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1. Datasets with four reaction conditions 
1.1  Dataset preprocessing, featurization, and distribution of best conditions 
1.1.1 Deoxyfluorination dataset (Figure 3A) 

 
Figure S1. (A) Reagents used in the deoxyfluorination dataset. (B) Portion of substrates each reagent pair 
is best for. Each exploded portion corresponds to a sulfonyl fluoride. (C) Histogram of best rank when four 
bases are selected with PBSF.  

 The deoxyfluorination dataset1 includes reactions of 32 alcohol substrates subject 

to a total of 20 reaction conditions, combining five sulfonyl fluorides and four bases (Figure 

S1A). Physical descriptors were used as features of all compounds as provided in the 

previous work.1 Choosing the most reactive sulfonyl fluoride PBSF is an effective choice, 

being the best fluorination reagent for 17 out of 32 alcohols (54%, Figure S1B). Of the 

remaining 15 substrates where the best condition does not use PBSF, the best rank 

achieved among the four bases in combination with PBSF is still within the top-4 in six 

substrates (Figure S1C). Therefore predicting the best base for each sulfonyl fluoride was 

considered as a more difficult problem, and the dataset was divided up accordingly for 

subsequent analysis.  
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Figure S2 shows the portion of each base being the highest yielding with sulfonyl 

fluoride separation. While BTPP and MTBD are effective across all sulfonyl fluorides, 

there are at least five substrates where BTMG performs best, making the reaction 

condition prediction problem sufficiently interesting for tests of ML models. 

  

 
Figure S2. Portion of substrates in the deoxyfluorination dataset each base is the best for, for each 
sulfonyl fluoride. 

 

1.1.2 C–X coupling dataset (Figure 3B) 
This dataset explored the coupling of a pharmaceutically relevant molecule 2-bromo-

N-(2-(piperazin-1-yl)phenyl)thiazole-4-carboxamide (3) with various types of 

nucleophiles.2 A large number of reaction conditions (24 or 32 depending on nucleophile 

type) were evaluated on a handful of exemplary building blocks to narrow down to a 

focused set of four reaction conditions tailored for each nucleophile type. The latter 

portion was used in this study after preprocessing as described below. The distribution of 
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the top-performing conditions of each nucleophile dataset after preprocessing is shown 

in Figure S3. 

 
Figure S3. Portion of substrates in C–X coupling datasets that each candidate reaction condition returns 
highest yields after processing. 

The dataset originally evaluated 32 amide nucleophiles. For the convenience of 

descriptor preparation, secondary amides were removed, resulting in 24 primary amide 

substrates. In the final form of the dataset, BTMG was the base used in the top condition 

for over 80% of the substrates (Figure S3A). 

The amine nucleophile class originally included 96 building blocks. In this work, 

secondary amines were removed to make the set more amenable to descriptor 

preparation, leaving 61 primary amines under consideration. The number of substrates 

that each reaction condition works best for are relatively well spread-out. The portion of 

the dataset that the base P2Et is in the top condition is 61%. Conditions that use 

tBuXPhos as ligand comes on top in 61% of the dataset (Figure S3B).  
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The sulfonamide portion of the dataset with 32 substrates was used as is. Similar to 

the amide nucleophiles, the two reaction conditions that employ MTBD as base dominate 

as best condition, being the best for 84% of the substrates (Figure S3C). 

The initial thiol dataset included 48 substrates. We filtered out thiols that had ties in 

yield. While ties are not a problem, evaluations without ties allows us to judge the 

differentiating ability of each ML algorithm. After all, if two of the reaction conditions give 

the top results, there is a 50% chance of selecting one of them out of the four possible 

choices. Results with the full dataset after excluding substrates where the yields are the 

same between all four conditions are shown below in Table S1. Removing ties removed 

29 thiols (their specific composition described in subsection below), leaving 19 substrates. 

While the combination AdBrettPhos with BTMG is effective in 9 out of 19 substrates, two 

conditions that use P2Et as base are the best conditions for similar numbers of substrates 

(Figure S3D).  

To extract physical descriptors for the nucleophiles considered here, lowest energy 

conformers were obtained using rdkit’s AllChem.EmbedMultipleConfs() function.3 Then, 

geometry optimization was conducted using density functional theory (DFT), at B3LYP/6-

311G* level of theory through Q-Chem 5.2.4 A total of 10 descriptors were extracted as 

follows. Energies of the highest occupied molecular orbital (HOMO), lowest unoccupied 

molecular orbital (LUMO), dipole moment, natural bond order (NBO) charge of the atom 

forming the new bond (S of thiol and N for other nucleophiles) and the carbon adjacent to 

this heteroatom were collected. The optimized geometry was further processed with the 

python package MORFEUS5 to compute buried volume around the heteroatom, L, B1 

and B5 sterimol parameters6 from the X–C bond and its length. Descriptors of bases and 

catalysts, which are only used by regressors, were used as is from a previous study.7 

 
Evaluation on thiol dataset after removing substrates that have same yield values 
for all four reaction conditions 

In the original reaction dataset of 48 thiols described above, a significant number of 

substrates had two or more reaction conditions that resulted in the same yield values. 

