Supplementary information

Exploiting the inherent promiscuity of the acyl transferase of the stambomycin polyketide synthase for the mutasynthesis of analogues

Li Su^{a,b,c}, Yaouba Souaibou^{a,b,d}, Laurence Hôtel^b, Christophe Jacob^a, Peter Grün^c, Yan-Ni Shi^{c,e}, Alicia Chateau^f, Sophie Pinel^f, Helge B. Bode^{c,e,g,h,i}, Bertrand Aigle^{b*}, and Kira J. Weissman^{a*}

^aUniversité de Lorraine, CNRS, IMoPA, F-54000 Nancy, France.

^bUniversité de Lorraine, INRAE, DynAMic, F-54000 Nancy, France.

^cMax-Planck-Institute for Terrestrial Microbiology, Department of Natural Products in Organismic Interactions, 35043 Marburg, Germany.

^dIPHC, UMR 7178, CNRS, Université de Strasbourg, Equipe de Chimie Analytique des Molécules Bioactives et Pharmacognosie, Illkirch, France.

^eMolecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.

^fUniversité de Lorraine, CNRS, CRAN, F-54000 Nancy, France

⁹Chemical Biology, Department of Chemistry, Philipps University of Marburg, 35043 Marburg, Germany

^hSenckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany

ⁱCenter for Synthetic Microbiology (SYNMIKRO), University of Marburg, 35043 Marburg, Germany

^{*} Corresponding authors

Materials and Methods

Materials

All reagents and chemicals including the fed mono- and diacids were obtained from Sigma-Aldrich. Oligonucleotide primers were synthesized by Eurogentec (France). The propargyl-malonic acid and 6-bromohexyl-malonic acid were chemically synthesized as described in reference¹.

Strains and media

Unless otherwise specified, all Escherichia coli strains were cultured in LB medium (yeast extract 10 g, tryptone 5 g, NaCl 10 g, distilled water up to 1 L, pH 7.0) or on LB agar plates (LB medium supplemented with 20 g/L agar) at 37 °C. Streptomyces ambofaciens ATCC238772 and its derived mutants were grown in TSB (TSB powder 30 g (tryptone 17 g, soy 3 g, NaCl 5 g, K₂HPO₄ 2.5 g, glucose 2.5 g), distilled water up to 1 L, pH 7.3) or on TSA plates (TSB medium supplemented with 20 g/L agar), and sporulated on SFM agar plates (NutriSoy flour 20 g, D-mannitol 20 g, agar 20 g, tap water up to 1 L) at 30 °C. All strains were maintained in 20% (v/v) glycerol in 2 mL Eppendorf tubes and stored at -80 °C. For fermentation of S. ambofaciens ATCC23877 and its mutants, spores were streaked on TSA with appropriate antibiotics (apramycin 50 μg mL⁻¹, kanamycin 50 μg mL⁻¹, spectinomycin 50 μg mL⁻¹) and after incubation for 48 h at 30 °C, a loop of mycelium was used to inoculate 7 mL of MP5 medium (yeast extract 7 g, NaCl 5 g, NaNO₃ 1 g, glycerol 36 mL, MOPS 20.9 g, distilled water up to 1 L, pH 7.4) supplemented with selective antibiotics and sterile glass beads, followed by incubation at 200 rpm and 30 °C for 24-48 h. Finally, the seed culture was centrifuged (3500 g) and resuspended in 2 mL fresh MP5 before being inoculated into 50 mL MP5 medium in a 250 mL Erlenmeyer flask, and cultivated at 200 rpm and 30 °C for 4 days. Monoacids and diacids were fed to the media at a final concentration of 10 mM after inoculation of seed culture at 24 h incubation.

