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1 Methods
Details on the methods used in the TEA Challenge 2023 can be found here.

1.1 MACE
All MACE models trained in the paper use the MACE [1] architecture implemented in PyTorch and employing the
e3nn library. The MACE training and evaluation are available at https://github.com/ACEsuit/mace/. MACE is an
equivariant message-passing graph neural network where each layer encodes many-body information of atomic geometry.
At each layer, manybody messages are formed using a linear combination of a tensor product basis [2]. This is constructed
by taking tensor products of a sum of two-body permutation-invariant polynomials, expanded in a spherical basis. The
final output is the energy contribution of each atom to the total potential energy. For a more detailed description of the
architecture, see Refs. [1] and [3].

All MACE models use two MACE layers, with a spherical expansion of up to lmax = 3, and 4-body messages in each
layer (correlation order 3). We use a self-connection for both layers, a 128-channel dimension for tensor decomposition
and a radial cutoff of 6Å. We expand the interatomic distances into 8 Bessel functions multiplied by a smooth polynomial
cutoff function to construct radial features, which in turn fed into a fully connected feed-forward neural network with
three hidden layers of 64 hidden units and SiLU non-linearities. A maximal message equivariance of L = 2 is applied.
The irreducible representations of the messages have alternating parity (in e3nn notation, 128x0e + 128x1o + 128x2e).

The models are trained with the AMSGrad variant of Adam with default parameters. We use a learning rate of 0.01
and an exponential moving average (EMA) learning scheduler with decaying factor of 0.995. We use a batch size of 5,
and we decrease the learning scheduler on a plateau with a factor of 0.8. The models are trained until no improvement
is observed for 200 epochs. The models were trained on Nvidia A100 80GB GPUs. Total training time varies from 30
minutes for the smallest sets of Challenge I, to 32 hours for the largest sets of tasks III and IV.

1.2 SO3krates
We used the SO3krates network [4, 5] for training on the different challenges from the TEA23 workshop. The SO3krates
network is an equivariant message-passing neural network, which replaces SO3 convolutions with an equivariant attention
mechanism that is defined on the invariant output of SO3 convolutions over equivariant atomic representations. This
allows to combine data efficiency, accuracy and stability with small computational cost.

All SO3krates models are trained on a combined loss of energy and forces with a weighting factor of 1000 to 1 between
forces and energy. We used the ADAM optimiser with an initial learning rate of 1e-3 and an exponential learning rate
decay every 100k steps by a factor of 0.7. Each model is trained for 1M gradient training steps and with a batch size of
1 for Challenge I, with a batch size of 10 for Challenge II and with a batch size of 10 for Challenge III and batch size of
2 for challenge IV. All used SO3krates models use a feature dimension of 128 and euclidean variables {1, 2, 3, 4} as well
as three message passing layers. For Challenges II and III we used the same model as for Challenge I, with an additional
residual MLP after the attention block and the update block in each layer. The average time per training gradient step
for challenge I is 10 ms, for challenge II it is 10ms, for challenge III it is 15ms and 27ms for challenge IV. All training
runs were performed on an NVIDIA A100 40GB GPU.

1.3 sGDML
Symmetric Gradient Domain Machine Learning (sGDML) is a kernel-based method designed to efficiently reconstruct
accurate molecular force fields from reference datasets obtained through high-level ab initio calculations [6, 7, 8, 9]. The
central idea behind sGDML is to utilize a kernel function, denoted as k (x,x′) = ∇xkE (x,x′)∇>

x′ , which models the
force field fF as a transformation of an unknown potential energy surface fE . Specifically, we have:

fF = −∇fE ∼ GP
[
−∇µE(x),∇xkE (x,x′)∇>

x′

]
. (1)

where µE : Rd → R and kE : Rd × Rd → R are the prior mean and covariance functions, respectively, that define the
latent energy-based Gaussian process. The chemical structure descriptor, denoted by x ∈ Rd, is constructed from the
pairwise inverse distances (d), ensuring the rototranslational invariance of the energy. Symmetries are recovered using a
data-driven multipartite matching approach, which automatically identifies permutations of atoms present in the training
set.

sGDML is capable of modeling systems with hundreds of atoms without imposing localization constraints [8]. Despite
its non-parametric nature, sGDML force fields typically utilize around one order of magnitude fewer parameters than
deep neural network architectures, resulting in less costly computational evaluations.