Specifically, 7 thiol substrates had same yields for all four reaction conditions. In addition, 

17 out of the remaining 41 substrates had either two or three reaction conditions yielding 
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the same value at the top. Lastly, there also were 5 substrates had ties between 

conditions that were not the best. The MRR scores achieved by each RF-based algorithm 

on the original dataset that includes these 29 substrates with ties are shown and 

compared against that on the processed dataset without these substrates below in Table 

S1. With over half of the dataset having ties, even if different models recommend different 

reaction conditions, in many cases they will obtain the same reciprocal rank score. This 

is supported by the fact that the difference between the maximum and minimum score is 

the smallest, compared to results from all datasets in Figure 4A. The lower scores when 

ties are included is due to MRR being computed as the reciprocal of the average rank of 

ties (e.g., if the top two are ties, then MRR = 1 / ((1 + 2) / 2) = 0.667, instead of 1).  

 
Table S1. MRR scores of each algorithm on the thiol dataset when 29 substrates with ties are included 
and excluded. 

MRR Baseline RFR RFC LRRF RPC 
Ties included 0.553 0.534 0.530 0.557 0.567 

Ties excluded 
(row 9 in Figure 4A) 

0.636 0.636 0.614 0.724 0.618 

 
1.1.3 C–N bond formation under four distinct (photo)catalytic conditions (Figures 

3C, 3D) 
Both datasets – one that couples 4-phenylpiperidine (4) with 192 electrophiles and the 

other that couples 192 nucleophiles with 3-bromo-5-phenylpyridine (8) – were processed 

as follows. First, substrates where all four reaction conditions failed to give product were 

removed. Then, substrates provided with an invalid smiles string, such as those with 

generic R groups or left empty were removed. As a result, 161 electrophiles coupling with 

4 remained, while 171 nucleophiles were left in the dataset coupling with 8. 
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Figure S4. Distribution of each reaction condition being the highest yielding for substrates in the whole 
amine (left) and whole bromide (right) datasets.  

 Non-photoredox conditions gave the highest yields for most substrates in both 

datasets, accounting for over 90% the cases. Specifically, when the electrophile was fixed 

(whole amine dataset; left of Figure S4), Pd catalysts were dominantly the best. This is 

presumed to have contributed to the baseline’s high MRR score 0.768 on this dataset. 

On the other hand, when the nucleophile was fixed (whole bromide dataset; right of Figure 

S4), substrate preference of Cu over Pd was more subtle.  

 The same set of 10 DFT descriptors were extracted from substrates as described 

above (last paragraph of Section 1.1.2). The reaction conditions, which are only used by 

regressors, were one-hot encoded due to the qualitative differences in number and form 

of catalysts as well as time and temperature, across the four (reaction condition legend 

in Figure S4). 

 

1.2 Additional studies with fully combinatorial datasets with four reaction 
conditions 

1.2.1 Description of the evaluation setup 
Evaluations were conducted through CV. To simulate the practical situation of making 

predictions for new substrates, substrate splits were used. For the deoxyfluorination 

dataset and the C–X coupling datasets, due to the small number of substrates, they were 

split into 5 groups. In comparison, the two C–N coupling datasets with over 150 substrates 

were split into 4. Specifically, the split was determined by using scikit-learn’s15 
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StratifiedKFold() function, which divided the substrates by the frequency of each reaction 

condition being the best performers.  

To train the models, grid search CV was used. We will call this the ‘inner’ CV to 

differentiate it with the CV used for evaluation described above (which we will call the 

‘outer’ CV). For the C–X coupling datasets, a 3-fold CV was used while 4-fold was used 

for other datasets. Below, the list of parameter grids are presented. 