PCR-targeting based genetic engineering to generate the mutant ATCC/OE484/△483

To render the BAC BAB19ZF4 proficient for selection following conjugation, its chloramphenicol resistance gene was replaced, by a spectinomycin resistance gene cassette sourced from pIJ7783 using a PCRtargeting approach, resulting in BAC3 (Table S3). In order to obtain an in-frame deletion of the samR0483 gene, the primer pair D483 For/D483 Rev (Table S4) was designed to PCR amplify the "FRT+aac(3)IV+oriT+FRT" disruption cassette from pIJ7733, affording PCR fragment K7∆483. The PCR fragment was then electro-transformed into E. coli BW25113/pKD20/BAC3, giving rise to the mutant BAC BAC3 K7Δ483. Subsequently, BAC3 K7Δ483 was introduced into E. coli ET12567/pUZ8002⁴ and then S. ambofaciens ATCC23877 via intergeneric conjugation. The resulting exconjugants (ATCC/\(\Delta 483\) aac(3)/V+oriT) were selected for apramycin resistance and spectinomycin sensitivity. attesting to successful double crossover. The correct mutations were confirmed by PCR using primer pair F483_For/F483_Rev and sequencing. Thereafter, the cassette "aac(3)/V+oriT" was excised by the FLP recombinase encoded by plasmid pUWL-oriT-flp as described previously⁵, leaving an 81 bp scar sequence (mutant ATCC/Δ483). Successful removal of the cassette was verified by PCR using primer pair F483 For/F483 Rev and DNA sequencing. Finally, the LAL regulator overexpression plasmid pOE4846 and the parental vector pIB139 which was used as a control, were transferred into mutant ATCC/\(\triangle 483\), giving rise to the mutants ATCC/OE484/ Δ 483 and ATCC/pIB139/ Δ 483, respectively (**Table S2**). (Note, mutant ATCC/OE484/ Δ 482 was generated in previous work⁶).

Complementation of mutant ATCC/OE484/∆483

The gene *samR0483* and the constitutive promoter *ermEp** (including an RBS) were PCR amplified using primers Comp483_For/Comp483_Rev and ermEp_For/ermEp_Rev (**Table S4**) using ATCC genomic DNA and pIB139 as template, respectively. Two PCR fragments were fused into one fragment

(ermEp*+RBS+samR483) by overlap extension PCR, prior to cloning into the vector pCRTM-Blunt. The fragment was then excised from pCRTM-Blunt by FD *Nhe*I and FD *Spe*I digestion, and then cloned into predigested (FD *Nhe*I and FD *Spe*I) and dephosphorylated (FastAP) vector pOSV809, giving rise to the construct pOSV809-ermEp*-samR483. The vector was then transformed into *E. coli* S17-1 and introduced into mutants ATCC/Δ483/OE484 and ATCC/Δ483/pIB139 via intergeneric conjugation. Kanamycin and apramycin resistant conjugants were selected and verified by PCR with primers pOSV-For/φBT1-attB-Rev and pOSV-Rev/φBT1-attB-For (**Table S4**).

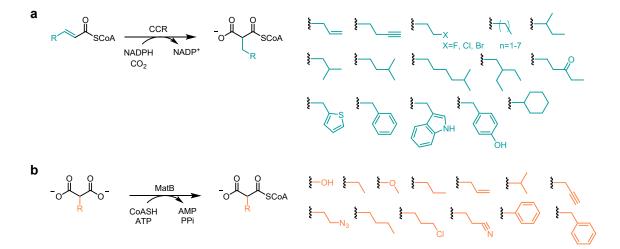
Construction of mutant ATCC/OE484/∆483/MatB_cinna

The gene *matB_cinna* was cloned into an integrative and spectinomycin resistant vector by the group of Prof. Frank Schulz (Ruhr-Universität Bochum, Germany), resulting in the plasmid pRT801_lacZ_PermE_MatB_cinna. The plasmid was then transformed into *E. coli* S17-1⁷ and introduced into mutant ATCC/Δ483/OE484 via intergeneric conjugation. Spectinomycin and apramycin resistant conjugants were selected and verified by PCR with primers pOSV-For/φBT1-attB-Rev and pOSV-Rev/φBT1-attB-For (**Table S4**).