Models employed in the current study were trained using readily available sGDML code (version 1.0.2) with default
settings (cf. [9] and github.com/stefanch/sGDML). Hyperparameter search of σ was performed from 10 to 200 with a
step of 10. Models for Challenge I were trained using the analytic solver, while models for Challenges II and III employed
the iterative solver.
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1.4 FCHL19∗

The model used in our work for learning energies and forces utilizes a form of sparse Gaussian Process regression[10, 11,
12, 13] (GPR) known as Operator Quantum Machine Learning (OQML).[14, 15] The energies (UU) and forces (FF) on
query atoms are obtained as

U = KOQMLαOQML

F = − ∂

∂r
KOQMLαOQML (2)

where r denotes coordinates of the query atom and the elements of the non-square kernel matrix KOQML are given by

KOQML
iJ =

∑
Iεi

K(qJ ,qI) (3)

with K being a suitable kernel function (gaussian in our work), q denoting atomic representation feature vectors, J
denoting an atom in the training set and I is an atom in the query molecule i. The regression coefficients αOQML are
obtained by solving the following equation via singular value decomposition during training(

Utrain

Ftrain

)
=

(
KOQML

− ∂
∂rK

OQML

)
αOQML (4)

For fast training and prediction we used the recently introduced graphics processing unit (GPU)-accelerated implemen-
tation of approximate kernel methods called Quantum Machine Learning (QML)-Lightning which can provide energy
and force predictions on a microsecond per atom timescale. QML-Lightning relies on approximating the kernel function
K(qJ ,qI) with a lower-dimensional mapping using Random Fourier Features[16] (RFF)

K(qJ ,qI) = 〈φ(qJ), φ(qI)〉 ≈ z(qJ)
T z(qI) =

1

Nf

Nf∑
i=1

e−iwT
i (qJ−qI) (5)

z(qI) = cos(W[qI ,1]
T )

where Nf is the number of independent vectors w drawn from the probability distribution p(w) (which is a Gaussian for a
Gaussian kernel) and W[qI ,1]

T is an affine transformation. The matrix W can be efficiently computed and stored using
structured orthogonal random features (SORF)[17] which replaces it with products of random binary diagonal matrices
(D) and Walsh-Hadamard matrices (H)

WSORF ≈
√
d

σ

[
HD1, ...,HDNf

d

]
(6)

with d denoting the dimension of q and σ is a hyperparameter of the kernel. The feature vectors q are projected onto
2n dimensions via principal component analysis (PCA) in order to be consistent with the Walsh-Hadamard matrices. In
our work NPCA = 128.
The atomic representation feature vector employed alongside QML-Lightning in our work is the atom-centered FCHL19[18]
representation which uses discretized bins of weighted two- and three- body distributions.

1.5 SOAP/GAP
1.5.1 Gaussian Approximation Potentials

Gaussian Approximation Potentials (GAPs) are a widely used class of ML potentials based on sparse Gaussian Process
Regression. The GAP approach has been described extensively in the literature[19, 20, 21, 12]. Here, we provide a brief
overview for completeness.

The GAP models used herein are based on a combination of two-body (2B) and many-body (MB) kernels. The
former use interatomic distances (rij) as descriptors and have been found to improve the stability of the potentials (e.g.
by avoiding close contacts between atoms).[22] For the MB kernels, the Smooth Overlap of Atomic Positions (SOAP)[20]
descriptor is used, which provides a rotationally invariant fingerprint of the local atomic environment of an atom (ξi),
based on spherical harmonics and radial basis functions with a given cutoff rcut.

The GAP energy for a given configuration can then be described as:

EGAP =
∑
i,j

(δ2B)
2

M2B
sparse∑
m=1

c2B,mk2B (rij , rm) +
∑
i

(δMB)
2

MMB
sparse∑
m=1

cMB,mkMB (ξi, ξm) (7)

Here, the total energy in Eq. 7 is composed of 2B and MB terms, with the contributions from each weighted by δ2B
and δMB, respectively. The individual energy contributions in turn consist of trainable regression coefficients c and kernel
functions k, detailed below. The summation for the 2B term is performed for all atom pairs i, j within a predefined cutoff,
while the MB energy accumulates over each atom i. Owing to the sparsification in GAPs, the kernel functions for both
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the 2B and MB components are evaluated only on subsets of M representative points, which are usually significantly
smaller than the total number of training data points. This dramatically decreases the computational costs associated
with training and predictions and breaks the unfavorable scaling of these steps with the size of the training set. However,
it naturally implies that a judicious selection of these sparse points is crucial. Herein, sparse points are sampled uniformly
for the 2B term and selected via CUR decomposition for the MB term.

In the current work, the Gaussian kernel is used as a 2B kernel, and a fourth-order polynomial kernel (ζ = 4) is used
for the MB kernels, as shown in Eq. 8 and 9:

k2B (rij , rm) = exp

(
−‖rij − rm‖2

2σ2
2B

)
(8)

and
kMB (ξi, ξm) = (ξi, ξm)

ζ (9)

Note that in general multiple MB kernels can be combined, often using a high-resolution, small cutoff descriptor and
a low-resolution, large cutoff descriptor. This is also the case herein.

1.5.2 Hyperparameter selection

Hyperparameters Two-body Many-body Unit
M 20 2000

nmax - 8
lmax - 4
σE 0.01 0.01 kcal/mol
σF 6.7×10−4 6.7×10−4 kcal/(mol·Å)

Table SI 1: GAP hyperparameters used in challenge 1 (Ac-Ala3-NHMe) for the largest training set. The values of σE

and σF were reoptimized for smaller training set sizes.