• RFR: ‘n_estimators’:[30, 100, 200], ‘max_depth’:[5, 10, None] 

• RFC: ‘n_estimators’:[25, 50, 100], ‘max_depth’:[3, 5, None] 

• kNN: ‘n_neighbors’:[3, 5, 10] 

• LRRF: ‘n_estimators’:[25, 50, 100], ‘max_depth’:[4, 6, 8] 

• RPC: ‘n_estimators’:[10, 25, 50, 100], ‘max_depth’:[2, 4, None] 

• IBM and IBPL: ‘n_neighbors’:[3, 5, 10] 

 

1.2.2 Logistic regression and random forest as base model of RPC 
For RPC, technically any machine learning model that can output a predicted 

probability value can be used as the base model. While random forest classifiers were 

used as the base model in the main text, the original literature used logistic regression.16 

In our preliminary studies, using logistic regression as RPC’s base model and 

(concatenated) fingerprints of substrate(s) were compared to RPC with RFC as the base 

model with descriptors as input. In 9 out of 11 cases, using RFC as the base model 

returned higher MRR scores (Table S2, bold green). While a difference of up to 0.124 

(amide dataset) was achieved among cases where using RFC gave a higher score, in the 

opposite case, the maximum difference was 0.057 (sulfonamide dataset). Therefore, RFC 

was used as the base model of RPC throughout the study. 
Table S2 .Comparison of MRR scores of RPC based on logistic regression with Morgan fingerprints as 
input to using RFC as base model with physical descriptors as input. Bold green colors show the higher 
score in each dataset. 

Dataset / Base model Logistic regression RFC 
Sulfonyl Fluoride 1 0.598 0.639 
Sulfonyl Fluoride 2 0.702 0.734 
Sulfonyl Fluoride 3 0.653 0.750 
Sulfonyl Fluoride 4 0.678 0.679 
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Sulfonyl Fluoride 5 0.714 0.725 
Amide 0.600 0.724 
Amine 0.691 0.760 

Sulfonamide 0.769 0.712 

Thiol 0.627 0.618 

Whole amine 0.731 0.760 
Whole bromide 0.672 0.719 

 

1.2.3 Performance measured with top-1 accuracy 
Top-1 accuracy measures the portion of cases where the highest yielding condition 

is ranked first by the model. As it is a practically relevant metric, model performances 

measured by this score is shown in Figure S5. Due to the dominance of selecting the 

highest yielding condition on the MRR score, observations made from relative 

performances in MRR scores (Figure 4A) largely hold for top-1 accuracy scores.  

 
Figure S 5. Performance of each model for ranking the four reaction conditions measured by the top-1 
accuracy. Green and bold black numbers correspond to the top and second-best performants in each 
dataset, respectively. 

 

1.2.4 Performance measured with Kendall-tau ranking coefficient 
Kendall-tau coefficient is a statistic that measures how similar two ranks are for the 

set of same objects (reaction conditions).17 Specifically, for all pairs of reaction conditions, 

relative ranks in the actual and predicted are compared. If the preference is the same – 
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for example, if actual ranks and predicted ranks for two reaction conditions are (2,4) and 

(1, 5), respectively, the first reaction condition is preferred over the second in both – they 

are considered ‘concordant’. In the opposite case, the two ranks are ‘discordant’. Kendall-

tau is computed as the difference in the portion of concordant and discordant pairs.  

Although the quality of the whole rank between all reaction conditions is often 

unnecessary in the practice of organic synthesis, it is a valid way of measuring the quality 

of models’ recommendations of reaction conditions. Therefore, model performances 

measured by Kendall-tau coefficient is shown in Figure S6.  

The most significant difference from using MRR as the metric is RFC’s poor 

performance, outperforming the baseline only in 5 out of the 11 cases. This suggests that 

the predicted probability of each reaction condition to be the best from RFC correlates 

poorly with their ranks. RFR does a better job overall since yield prediction is inherently 

relevant to ranking them. However, both LRRF and RPC outperforms them, appearing in 

the top-2 models in 10 and 8 out of 11 datasets, respectively. Altogether, this supports 

the importance of using models that are directly relevant to the problem of interest.  

 
Figure S 6 Performance of each model for ranking the four reaction conditions measured by the Kendall-
tau ranking coefficient. Green and bold black numbers correspond to the top and second-best 
performants in each dataset, respectively.  
 

1.2.5 Adversarial controls with one-hot encoding and random descriptors 
Kendall-tau scores of random forest (RF)-based models are higher when DFT 

descriptors compared to the adversarial controls of using one-hot encodings or random 
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descriptors (Figure S7). This is further supported by t-tests, where p-values are below 

0.01 in most cases (Table S3). 

 

 
Figure S 7. Benefit of using DFT descriptors compared to when (A) one-hot encodings and (B) random 
descriptors are used, measured in Kendall-tau ranking coefficient. 

 
Table S3. P-values from pairwise t-tests of Kendall-tau scores of DFT descriptors against both adversarial 
controls for all RF-based algorithms. 

 vs. one-hot vs. random 

RFR 0.025 0.005 

RFC 0.165 0.006 
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LRRF 0.002 0.002 

RPC 3.5×10-4 1.5×10-6 

 

1.2.6 Comparison of individual predictions of RF-based models 
In this section, a trellis of plots analogous to Figures 4B~4E are shown for all datasets 

comparing all pairs of RF-based models.  