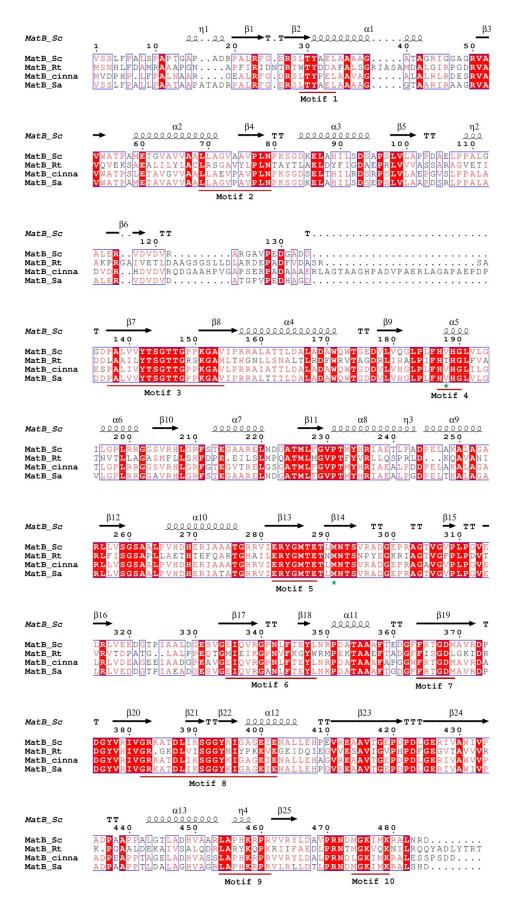
LC-ESI-HRMS analysis of fermentation metabolites

The fermentation broth was centrifuged at 4,000 g for 10 min. The parental stambomycins and their derivatives were then extracted from the mycelia by first resuspending the cells in 40 mL distilled water, followed by centrifugation (4,000 g, 10 min, repeated 3×) to remove the water-soluble components. After decanting the water, the cell pellets were weighed and extracted with MeOH by shaking at 150 rpm for 2 h at room temperature. Thereafter, the MeOH extracts were filtered to remove the cell debris, followed by rotary evaporation to dryness. The obtained extracts were dissolved in MeOH, whose volume was determined according to the initial weight of the mycelia (70 µL MeOH to 1 g of cell pellet). The resulting mycelial extracts were then centrifuged at 16,000 g at 4 °C for 20 min and analysed in heated positive electrospray (HESI+) mode by HPLC-HRMS on either a Thermo Scientific Orbitrap LTQXL or an Orbitrap ID-X Tribrid Mass Spectrometer using an Alltima™ C18 column (2.1 × 150 mm, 5 μm particle size). Separation was carried out with Milli-Q water containing 0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B) using the following elution profile: 0-48 min, linear gradient 5-95% solvent B; 48-54 min, constant 95% solvent B; 54-60 min, constant 5% solvent B. Mass spectrometry operating parameters were: spray voltage, 5 kV; source gases were set respectively for sheath gas, auxiliary gas and sweep gas at 30, 10, and 10 arbitrary units min⁻¹; capillary temperature, 275 °C; capillary voltage, 4 V; tube lens, split lens and front lens voltages 155, -28, and -6 V, respectively. Due to the much lower sensitivity of the Orbitrap LTQXL relative to the Orbitrap ID-X Tribrid as described previously8, we introduced a 10× correction factor to the yields determined using the Orbitrap LTQXL. Quantification was achieved by adding erythromycin (1 mM) as internal standard during the extraction process. Alternatively, the yield of stambomycins from parental and mutasynthesis strains were determined using the stambomycin standard curve generated previoulsy⁸, based on the integrated areas of EIC (extracted ion chromatogram) peaks.

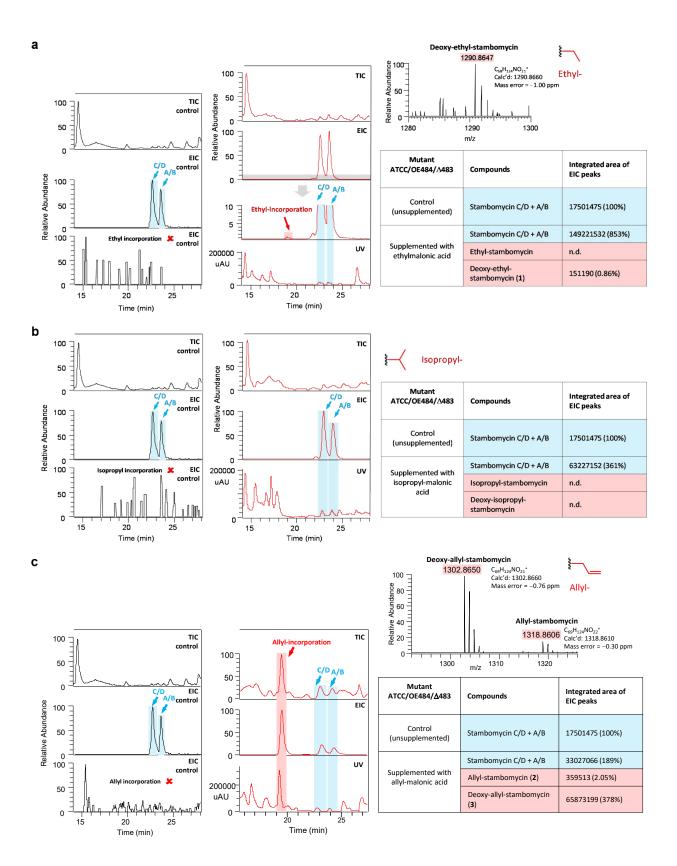
NMR spectra were acquired on Bruker AV 500 and AV600 (only used for deoxy-allyl-stambomycin measurements) spectrometers, using the residual solvent peaks as reference. The spectra were processed using MestReNova 15.0.1 software. Coupling constants (*J*) are given in Hz.