Hyperparameters Two-body Many-body Unit
Complete

M 25 2000
nmax - 8
lmax - 4
σE 0.01 0.01 kcal/mol
σF 5×10−4 ×10−4 kcal/(mol·Å)

Incomplete
M 25 2000

nmax - 6
lmax - 3
σE 0.01 0.01 kcal/mol
σF 6.7×10−4 6.7×10−4 kcal/(mol·Å)

Table SI 2: GAP hyperparameters used in challenge 2 (AcPheAla5Lys peptide) for the largest training set. The values
of σE and σF were reoptimized for smaller training set sizes.

Hyperparameters Two-body Many-body Unit
M 20 2000

nmax - 8
lmax - 4
σE 0.001 0.001 kcal/mol
σF 5×10−5 5×10−5 kcal/(mol·Å)

Table SI 3: GAP hyperparameters used in challenge 3 (1-8-naphthyridine on graphene) for the largest training set. The
values of σE and σF were reoptimized for smaller training set sizes.

For good model performance, the various hyperparameters described above should be set to reasonable values. Fortu-
nately, robust heuristics have been developed for many SOAP and GAP hyperparameters. Specifically, Universal SOAP
descriptors have been defined for the full periodic table in Ref. [23], which facilitates the straightforward setting of critical
hyperparameters such as rcut, σ2B, σMB, etc. Additionally, the wfl package provides a multi-stage fitting scheme, which
automatically determines the kernel weighting hyperparameters δ[24].
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Hyperparameters Two-body Many-body Unit
Unfolded

M 20 2500
nmax - 6
lmax - 3
σE 0.1 0.1 kcal/mol
σF 0.002 0.002 kcal/(mol·Å)

Table SI 4: GAP hyperparameters used in challenge 4 (MAPbI) for the largest training set. The values of σE and σF

were reoptimized for smaller training set sizes.

This leaves a small number of remaining hyperparameters, which can be efficiently determined using limited low-
dimensional grid searches. These are the size of the representative sets used for sparsification (M), the number of radial
and angular basis functions for the SOAP descriptor ( nmax and lmax), and the regularization parameters (σE and σF)
that define target accuracies for energies and forces, in order to avoid overfitting. These are adjusted for each challenge.
The final choices of hyperparameters are presented in Tabs. SI 1–SI 4.

1.6 PhysNet
PhysNet participated in the TEA Challenge 2023.

PhysNet is a ’message-passing’ neural network designed to predict atomic properties[25, 26]. It uses learnable de-
scriptors of atomic environments to estimate the energy contributions (Ei) and partial charges (qi) for individual atoms.
Initially, these descriptors are set as x0

i = eZi , where eZi represents a parameter vector based on the nuclear charge
Zi initialized randomly to values between [−

√
3 . . .

√
3]. These descriptors are then iteratively refined through message-

passing between atoms within a specified cutoff distance (rcut). The trained descriptors are then used to predict the total
energy of the chemical system by summation of the atomic contributions and explicitly including long-range electrostatics
and dispersion according to

E =
∑
i

Ei + ke

Natom∑
i=1

Natom∑
j>i

qiqj
rij

+ ED3
(10)

and the partial charges qi (which are corrected to ensure total charge conservation). Here, ke represents Coulomb’s con-
stant and the second term involving qiqj

rij
is damped to avoid numerical instabilities caused by the singularity at rij = 0

(for details refer to Ref. [26]). The forces F can be obtained using reverse mode automatic differentiation[27] as imple-
mented in Tensorflow[28]. All hyperparameters used in the present work are given in Table SI 5. Various combinations
of hyperparameters for the models were tested, but the results did not differ significantly.
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Table SI 5: Hyperparameters of all models used in this work
Hyperparameter Value Significance

F 128 Dimensionality of feature space
K 64 Number of radial basis functions

Nmodule 5 Number of stacked modular building blocks
Natomic

residual 2 Number of residual blocks for atom-wise re-
finements

N interaction
residual 3 Number of residual blocks for refinements of

proto-message
Noutput

residual 1 Number of residual blocks in output blocks
rcut 10 Å Cutoff radius for interactions in the neural

network

PhysNet models were only trained for the complete data set containing folded and unfolded structures of Ac-Ala3-
NHMe (Challenge 1). The training was performed for training/validation set sizes of [200, 400, 600, 800, 1000] and,
for each data set size, two models were trained on different splits of the data (although keeping training and validation
data fixed.). After initialization, the parameters of PhysNet are optimized using AMSGrad[29] with default parameters
and a learning rate of 10−3. The training was performed with a batch size of 73 and the relative contribution of the
force term is weighted roughly 50 times more than the energies. During training, an exponential moving average of all
parameter values is kept using a decay rate of 0.999. Overfitting is prevented using early stopping. Note that the energies
have been standardized by subtracting the mean energy of the data. The results are reported for the model with lower
MAEs/RMSEs.

All MD simulations which were run for the determination of Rg were carried out using the atomic simulation environment
(ASE)[30]. These were run in the NVT ensemble at 300 K using a Langevin thermostat with a friction coefficient of
10−3, a time step of 0.5 fs and using the model trained on 1000 training points. The radius of gyration, Rg, is calculated
as

Rg =

√√√√∑N
i=1 mi (ri − rCM)

2∑N
i=1 mi

(11)

with all hydrogen atoms excluded.