Each heatmap in the right top portion of the trellis compares the rankings of reaction 

conditions selected by two models. Values in the diagonal (top left to bottom right) 

correspond to the number of cases where the two models recommended the same 

reaction condition. Below the diagonal corresponds to cases where the model labeled on 

the left predicted better conditions than the model labeled on the top (and vice versa).  

The left bottom portion of the trellis shows yield differences between each pair of 

models. Green and blue bars correspond to substrates where the model labeled on the 

left predicted better than the model labeled on top and vice versa, respectively.  

The values along the diagonal of the trellis correspond to the MRR scores shown in 

Figure 4A.  
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Deoxyfluorination dataset 

 
Figure S 8. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the sulfonyl fluoride 1 portion of the deoxyfluorination dataset. Green and blue bars correspond 
to substrates where the model labeled on the left predicted better than the model labeled on top and vice 
versa, respectively. Diagonal values correspond to the MRR scores of each model as shown in Figure 4A 
row 1. 
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Figure S 9. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the sulfonyl fluoride 2 portion of the deoxyfluorination dataset. Green and blue bars correspond 
to substrates where the model labeled on the left predicted better than the model labeled on top and vice 
versa, respectively. Diagonal values correspond to the MRR scores of each model as shown in Figure 4A 
row 2. 
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Figure S 10. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the sulfonyl fluoride 3 portion of the deoxyfluorination dataset. Green and blue bars correspond 
to substrates where the model labeled on the left predicted better than the model labeled on top and vice 
versa, respectively. Diagonal values correspond to the MRR scores of each model as shown in Figure 4A 
row 3. 
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Figure S 11. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the sulfonyl fluoride 4 portion of the deoxyfluorination dataset. Green and blue bars correspond 
to substrates where the model labeled on the left predicted better than the model labeled on top and vice 
versa, respectively. Diagonal values correspond to the MRR scores of each model as shown in Figure 4A 
row 4. 
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Figure S 12. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the sulfonyl fluoride 5 portion of the deoxyfluorination dataset. Green and blue bars correspond 
to substrates where the model labeled on the left predicted better than the model labeled on top and vice 
versa, respectively. Diagonal values correspond to the MRR scores of each model as shown in Figure 4A 
row 5. 
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C–X coupling datasets 

 
Figure S 13. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the amide dataset. Green and blue bars correspond to substrates where the model labeled on 
the left predicted better than the model labeled on top and vice versa, respectively. Diagonal values 
correspond to the MRR scores of each model as shown in Figure 4A row 6. 
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Figure S 14. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the amine dataset. Green and blue bars correspond to substrates where the model labeled on 
the left predicted better than the model labeled on top and vice versa, respectively. Diagonal values 
correspond to the MRR scores of each model as shown in Figure 4A row 7. 
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Figure S 15. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the sulfonamide dataset. Green and blue bars correspond to substrates where the model 
labeled on the left predicted better than the model labeled on top and vice versa, respectively. Diagonal 
values correspond to the MRR scores of each model as shown in Figure 4A row 8. 
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Figure S 16. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the thiol dataset. Green and blue bars correspond to substrates where the model labeled on 
the left predicted better than the model labeled on top and vice versa, respectively. Diagonal values 
correspond to the MRR scores of each model as shown in Figure 4A row 9. 
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C–N coupling dataset  

 
Figure S 17. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the whole amine dataset. Green and blue bars correspond to substrates where the model 
labeled on the left predicted better than the model labeled on top and vice versa, respectively. Diagonal 
values correspond to the MRR scores of each model as shown in Figure 4A row 10. 
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Figure S 18. Trellis of (above diagonal) heatmaps of quality of predictions measured by rank and (below 
diagonal) yield differences when different reaction conditions are suggested for all pairs of RF-based 
models in the whole bromide dataset. Green and blue bars correspond to substrates where the model 
labeled on the left predicted better than the model labeled on top and vice versa, respectively. Diagonal 
values correspond to the MRR scores of each model as shown in Figure 4A row 11. 

  



  S-23 

1.3 When one of the four reaction conditions are missing 
1.3.1 Description of the evaluation setup 

The same CV procedure described in section 1.2.1 was used for evaluation, but with 

a layer of data-masking to simulate missing data. For each CV fold, outcomes of the 

specified number of reaction conditions are randomly erased for each substrate in the 

training dataset. Algorithms are trained on this masked data and evaluated on the left-out 

validation set. This is conducted 10 times with different sets of data-masks. The results 

are reported as an average across these masks and CV folds. 

