Meesin, P. Katrun, C. Pareseecharoen, M. Pohmakotr, V. Reutrakul, D. Soorukram, and C. Kuhakarn, *J. Org. Chem.* 2016, **81**, 2744–2752.

³ Z.-Y. Mo, Y.-Z. Zhang, G.-B. Huang, X.-Y. Wang, Y.-M. Pan, and H.-T. Tang, *Adv. Synth. Catal.* 2020, **362**, 2160–2167.

⁴ K. Cao, N. Zhang, L. Lin, Q. Shen, H. Jiang, and J. Li, *Adv. Synth. Catal.* 2024, **366**, 207–213.

⁵ I. Tanaka, M. Sawamura, and Y. Shimizu, Org. Lett. 2022, 24, 520–524.

⁶ L. Wanga, W. Weia, D. Yanga, H. Cuia, H. Yueb, and H. Wang, *Tetrahedron Lett.* 2017, **58**, 4799–4802.

⁷ C. Savarin, J. Srogl, and L. S. Liebeskind, Org. Lett. 2001, **3**, 91–93.

⁸ M. Ye, M. Hou, Y. Wang, X. Ma, K. Yang, and Q. Song, Org. Lett. 2023, 25, 1787–1792.

⁹ A. Rani, T. Amit, K. Rizwana, R. A. Avishek, K. Jha, and V. R. Yatham, *Org. Lett.* 2022, **24**, 5186–5191.

¹⁰ Y. Shen, B. Huang, J. Zheng, C. Lin, Y. Liu, and S. Cui, Org. Lett. 2017, **19**, 1744–1747.

¹¹ F. Zhurkin, W. Parisot, and G. Lefèvre, Adv. Synth. Catal. 2024, 366, 1782–1787.

¹² J. M. Halford-McGuff , A. P. McKay , and A. J. B. Watson, *Synlett 2024*, **35**, A–E. DOI: 10.1055/a-2285-0007.

¹³ M.-G. Braun, and A. G. Doyle, J. Am. Chem. Soc. 2013, **135**, 12990–12993.

¹⁴ B. C. Gorske, C. T. Mbofana, and S. J. Miller, *Org. Lett.* 2009, **11**, 4318–4321.

¹⁵ A. C. Breman, A. Ruiz-Olalla, J. H. van Maarseveen, S. Ingemann, and H. Hiemstra, *Eur. J. Org. Chem.* 2014, 7413–7425.

¹⁶ P. A. Wender, F. Inagaki, M. Pfaffenbach, and M. C. Stevens, *Org. Lett. 2014*, **16**, 2923–2925.

¹⁷ M. C. B. Legault, C. S. McKay, J. Moran, M. A. Lafreniere, and J. P. Pezacki, *Tetrahedron Lett.* 2012, **53**, 5663–5666.

¹⁸ X. Ma, L. Wang, X. Meng, W. Li, Q. Wang, Y. Gua, and L. Qiua, *Org. Biomol. Chem.*, 2023, **21**, 6693–6696.

¹⁹ K. B. Pal, E. M. D. Tommaso, A. K. Inge, and B. Olofsson, *Angew. Chem. Int. Ed. 2023*, **62**, e202301368.

²⁰ H. Zhao, V. D. Cuomo, J. A. Rossi-Ashton, and D. J. Procter, *Chem 2024*, **10**, 1240–1251.
²¹ B. D. Dherange, M. Yuan, C. B. Kelly, C. A. Reiher, C. Grosanu, K. J. Berger, O. Gutierrez, and M. D. Levin, *J. Am. Chem. Soc. 2023*, **145**, 17–24.