Fig. SI 1: Energy learning curves for all data set sizes as obtained on the test data set. Two models are trained on
different splits of the train/validation data each.
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Fig. SI 2: Force learning curves for all data set sizes as obtained on the test data set. Two models are trained on different
splits of the train/validation data each.
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Ntrain/Nvalid 200 400 600 800 1000
Valid Test Valid Test Valid Test Valid Test Valid Test

MAE(E) 2.11 2.14 1.93 1.86 1.77 1.74 1.43 1.52 1.13 1.11
RMSE(E) 2.70 2.73 2.41 2.38 2.27 2.24 1.78 1.85 1.45 1.41
MAE(F ) 3.04 3.06 2.35 2.35 2.05 2.09 1.86 1.86 1.67 1.66
RMSE(F ) 4.51 4.59 3.49 3.52 3.13 3.20 2.86 2.85 2.61 2.55

Table SI 6: MAEs and RMSEs on the validation and test (20000 samples) data sets for PhysNet. Errors on energies are
given in kcal/mol while errors on forces are given in kcal/mol/Å

Fig. SI 3: Radius of gyration, Rg for a PhysNet model trained on 1000 training structures of the complete data set (i.e.
containing folded and unfolded structures). Note that the PES was not robust for all the trajectories and the distribution
of Rg was obtained from stable trajectories only. Here, Rg was obtained from an aggregate of ∼ 31.2 ns.
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2 Warm dense Hydrogen benchmark
The following summarises a presentation given at the TEA Challenge (Crash TEsting machine learning force fields:
Applicability, best practices, limitations) workshop on October 23, 2023, at the University of Luxembourg. Details can
be found in Thomas Bischoff, Bastian Jäckl, Matthias Rupp: Hydrogen under Pressure as a Benchmark for Machine-
Learning Potentials[31].

Machine-learning potentials (MLPs) can accelerate ab-initio molecular dynamics simulations by several orders of
magnitude. [32] Their performance is commonly measured as the prediction error in energies and forces on data not used
for training. While low prediction errors on a test set are necessary, they do not guarantee good performance in dynamics
simulations. Even in situations where test-set errors do correlate strongly with simulation performance, it is unclear from
the test-set errors alone if simulation performance will meet expectations.

Evaluating the performance of MLP-accelerated simulations requires physically motivated performance measures
obtained via running MLP-accelerated simulations. The adoption of such measures, however, has been limited by the
effort and domain knowledge required to calculate and interpret them. Overcoming this limitation requires benchmark
automatisation, including benchmark execution and analysis of results.

For this purpose, we created data and scripts to automatically quantify the performance of MLPs in dynamics
simulations of warm dense hydrogen. For this challenging benchmark system, we provide geometries, energies, forces,
and stresses, calculated at the density functional level of theory for different temperatures and mass densities. We also
provide scripts to automatically calculate, quantitatively compare, and visualize pressures, diffusion coefficients, radial
distribution functions, and stable molecular fractions as functions of cell density.

Employing this benchmark, we show that several state-of-the-art MLPs fail to reproduce a crucial liquid-liquid phase
transition. Specifically, we tested the (reparametrised) Yukawa and Tersoff classical empirical potentials, as well as ultra-
fast potentials, [32] PACE, and MACE. Only the MACE model was able to capture the physics of the phase transition
correctly.
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3 Atomic Force MAEs for Challenge I

Fig. SI 4: Atomic Force MAEs for Ac-Ala3-NHMe. Fig. (a) shows a snapshot of the system geometry and atom types:
Carbons – grey, Nitrogens – blue, Hydrogens – white, and Oxygens – red. Figures (b) through (f) display the MAEs for
forces, measured in kcal/(mol·Å), acting on individual atoms within the Ac-Ala3-NHMe. The MAEs correspond to the
MLFFs predictions on the test set and are represented with different colors according to the color bars shown with the
corresponding scaling numbers, different for different MLFFs. Note the rather different absolute scale of the colour bars,
ranging from 0.40 for MACE to 2.77 for sGDML.
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4 Maximum force prediction errors
Figures SI 4, SI 5, and SI 6 illustrate the color-coded force prediction atomic errors for Challenges I, II, and III, respectively,
highlighting the scenarios where the MLFFs deliver the least accurate predictions. The same system geometries, with
atoms colored according to their chemical elements, are displayed adjacent to the absolute force error plots. Please note
that the error scales differ between each figure.