 

1.3.2 Results 

 
Figure S 19. Average MRR score of each algorithm on datasets where each substrate is missing 25% of 
reactions. Green and bold black numbers correspond to the top and second-best performants in each 
dataset, respectively. 

 

Overall, the trend in relative performance, measured by MRR, between models 

(Figure S19) are consistent to when fully combinatorial data are available (Figure 4A). 

The baseline is a poor performant. Among RF-based models, the trend of LRRF being 

the top-performant, followed by RPC and RFR is consistent. However, RFC is now the 

last in terms of average rank among the four, probably due to cases where the best 

reaction conditions being removed by the mask. Instance-based models showed poor 

performance, with IBM being worse than the baseline in average. 
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Figure S 20. Performance of each model for ranking the four reaction conditions measured by the top-1 
accuracy when 25% of the data are missing for each substrate in the training data. Green and bold black 
numbers correspond to the top and second-best performants in each dataset, respectively. 

 

 The observations made from MRR scores largely hold for top-1 accuracy scores 

(Figure S20) with LRRF and RPC recording the top-2 in terms of overall rank across 

datasets. However, RFC is now higher in average rank than RFR. The relatively higher 

top-1 accuracy and lower MRR scores show that RFC can still identify the highest yielding 

conditions with a small portion of missing data to some degree but when it fails to do so, 

its utility is lower than RFR. Instance-based models showed similar trends, with kNN and 

IBPL being only slightly more accurate than the baseline. 
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Figure S 21. Performance of each model for ranking the four reaction conditions measured by the 
Kendall-tau ranking coefficient when 25% of the data are missing for each substrate in the training data. 

 

The performance measured by Kendall-tau ranking coefficient is shown above in 

Figure S21. Although RFR was fourth in average rank for predicting the top reaction 

condition (Figure S20), the quality of the complete ranking it provides is high, being placed 

as the best in 5 out of 11 datasets. This is then followed by RPC and LRRF coming in a 

comparable average rank, despite the difference when performance was measured in 

MRR. This implies that RFR’s ranking of reaction conditions were more accurate in the 

lower placements. Rankings provided by RFC, which are based on predicted probabilities 

of a condition being the top performant, are better than the baseline in only 5 out of 11 

datasets. All instance-based models resulted in a lower average rank than the baseline. 
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1.4 Additional studies when two of the four reaction conditions are missing 
1.4.1 Performance measured in top-1 accuracy 

 
Figure S 22. Performance of the baseline and RF-based models for ranking the four reaction conditions 
measured by top-1 accuracy when 50% of the data are missing for each substrate in the training data. 

 Similar to previous case studies, relative trends in top-1 accuracy (Figure S22) are 

similar to MRR scores (Figure 6A). LRRF performs the best overall being one of the top-

2 performants in 9 out of 11 datasets.  

 
1.4.2 Performance measured in Kendall-tau 

 
Figure S 23. Performance of the baseline and RF-based models for ranking the four reaction conditions 
measured by the Kendall-tau ranking coefficient when 50% of the data are missing for each substrate in 
the training data. 
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 When 50% of the training reaction data were missing, LRRF was overall the best 

in terms of Kendall-tau score coming on top in 4 of 11 datasets (Figure S23). RFR showed 

similar performance showing highest scores in 3 of 11 datasets. The average rank of RPC 

was notably lower than these two algorithms in contrast to previous cases where it was 

the second best. This implies RPC’s weakness under significant missing data stems from 

inability to correctly order the lower performing reaction conditions compared to RFR and 

LRRF. RFC, consistent with the previous results, is incapable of ordering the set of four 

reaction conditions relative to the other RF models, supporting the low correlation 

between predicted probability values and yields.  
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1.4.3 Decrease in MRR score due to incomplete data in all datasets 
 

 
Figure S 24.Decrease in MRR of each algorithm on all datasets when 50% of the training dataset is 
available compared to the fully combinatorial case. 

 

Figure S 25. P-values from t-tests of values of MRR decrease for all pairs of RF-based models. 

 

With these evaluations in hand, the robustness of each algorithm to missing data was 

compared next. Figure S24 shows the decrease in MRR when 50% of the training data 

is masked, compared to having the full data (extension of Figure 5B). The absolute size 

of the dataset does not seem to correlate with the extent of the decrease in MRR, as the 

values in the two rightmost columns (the largest datasets with >150 substrates) are 
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comparable to those in other columns (19 substrates in the thiol dataset). Also, the 

algorithm that degrades the most in performance are different for different datasets. In all, 

comparison of these values by pairs of algorithms does not show statistical significance 

under the datasets used in this study (Figure S25). 