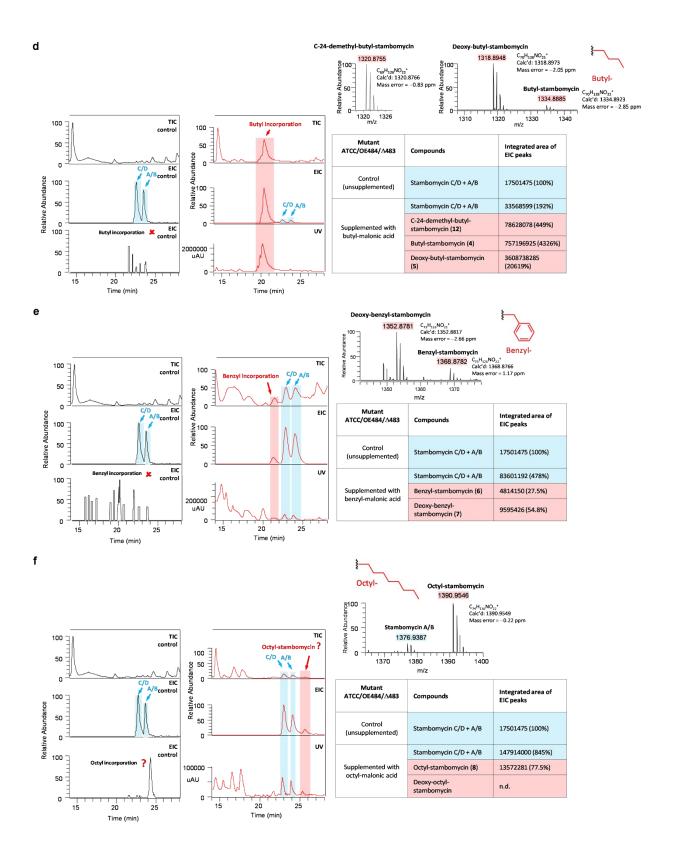

Isolation and purification of mutasynthetic stambomycin analogues

In order to isolate allyl- and butyl-incorporated stambomycin analogues, 85×50 mL flasks of fermentation culture for ATCC/ Δ 483/OE484/MatB_cinna and 50×50 mL flasks culture for ATCC/ Δ 483/OE484 were cultivated in the presence of 10 mM fed allyl- and butylmalonic acids, respectively. The crude allyl-fed extract (18 mL in MeOH) and butyl-fed extract (12 mL in MeOH) were subjected to Agilent preparative HPLC system and a Waters Xbridge BEH C18 column (19 × 250 mm). The two extracts were separated by


using acetonitrile/ H_2O containing 0.1% formic acid with the elution profile of 0–2 min 10% acetonitrile, then 2–27 min linear gradient 5–95% acetonitrile at the flow rate of 20 mL min⁻¹ to yield four purified compounds deoxy-butyl-stambomycin (36.3 mg), butyl-stambomycin (11.6 mg), C-24-demethyl-stambomycin (3.1 mg), and deoxy-allyl-stambomycin (1.8 mg). Details for the HPLC separation are also summarized in **Table S8**.