Fig. SI 5: Maximum Atomic Force Errors for Ac-Ala3-NHMe. Figures (a) through (e) display the absolute atomic force
errors, measured in kcal/(mol·Å), acting on individual atoms within the Ac-Ala3-NHMe system for the geometries where
these errors are maximum for the corresponding ML model. The MAX values are represented with different colors
according to the color bars shown with the scaling numbers, different for different MLFFs.
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Fig. SI 6: Maximum Atomic Force Errors for Ac-Phe-Ala5-Lys. Figures (a) through (e) display the absolute atomic
force errors, measured in kcal/(mol·Å), acting on individual atoms within the Ac-Phe-Ala5-Lys system for the geometries
where these errors are maximum for the corresponding ML model. The MAX values are represented with different colors
according to the color bars shown with the scaling numbers, different for different MLFFs.
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Fig. SI 7: Maximum Atomic Force Errors for C8H6N2/C98. Figures (a) through (e) display the absolute atomic force
errors, measured in kcal/(mol·Å), acting on individual atoms within the C8H6N2/C98 system for the geometries where
these errors are maximum for the corresponding ML model. The MAX values are represented with different colors
according to the color bars shown with the scaling numbers, different for different MLFFs.
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5 TASK3: Retrained SO3krates model

Fig. SI 8: Atomic Force MAEs for C8H6N2/C98. The MAEs in kcal/(mol·Å) correspond to the retrained SO3krates
model predictions on the test set and are represented in different colors according to the colour bar shown with the
corresponding scaling numbers.

The significant errors for C atoms on the two borders for SO3krates, observed in Fig. 6, are due to the JAX default
of running in tensorflow32 precision on A100 and H100 GPU. This problem can be alleviated by explicitly disabling ten-
sorflow32 precision (which performs some operations in float16) and instead running training and evaluation in standard
float32 precision. This not only alleviates the boundary effects, as shown in Fig. SI 7, but also gives significantly lower
errors, ranging from 0.09 to 0.32 kcal/(mol·Å)
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6 Normalized errors on the test sets

Challenge MACE SO3 sGDML SOAP/GAP FCHL19∗

I (com)

E 0.54 0.68 3.88 1.20 1.52 7.11 3.87 5.06 27.3 4.14 5.34 32.1 2.70 3.48 16
F 1.01 1.54 53.3 1.99 2.93 91.0 7.77 11.0 143 5.20 8.65 2580 4.99 7.03 152

F(H) 0.80 1.18 64.1 1.67 2.36 82.8 7.07 9.40 155 4.61 6.22 160 4.61 6.30 209
F(C) 1.07 1.49 33.6 2.07 2.81 65.2 7.88 10.4 95.1 5.23 8.18 1850 5.04 6.67 82
F(N) 1.24 1.69 39.6 2.38 3.17 39.9 9.85 13.0 106 5.61 10.6 1890 5.46 7.09 64
F(O) 1.23 1.71 49.8 2.37 3.18 76.0 7.33 9.87 118 6.88 8.96 97.4 5.62 7.43 106

I (fold-fold)

E 0.28 0.36 2.01 0.91 1.14 5.13 2.26 3.00 28.6 2.52 3.25 15.9 1.67 2.15 12
F 0.99 1.51 48.6 1.96 2.87 113 7.41 10.6 148 5.05 7.20 435 4.80 6.74 88

F(H) 0.80 1.18 66.5 1.69 2.40 154 6.74 8.99 133 4.50 6.09 175 4.45 6.04 121
F(C) 1.04 1.45 30.0 2.02 2.72 36.9 7.58 10.1 105 5.10 6.85 309 4.85 6.39 60
F(N) 1.22 1.68 34.8 2.35 3.13 49.2 9.26 12.3 111 5.34 7.10 326 5.32 6.91 63
F(O) 1.22 1.70 46.2 2.30 3.09 57.1 6.86 9.35 116 6.70 8.78 139 5.36 7.06 69

I (fold-unfold)

E 0.79 1.02 4.80 2.34 2.79 10.3 18.4 26.1 112 5.34 6.67 25.9 6.39 8.33 31.7
F 1.33 2.08 57.4 2.52 3.79 60.7 13.6 19.7 207 5.91 8.47 114 5.88 8.51 108

F(H) 1.00 1.47 80.4 2.07 2.99 85.1 12.0 16.5 244 5.19 7.17 159 5.30 7.40 121
F(C) 1.45 2.05 29.5 2.59 3.54 30.1 14.1 18.9 140 5.92 7.90 69.6 6.04 8.13 77
F(N) 1.60 2.16 26.1 3.10 4.21 34.8 16.6 21.7 151 6.44 8.43 80.7 6.54 8.62 68
F(O) 1.77 2.39 28.7 3.18 4.32 35.8 13.2 18.1 147 7.96 10.4 111 6.63 8.80 83

I (unfold-unfold)

E 0.84 0.98 3.36 1.14 1.43 6.37 3.20 5.31 92.7 3.35 4.33 16.2 2.14 3.01 31.6
F 0.84 1.33 45.7 1.66 2.45 60.8 6.38 9.37 231 4.76 6.67 109 4.33 6.06 98

F(H) 0.72 1.09 55.5 1.48 2.07 61.6 6.07 8.36 323 4.42 5.92 121 4.24 5.80 132
F(C) 0.87 1.26 20.0 1.68 2.32 43.4 6.35 8.74 109 4.78 6.31 56.1 4.24 5.59 47
F(N) 1.00 1.45 33.4 1.93 2.63 36.6 7.79 10.6 119 4.88 6.35 79.5 4.62 6.08 71
F(O) 0.98 1.40 28.2 1.86 2.52 34.1 5.76 8.02 88.5 5.90 7.66 56.5 4.66 6.12 67