 
1.4.4 Kernel density estimation of standard deviation of MRR in all evaluations 

with missing data 

 
Figure S 26. Kernel density estimation plots of standard deviation of MRR scores across data masks, 
collected across cross-validation folds and datasets. 

 Figure S26 presents the Kernel density estimation plots across all datasets under 

different numbers of missing reactions. The distribution in the C–N coupling datasets 

(Figure S26C and S26F) are the narrowest among the three groups of datasets, by 

roughly a factor of two. This is likely due to them being the largest dataset, allowing the 

models to learn how relative performances between conditions are correlated to substrate 

features despite the missing data.  

Under the same dataset group (each column in Figure S26), when the number of 

missing reactions increases, there is a notable shift of distribution of MRR standard 

deviations to wider ranges for RFC and LRRF. This can be attributed to the algorithms 

being vulnerable to the actual best condition being masked out. Between the LR 
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algorithms, when only one reaction is missing, LRRF’s distribution of MRR standard 

deviation is narrower than RPC, while it is the opposite when two reactions are masked.  

 
2 Datasets with a larger number of possibilities 
2.1 Dataset preprocessing, featurization, and distribution of best conditions 
2.1.1 Ullmann dataset (Figure 3E) 

The Ullmann dataset was curated in two steps in the original report.12 The first set of 

ligands were selected manually from the literature. The results showed that 6 ligands that 

closely bind to Cu (less than 2.07Å) were important for obtaining yields above 20%. Based 

on this observation, 12 more ligands were selected and the combined set of 18 ligands 

were evaluated against more substrate pairs. In this study, substrate pairs that have been 

evaluated with these 18 ligands were used for evaluating label ranking (LR). The DFT 

descriptors provided in the reference12 were used as is. 

 
Figure S 27.Portions of each ligand being the best for the substrates in the Ullmann dataset. Ligands in 
the top-4 in terms of average yield are marked blue. 

 In agreement with the Ullmann reaction’s perceived sensitivity of reaction condition 

to substrates, the best ligand turns out to be different for different substrates (Figure S27) 

and thus presents an interesting case for reaction condition prediction.  

 

2.1.2 Nickel-photoredox dataset  
Dual nickel-photoredox catalysis has shown to catalyze various useful 

transformations18,19, including C–N coupling. This mode of coupling has been evaluated 

using HTE on complex aryl halides that are representative of drug-like molecules. 
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Specifically, 18 (hetero)aryl halide informers have previously been subject to a total of 96 

reaction conditions to identify robust nickel-photoredox dual catalytic reaction conditions 

for C–N coupling.8 The 96 conditions were all combinations between 12 iridium 

photocatalysts, 4 nickel:photocatalyst ratio values, 2 amine stoichiometry values.  

 

 
Figure S 28.Overview of the substrates and photocatalysts which are subsets taken from the original 
dataset, used in this study. 

To process the dataset, substrates that consistently returned below 20% yield were 

removed, leaving 11 informers (Figure S28). Then, the photocatalysts were filtered. 

Among the photocatalysts, 7 of them which returned below 20% yield in 9 out of the 11 

informers were also removed. Representation of the reaction components was done as 

follows: 

• Substrates: Instead of the 10 physical descriptors listed in Section S1.1.2, 1024-bit 

Morgan fingerprints with radius 3 was used to capture the structural diversity.  
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• Photocatalysts: Three physical measures – reduction potential from their excited 

triplet to doublet, reduction potential from their doublet to triplet form, and maximum 

absorption wavelength – were collected from the literature.9–11 

• Stoichiometry values were one-hot encoded. 

 

  
Figure S 29. Distribution of each combination of photocatalyst, catalyst ratio being the highest yielding for 
informers for each stoichiometry value of piperidine: (a) 1.5 equiv and (B) 3.0 equiv. Reaction conditions 
included in the top-4 in terms of average yields are marked blue. 

 When 1.5 equiv. of piperidine was used, a diverse set of reaction conditions gave 

the highest yields for different informers (Figure S29A). Recommending a fixed reaction 

condition for substrates is therefore unlikely to be effective. Among the four conditions 

selected by the baseline, three of them show up as a top condition (marked blue in Figure 

S29A) and are successful in only 45% of the cases. In contrast, when 3.0 equiv. of 

piperidine was used, only 4 out of 20 conditions appear at the top. Moreover, one of them 

was the best for 6 out of 11 substrates (Figure S29B).  