Antibacterial and antiproliferative tests


The antibacterial activities of the four purified stambomycin analogues were analysed by loading 1 μ L of the compounds at 10 mM and at various dilutions (from 1:2 to 1:20) onto a lawn of the Gram-positive bacteria *Bacillus subtilis* ATCC6633 and *Micrococcus luteus* ATCC10240, or the Gram-negative bacterium *Escherichia coli* DH5 α^9 . One microliter of DMSO, the solvent used to resuspend the purified analogues, was used as a control. The plates were incubated overnight at 30 °C (*B. subtilis*) or 37° C (*M. luteus* and *E. coli*). For the antiproliferative activities on tumour cells, MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assays were carried out to measure the effects of the stambomycin analogues on the metabolic activity of two cancer cell lines, U87-MG glioblastoma cells (brain cancer) (ATCC HTB-14) and MDA-MB-231 cells (breast cancer) (ATCC HTB-26). Briefly, U87-MG and MDA-MTB-231 cells (200 μ L at 1.5 \times 10⁴ cells mL-1) were seeded in 96-well plate. Drug treatment was carried out 48 h later. After 48 h, the cells were incubated with 0.625 mg ml-1 MTT for 3 h, and then the absorbance was measured at 560 nm using a microplate reader (Multiskan Ascent, ThermoFisher). For completeness, cell viability was assessed by cell counting (number of cells mL-1) using a TC20 automated cell counter (Bio-Rad). All the assays were performed in triplicate via three independent experiments, and the concentrations that induced 50% of cytotoxicity (IC50) were calculated using the Prism 5.00 software.



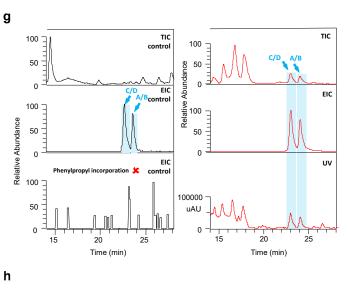
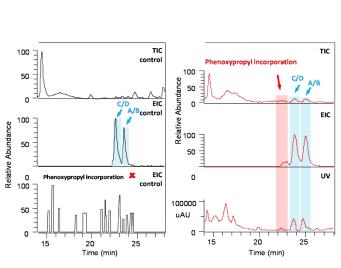
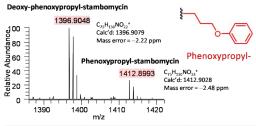
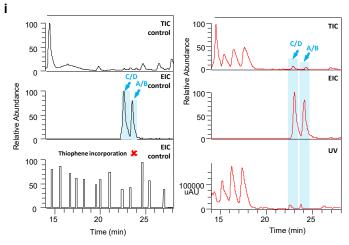

Figure S1. Biosynthesis of CoA-linked polyketide synthetase extender units. **a)** CCR enzymes (e.g. AntE¹⁰, SalG¹¹ and SpnE¹², etc.) and their engineered variants catalyse the reductive carboxylation of CoA-linked α,β -unsaturated acyl-CoA via utilization of one reducing equivalent of NADPH, to afford malonyl-CoA analogous. **b)** MatB (e.g. MatB_Sc¹³ from *S. coelicolor*, MatB_cinna¹ from *S. cinnamonesis* and MatB_Rt¹⁴ from *Rhizobium trifolii*, etc.) and derived mutants are capable of generating the CoA derivatives of a broad range of malonate analogues, via an ATP-dependent reaction.