I (unfold-fold)

E 2.08 2.70 11.3 1.95 2.36 10.2 53.1 70.7 319 4.40 5.62 22.6 9.17 12.9 75
F 2.08 3.82 131 2.93 4.52 113 22.9 34.5 468 6.44 9.59 503 8.83 13.6 353

F(H) 1.39 2.45 180 2.32 3.67 154 20.9 32.7 641 5.67 8.67 689 8.39 13.7 484
F(C) 2.19 3.69 53.3 3.03 4.21 73.0 22.3 30.5 278 6.14 8.34 194 7.85 10.9 162
F(N) 2.91 4.15 96.4 3.73 4.96 56.2 28.5 37.8 236 7.62 10.2 221 11.8 16.2 151
F(O) 3.37 5.27 69.2 3.92 5.42 104 26.4 37.8 314 9.33 12.8 180 10.9 15.5 294

II (comp)

E 0.35 0.45 4.97 0.80 1.00 4.19 6.12 8.40 43.9 12.8 16.0 69.6 3.94 4.99 23
F 0.59 0.88 170 1.57 2.37 455 7.19 10.6 280 25.5 35.1 1910 8.09 11.3 621

F(H) 0.52 0.75 238 1.40 2.04 409 6.69 9.45 393 24.7 33.5 1630 7.59 10.2 871
F(C) 0.60 0.83 37.7 1.59 2.22 62.0 7.19 9.88 137 26.6 34.4 404 8.37 11.0 305
F(N) 0.68 0.93 90.4 1.84 2.54 333 9.08 12.4 176 23.6 30.4 879 8.10 10.4 222
F(O) 0.74 1.03 115 1.89 2.61 221 6.97 9.85 192 25.5 33.4 1930 8.77 11.5 183

II (incom-incom)

E 0.36 0.51 20.6 0.65 0.83 14.4 7.90 11.3 60.7 13.8 17.2 60.3 3.87 4.88 24
F 0.53 0.85 420 1.49 2.28 442 6.31 9.55 279 26.1 35.8 2170 8.06 11.2 636

F(H) 0.48 0.86 587 1.35 2.06 617 5.85 8.42 390 25.1 33.9 2420 7.54 10.2 889
F(C) 0.53 0.74 65.6 1.50 2.11 137 6.31 8.89 119 27.6 35.4 389 8.31 10.9 317
F(N) 0.61 0.90 129 1.69 2.40 196 7.96 11.1 120 24.1 31.2 1590 8.10 10.4 224
F(O) 0.65 0.97 182 1.79 2.57 412 6.17 8.98 256 25.0 32.2 490 8.88 11.7 555

II (incom-unkn)

E 0.44 0.56 2.59 0.92 1.17 6.31 60.9 71.6 346 16.2 20.3 82.3 5.33 6.81 35
F 0.70 1.07 80.4 1.83 2.82 173 13.1 18.5 497 25.9 35.7 1060 8.29 11.6 263

F(H) 0.57 0.85 75.0 1.53 2.33 245 13.7 19.9 702 25.2 34.1 1130 7.78 10.6 293
F(C) 0.73 1.01 28.1 1.90 2.69 65.2 12.1 15.9 154 27.4 35.2 395 8.52 11.2 156
F(N) 0.85 1.12 34.1 2.19 2.95 78.6 15.4 20.0 167 23.9 30.9 774 8.44 10.9 175
F(O) 0.92 1.28 79.7 2.29 3.18 123 13.3 17.8 201 24.3 31.4 397 9.00 11.9 261

III

E 0.14 0.18 0.73 0.24 0.30 1.81 0.26 0.33 1.54 0.75 0.92 2.83 211 211 219
F 0.21 0.34 18.8 2.48 4.12 194 1.00 1.66 54.2 2.51 3.36 308 6.39 8.46 842

F(H) 0.42 0.58 14.9 1.87 2.66 57.4 1.19 1.72 18.4 2.92 4.18 165 8.59 11.4 892
F(C) 0.19 0.31 18.5 2.51 4.16 191 0.98 1.62 50.0 2.47 3.29 303 6.26 8.26 828
F(N) 0.52 0.76 10.7 2.05 2.90 51.6 1.74 2.71 47.1 3.57 4.73 80.9 8.52 11.2 348

F(mol) 5.90 7.90 67.0 28.3 37.8 243 8.03 12.0 130 76.6 128 965 197 299 2011

IV

E 0.45 0.58 1.93 0.68 0.85 2.75 - - - 1.49 1.88 6.28 102 106 192
F 1.56 2.14 45.3 1.87 2.63 36.9 - - - 4.00 5.50 66.9 26.4 34.0 642