 

2.1.3  C–H borylation dataset  
Selective C–H borylation reactions are valuable as the product provides a handle to 

couple with other building blocks through Suzuki coupling. In the previous report,20 to 

develop a model that can predict yield and regioselectivity of C–H borylation of 40 

substrates, 6 ligands and 4 solvents that are commonly used for this transformation were 
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evaluated. Among these reagents, 2 ligands and 1 solvent that consistently returned poor 

yields were removed as these reagents do not show up within the top-4. This modification 

is reasonable since it is practical to focus on reaction conditions that are promising for 

future substrates after initial evaluation. This leaves a total of 12 reaction conditions to 

choose from. From the 40 initial substrates, those that gave at least three positive yields 

were kept, leaving 16 substrates. 

Due to the high diversity in substrate structure and C–H bonds where the reaction 

occurs, instead of DFT descriptors, Morgan count fingerprints of length 1024 and radius 

of 3 was used for all algorithms. For the regressors, one-hot encoding was used for ligand 

features while five solvent parameters (dipole moment, Hansen D, P and H parameters 

and Abraham Vx parameter) were extracted from the ACS solvent selection tool.13 

 
Figure S 30. Portions of substrates each reaction condition was the highest yielding. The three ligand, 
solvent combinations that return the highest average yields are marked blue. 

Consistent with other datasets that screened more than 10 reaction conditions, the C–

H borylation dataset also show different reaction conditions being the most effective for 

different substrates (Figure S30). 

 

2.1.4 Aryl halide borylation dataset  
Nickel-catalyzed borylation of aryl (pseudo)halides presents another way to prepare 

valuable cross-coupling partners while also amenable to subsequent Suzuki coupling in 

the same pot. To further understand this important reaction, a previous report evaluated 

this reaction on 33 diverse substrates using 23 different ligands.14 In the file provided by 

the authors, three reaction datapoints were missing. By filling these missing datapoints 
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with 0% yield, the dataset became a fully combinatorial grid of 33 substrates reacting with 

23 ligands. Provided physical descriptors of all reaction components were used as is.14  

 
Figure S 31. Portions of substrates each ligand was the highest yielding. Four ligands that give the 
highest average yields are marked blue. 

 The distribution of the best ligand for each substrate was wide for both solvents 

(Figure S31). For both solvents, ligands 5, 18 and 19 are those that gave highest average 

yield across all substrates. They turn out to be the best ligand with the highest frequencies, 

accounting for 45% and 63% of the substrates in MeOH and EtOH datasets, respectively 

(portions of Figure S31 for ligands marked with blue).  

 
2.2 Evaluation setup 

Like the evaluations of algorithms on datasets with four reaction conditions, CV was 

used for datasets with a larger number of possibilities. The grid of parameters used for 

each model was the same as before (section 1.2.1). The CV-folds used for each dataset 

were defined as below. 
Table S 4. CV splits used for both screening through parameter combinations and evaluations in each 
dataset and the number of reaction conditions selected by each algorithm. 

Dataset Inner-CV  
(parameter screen) 

Outer-CV  
(evaluation) 

Number of 
selections 

Ullmann 4 4 4 

C–H borylation 4 5 3 

Nickel-photoredox Leave-one-out Leave-one-out 4 

Ar–X borylation 4 5 4 
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2.3 Results 
2.3.1 Performance measured in reciprocal rank of the best selected condition 

 
Figure S 32. Performance of each model measured by the reciprocal rank of the best among the multiple 
selected conditions on datasets with more than four reaction conditions to choose from. Green and bold 
black numbers correspond to the top and second-best performants in each dataset, respectively. 

 

2.3.2 Performance measured in average reciprocal rank of all selected conditions 

 
Figure S 33. Performance of each model measured by the average of reciprocal rank of all selected 
conditions on datasets with more than four reaction conditions to choose from. Green and bold black 
numbers correspond to the top and second-best performants in each dataset, respectively. 
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2.3.3 Performance measured in Kendall-tau 

 
Figure S 34. Performance of each model measured by the Kendall-tau ranking coefficient on datasets 
with more than four reaction conditions to choose from. 

 
2.4 Adversarial controls 

Figures S35 and S36 compare the performance of models using fingerprints (C–H 

borylation and nickel-photoredox datasets) or DFT descriptors (aryl halide borylation and 

Ullmann datasets) against one-hot encodings and random descriptors (on datasets with 

DFT descriptors only), respectively. Most notably, in all datasets except the Ullmann 

dataset, the use of ‘meaningful’ features fails to return higher scores than the controls 

(which otherwise would result in bars on the positive side) across all three metrics. This 

might be a result of the combination of two factors. 

1) Dataset structure: the number of substrates to learn from is similar to the number 

of reaction conditions to rank between. Also, the highest yielding reaction 

conditions were diverse, as we saw above in Section S2.1. Together, this makes 

it a challenging problem for ML algorithms. 