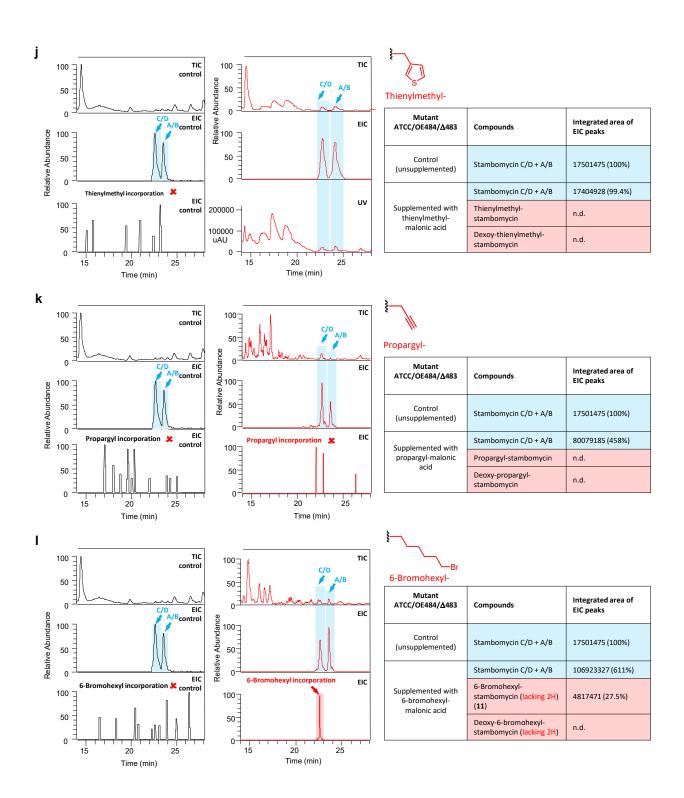
Figure S2. Sequence alignment of MatB-type enzymes. The secondary structure of MatB_Sc (PDB 3NYQ:A) is shown at the top. Residues which are strictly conserved are indicated in white on a red background, while relatively conserved residues are indicated in red. The red underlines represent conserved core motifs for adenylate-forming enzymes, of which motifs 4 and 5 are known to bind the carboxylated substrates and stabilize the formation of the adenylate intermediates¹³. The green stars refer to two hydrophobic amino acids mutated in MatB_Rt¹⁴, which on the basis of the elucidated structure of MatB_Sc are likely to influence the promiscuity of MatB-type enzymes for α-substituted malonate derivatives. MatB_Sa, WP_053130319, MatB from *S. ambofaciens*; MatB_Sc, 3NYQ:A, MatB from *S. coelicolor*; MatB_cinna, MatB from *S. cinnamonensis* (no available accession number but the amino acid sequence was published previously¹⁵); MatB_Rt, AAC83455, MatB from *R. trifolii*. MatB_Sa exhibits 90%, 75% and 39% amino acid sequence identity respectively to MatB_Sc, MatB_cinna and MatB_Rt.

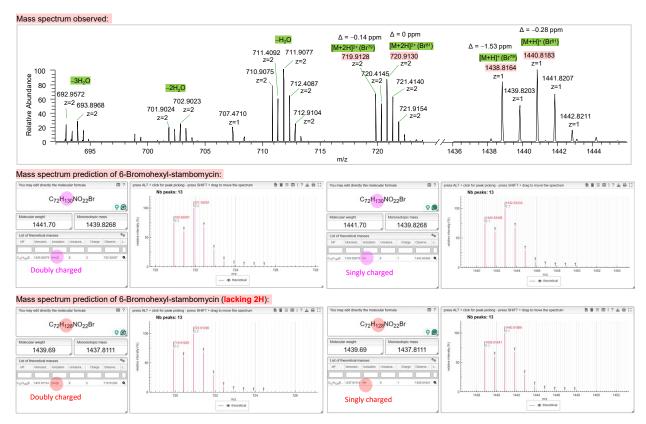


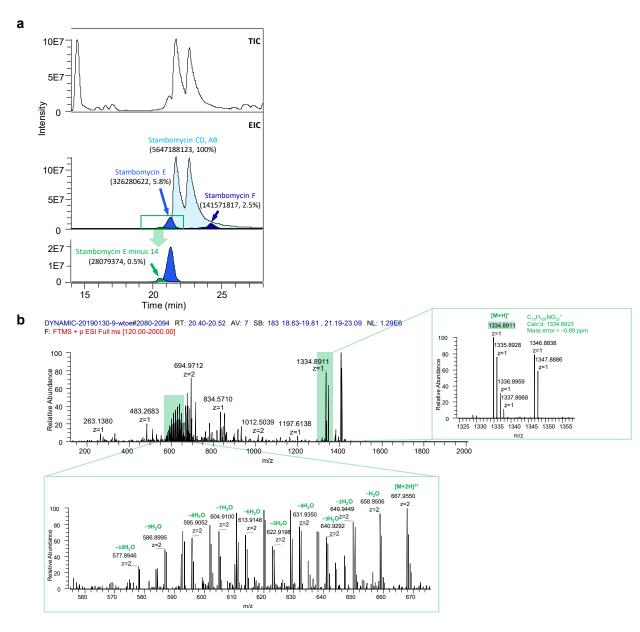




Filettytptopyt-						
Mutant ATCC/OE484/ <u>∆</u> 483	Compounds	Integrated area of EIC peaks				
Control (unsupplemented)	Stambomycin C/D + A/B	17501475 (100%)				
	Stambomycin C/D + A/B	103429282 (591%)				
Supplemented with phenylpropyl-	Phenylpropyl- stambomycin	n.d.				
malonic acid	Deoxy-phenylpropyl- stambomycin	n.d.				