F(H) 1.10 1.47 43.6 1.19 1.57 22.3 - - - 2.63 3.46 64.4 24.8 32.1 618
F(C) 0.85 1.12 19.2 0.91 1.17 18.6 - - - 2.39 3.04 32.7 12.3 16.2 322
F(N) 0.96 1.24 11.5 1.03 1.31 8.10 - - - 2.44 3.09 22.9 13.4 17.3 283
F(Pb) 4.80 6.17 55.1 7.02 8.90 44.1 - - - 14.3 18.0 114 58.4 73.9 589
F(I) 4.72 6.22 86.2 6.18 8.16 60.6 - - - 11.9 15.5 118 66.2 84.1 799

F(mol) 6.20 8.03 102 6.12 7.77 63.0 - - - 15.0 19.1 141 171 217 1449

Table SI 7: MAE, RMSE, and MAX errors for relative energy and forces are reported in %, w.r.t. the mean absolute
energies and forces in the reference DFT datasets.
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Challenge MACE SO3 sGDML SOAP/GAP FCHL19∗

I (com)

E 1.86 2.35 13.5 4.16 5.26 24.6 13.4 17.5 94.7 14.3 18.5 111 9.35 12.0 56.3
F 0.75 1.14 39.5 1.47 2.17 67.5 5.77 8.22 106 3.86 6.41 1920 3.70 5.21 112

F(H) 0.61 0.89 48.5 1.27 1.79 62.7 5.36 7.12 117 3.49 4.71 121 3.49 4.77 158
F(C) 0.85 1.18 26.6 1.64 2.22 51.6 6.24 8.25 75.3 4.14 6.48 1460 3.99 5.28 65.0
F(N) 0.97 1.31 30.8 1.85 2.47 31.0 7.67 10.1 82.7 4.36 8.28 1470 4.25 5.52 50.3
F(O) 0.92 1.27 37.2 1.77 2.37 56.7 5.47 7.36 87.9 5.13 6.68 72.7 4.19 5.54 79.4

I (fold-fold)

E 1.56 2.00 11.1 5.06 6.29 28.4 12.5 16.6 158 14.0 18.0 88.3 9.26 11.9 69.4
F 0.73 1.12 36.0 1.45 2.13 83.7 5.50 7.88 110 3.75 5.34 323 3.56 5.00 65.7

F(H) 0.60 0.89 50.2 1.27 1.81 117 5.09 6.79 101 3.40 4.60 132 3.36 4.56 91.5
F(C) 0.82 1.15 23.8 1.60 2.16 29.2 6.00 8.00 83.5 4.04 5.42 245 3.84 5.06 48.2
F(N) 0.95 1.30 27.1 1.82 2.43 38.3 7.20 9.58 86.3 4.15 5.52 253 4.13 5.37 49.4
F(O) 0.91 1.27 34.5 1.72 2.31 42.7 5.12 6.99 86.6 5.00 6.56 104 4.00 5.28 51.5

I (fold-unfold)

E 2.58 3.37 15.8 7.70 9.19 33.9 60.6 85.7 368 17.5 21.9 85.0 21.0 27.4 104
F 0.99 1.54 42.5 1.87 2.81 45.0 10.1 14.6 154 4.38 6.28 84.3 4.36 6.31 80.1

F(H) 0.77 1.12 61.3 1.58 2.28 64.9 9.19 12.6 186 3.96 5.47 122 4.04 5.65 92.4
F(C) 1.15 1.62 23.3 2.05 2.80 23.8 11.1 15.0 111 4.69 6.26 55.1 4.78 6.44 61.1
F(N) 1.25 1.68 20.3 2.42 3.28 27.2 12.9 16.9 118 5.02 6.57 62.9 5.10 6.72 53.1
F(O) 1.32 1.78 21.4 2.37 3.21 26.6 9.83 13.4 109 5.92 7.75 82.4 4.93 6.54 62.4

I (unfold-unfold)

E 2.75 3.22 11.1 3.76 4.71 21.0 10.5 17.5 305 11.0 14.2 53.1 7.05 9.89 104
F 0.62 0.98 33.9 1.23 1.82 45.1 4.73 6.95 171 3.53 4.95 80.7 3.21 4.49 73.0

F(H) 0.55 0.83 42.3 1.13 1.58 47.0 4.63 6.38 247 3.37 4.51 92.0 3.23 4.42 101
F(C) 0.69 0.99 15.9 1.33 1.84 34.4 5.03 6.92 86.5 3.79 5.00 44.4 3.36 4.43 37.5
F(N) 0.78 1.13 26.0 1.50 2.05 28.5 6.07 8.29 92.6 3.80 4.95 62.0 3.60 4.74 56.0
F(O) 0.73 1.04 21.0 1.38 1.88 25.4 4.28 5.96 65.8 4.39 5.70 42.0 3.46 4.55 50.5

I (unfold-fold)

E 11.5 15.0 62.5 10.8 13.1 56.6 294 392 1770 11.0 14.2 53.1 50.8 71.2 418
F 1.55 2.84 97.4 2.17 3.35 83.7 17.0 25.6 348 4.78 7.12 373 6.55 10.1 262