2) Descriptors: there is a possibility that the selected descriptors do not correlate with 

the reactivity well. Also, the large number of features compared to the substrates 

make it difficult to extract truly meaningful ones that actually impact outcome. 

Accordingly, only the results from the Ullmann dataset are discussed in the main text.  
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Figure S 35. Benefit of using either fingerprints (left three columns) or DFT descriptors (right three 
columns) compared to when one-hot encodings are used, measured in three different metrics. Bars 
pointing up corresponds to cases where the features scored higher. 
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Figure S 36. Benefit of using DFT descriptors compared to when random descriptors are used, measured 
in three different metrics for datasets that provided the descriptors. Bars pointing up corresponds to cases 
where the features scored higher. 
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2.5  RFR’s individual predictions on all CV folds of the Ullmann dataset 

 
Figure S 37. Scatter plot of actual and RFR-predicted yield values in all CV splits of the Ullmann dataset. 
Each marker corresponds to one test substrate’s results with different ligands. Slope (computed from 
linear regression) approximates the model’s ability to differentiate ligands. 

 For suggesting four best ligands in the Ullmann dataset, RFR showed performance 

comparable to the baseline (Figure 6A). To analyze the poor performance, the predicted 

versus actual yield for test substrate pairs was plotted for each CV fold (Figure S37). The 

slope of each marker (corresponding to one substrate pair) represents ligand’s impact on 

yield that is captured by the model. Out of a total of 28 substrates, 16 show slopes below 
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0.3, indicating RFR’s poor differentiation between ligands. This suggests that the 21 

training substrates were insufficient for RFR to learn how the 18 ligands behave with new 

substrates, despite the significant training dataset size of 336 reactions. 

 This shortcoming is present despite models’ effort to learn the dependency of 

reaction outcome on the substrates. This effort is supported by the sum of feature 

importance of the substrate descriptors being larger than those of the ligand in models of 

all CV folds (Figure S38). Simultaneously, however, the relatively small use of ligand 

descriptors could have led to a difficulty in differentiating between and ranking the ligands, 

which is the goal of this problem.  

 
Figure S 38. Sum of feature importance values of substrate and ligand descriptors in each CV fold in the 
Ullmann dataset. 

 
2.6 Comparison of RFR’s and LRRF’s predictions on the Ullmann dataset 

Lastly, predictions from RFR and LRRF were compared. Out of all 28 substrates, the 

best ligand among the four suggestions from the two algorithms differed in 10 cases 

(Figure S39A). In 8 out of the 10 cases, LRRF included a better choice and 3 cases 

resulted in greater than 10% yield benefit (Figure S39A green bars). The largest yield 

difference was 29% favoring the prediction from LRRF (Figure 6D). In contrast, the yield 
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difference from the two substrate pairs where RFR gave better results was lower than 10% 

(Figure S39A blue bars). In Figure S39A, bars with black borders correspond to cases 

where one algorithm identified the top ligand while the other one could not. Such cases 

are observed with seven green bars, meaning LRRF was able to identify the best ligand 

while RFR could not. However, there was no case where RFR identified the top ligand 

while LRRF was not able to. 

 

 
Figure S 39. (A) Yield difference for cases where the best performing ligands were differently predicted. 
Green and blue bars correspond to substrates where LRRF and RFR made better choices, respectively. 

 

The specific reaction where RFR’s benefit was the largest (rightmost blue bar in Figure 

S39A) – the coupling of S2 and S3 to form S4 – is shown in Figure S39B. RFR 

successfully placed SL2, which gives 94% yield, in the second suggestion. While LRRF 

failed to include SL2 in its prediction, it included SL4 which gave 87% yield. It is similar 

to SL2, also being an electron-poor aniline-derived 2-oxoacetic acid.  
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Figure S 40. Number of overlapping ligands between the sets of four ligands suggested by RFR and 
LRRF. 

One observation similar to the example where LRRF’s benefit was largest (Figure 6D) 

was three out of four ligands (SL1, SL3 and SL4) overlap between RFR’s and LRRF’s list 

of suggestions. Accordingly, the number of overlapping ligands across the two models’ 

predictions were analyzed (Figure S40). There were at least two ligands overlapping 

between the list of ligands suggested by the two models. In nearly three quarters of all 

cases (19 out of 28), the predictions were either completely the same or differed by a 

single ligand. Although this shows the subtle difference between RFR’s and LRRF’s 

predictions, the difference in MRR (Figure 6A) and resulting yields (Figure S39A) support 

the consideration of LRRF over RFR for reactions when more possible conditions are 

present. 
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