Mutant ATCC/OE484/∆483	Compounds	Integrated area of EIC peaks		
Control (unsupplemented)	Stambomycin C/D + A/B	+ A/B 17501475 (100%)		
Supplemented with phenoxypropyl-malonic acid	Stambomycin C/D + A/B	40699658 (233%)		
	Phenoxypropyl- stambomycin (9)	1916650 (10.9%)		
	Deoxy-phenoxypropyl- stambomycin (10)	2366663 (13.5%)		




Thiophenyl-

Mutant ATCC/OE484/Δ483	Compounds	Integrated area of EIC peaks	
Control (unsupplemented)	Stambomycin C/D + A/B	17501475 (100%)	
Supplemented with	Stambomycin C/D + A/B	14692173 (83.9%)	
thiophene-malonic	Thiophene-stambomycin	n.d.	
aciu	Deoxy-thiophene- stambomycin	n.d.	

Figure S3. Analysis by mass spectrometry and UV detection of crude extract from the mutasynthesis strain ATCC/OE484/Δ483 supplemented with various malonic acid alternatives in comparison to the control ATCC/OE484/Δ483 without supplementation. In each case are shown: the TIC, EIC and UV₂₃₈ of crude fedextracts, the mass spectrum of the corresponding stambomycin analogues, and the production levels of both the analogues and the native stambomycins A–D based on the integrated area of EIC peaks (average of at least two independent fermentations). The relative yield of stambomycins/analogues in the fed strain is also shown, which was calculated based on the production of stambomycins (C/D + A/B) by the mutasynthesis strain ATCC/OE484/Δ483 in the absence of supplementation (set to 100%). " n.d." indicates compounds which were not detected. (Note: the measured masses for the product resulting from incorporation of 6-bromohexyl-malonic acid exhibit a strong M+2 peak, and the characteristic bromine isotopic pattern. However, the observed mass is 2 Da lower than expected, which we propose arises from over-oxidation at the C-28 position.) All experiments were conducted in triplicates (see details in **Table S7**).

Figure S4. Analysis by mass spectrometry of the crude extract from the parental ATCC/OE484. **a)** TIC of the crude extract of ATCC/OE484 and the EIC of stambomycins A–F (representative of two replicates). The production of stambomycins E and F are only 5.8% and 2.5% of stambomycins A–D, as judged on the basis of relative peak areas. We also detected a mass consistent with stambomycin E minus 14, which we attribute to selection by module 13 of malonyl-CoA extender unit instead of the typical methylmalonyl-CoA. Nevertheless, malonyl-CoA remains favoured by AT_{13} as the yield of stambomycin E (5.8%) is 12-times higher than the putative demethyl-stambomycin E (0.5%) in the parental strain. **b)** Mass spectra of dimethyl-stambomycin E, showing the characteristic multiple water losses⁸.

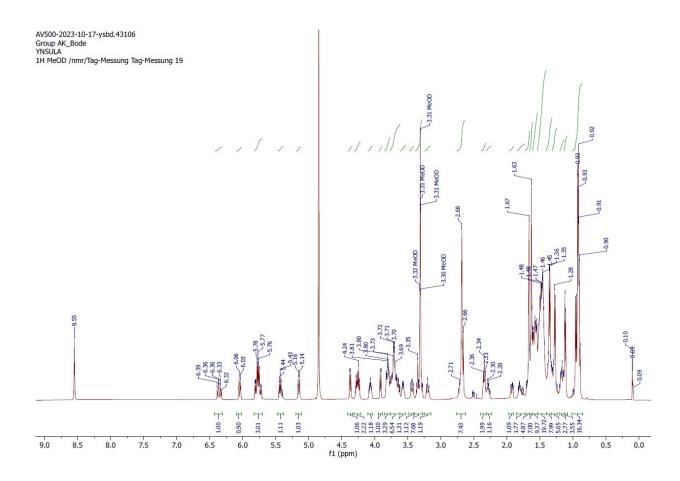


Figure S5. ¹H NMR spectrum of deoxy-butyl-stambomycin (5).