F(H) 1.05 1.85 136 1.75 2.77 117 15.8 24.7 484 4.29 6.55 520 6.34 10.3 365
F(C) 1.73 2.92 42.2 2.40 3.33 57.7 17.6 24.2 220 4.86 6.61 154 6.21 8.61 128
F(N) 2.26 3.23 74.9 2.90 3.86 43.6 22.1 29.4 184 5.92 7.94 172 9.14 12.6 117
F(O) 2.52 3.93 51.7 2.93 4.05 77.8 19.7 28.3 234 6.97 9.54 134 8.11 11.6 220

II (com)

E 1.51 1.95 21.7 3.51 4.37 18.3 26.8 36.8 192 55.9 69.9 305 17.2 21.8 103
F 0.43 0.65 125 1.15 1.74 333 5.28 7.80 205 18.7 25.8 1400 5.93 8.26 456

F(H) 0.38 0.56 176 1.04 1.51 302 4.93 6.97 290 18.2 24.7 1200 5.60 7.56 643
F(C) 0.47 0.65 29.6 1.24 1.74 48.6 5.64 7.75 107 20.9 27.0 317 6.57 8.59 239
F(N) 0.53 0.72 69.8 1.42 1.96 257 7.02 9.57 136 18.3 23.5 680 6.26 8.05 171
F(O) 0.55 0.77 85.6 1.40 1.94 164 5.18 7.32 142 19.0 24.8 1430 6.52 8.56 136

II (incom-incom)

E 1.60 2.24 90.7 2.84 3.67 63.1 34.7 49.5 267 60.7 75.5 265 17.0 21.5 105
F 0.39 0.63 309 1.10 1.68 324 4.63 7.01 205 19.1 26.3 1590 5.91 8.23 467

F(H) 0.35 0.64 434 1.00 1.52 456 4.32 6.22 288 18.5 25.1 1787 5.57 7.52 656
F(C) 0.41 0.58 51.5 1.18 1.66 108 4.96 6.98 93.2 21.7 27.8 305 6.52 8.51 249
F(N) 0.47 0.70 100 1.31 1.86 152 6.15 8.60 92.4 18.6 24.2 1230 6.26 8.06 173
F(O) 0.48 0.72 136 1.33 1.92 307 4.60 6.69 191 18.6 24.0 365 6.61 8.72 414

II (incom-unkn)

E 1.57 2.01 9.28 3.28 4.17 22.6 218 256 1240 57.8 72.7 294 19.1 24.3 125
F 0.51 0.78 58.8 1.34 2.07 127 9.62 13.5 364 19.0 26.1 7790 6.07 8.50 192

F(H) 0.42 0.63 55.2 1.12 1.72 180 10.1 14.7 517 18.5 25.1 832 5.73 7.80 216
F(C) 0.57 0.79 22.0 1.49 2.11 51.1 9.48 12.5 120 21.5 27.6 310 6.68 8.79 123
F(N) 0.65 0.87 26.4 1.69 2.28 60.7 11.9 15.4 129 18.5 23.8 598 6.52 8.40 135
F(O) 0.68 0.95 59.0 1.69 2.35 91.0 9.87 13.2 149 18.0 23.2 294 6.66 8.79 193

III

E 0.90 1.14 4.68 1.52 1.91 11.6 1.70 2.13 9.85 4.84 5.90 18.1 1360 1360 1410
F 0.16 0.25 14.3 1.88 3.13 148 0.76 1.26 41.2 1.90 2.55 233 4.85 6.42 639

F(H) 0.30 0.42 10.8 1.36 1.94 41.9 0.86 1.26 13.4 2.13 3.04 120 6.26 8.29 650
F(C) 0.15 0.23 14.1 1.92 3.17 146 0.74 1.24 38.2 1.88 2.51 231 4.78 6.30 632
F(N) 0.39 0.57 8.02 1.55 2.18 38.9 1.31 2.04 35.4 2.68 3.56 60.9 6.41 8.45 262

F(mol) 3.25 4.35 36.9 15.6 20.8 134 4.42 6.59 71.4 42.2 70.7 531 108 165 1107

IV

E 3.04 3.93 13.1 4.59 5.74 18.7 - - - 10.1 12.7 42.6 693 718 1300
F 1.08 1.48 31.2 1.29 1.82 25.4 - - - 2.76 3.79 46.1 18.2 23.5 443

F(H) 0.85 1.13 33.4 0.92 1.20 17.1 - - - 2.02 2.65 49.4 19.1 24.6 474
F(C) 0.68 0.89 15.3 0.73 0.93 14.9 - - - 1.91 2.42 26.1 9.83 12.9 257
F(N) 0.76 0.99 9.09 0.81 1.04 6.42 - - - 1.93 2.45 18.2 10.6 13.7 224
F(Pb) 3.77 4.84 43.3 5.51 6.99 34.7 - - - 11.2 14.1 89.9 45.9 58.0 462
F(I) 3.61 4.75 65.9 4.72 6.23 46.3 - - - 9.11 11.8 90.2 50.6 64.2 610

F(mol) 4.82 6.24 79.3 4.76 6.04 49.0 - - - 11.7 14.8 110 133 169 1126

Table SI 8: MAE, RMSE, and MAX errors for relative energy and forces are reported in %, w.r.t. the standard deviations
of the energies and forces in the reference DFT datasets.
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