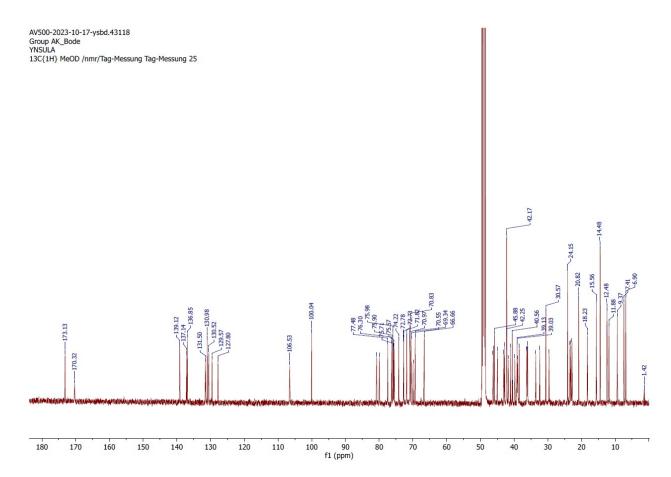
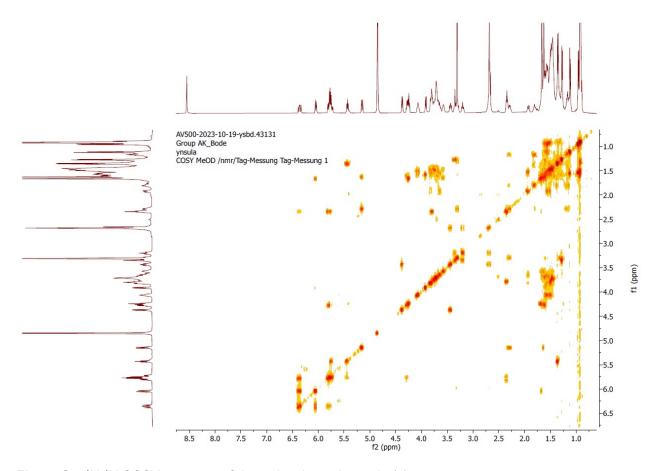



Figure S6. ¹³C NMR spectrum of deoxy-butyl-stambomycin (5).

Figure S7. ¹H-¹H COSY spectrum of deoxy-butyl-stambomycin (**5**).

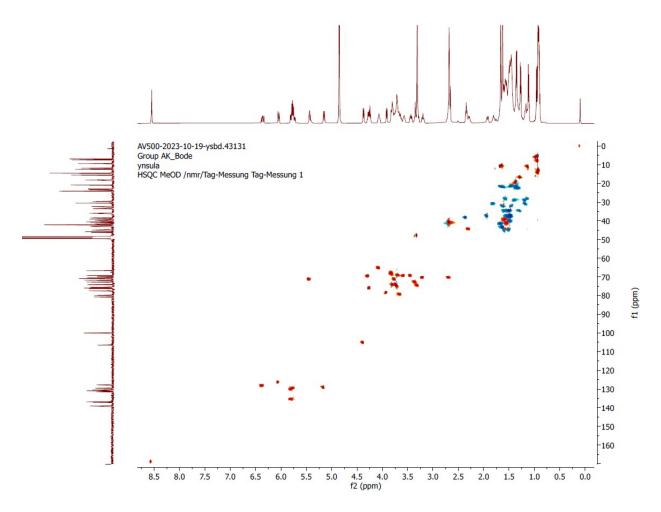


Figure S8. [¹H, ¹³C]-HSQC spectrum of deoxy-butyl-stambomycin (5).



Figure S9. [¹H, ¹³C]-HMBC spectrum of deoxy-butyl-stambomycin (5).

Position	δC (ppm)	δH (ppm)	HMBC	Position	δC (ppm)	δH (ppm)	HMBC
1	173.1			24-Me	11.8	1.63	
2	43.0	2.70	10.0	25	129.5	6.36	15.0, 10.9
3	100			26	42.2	2.64	
4	45.8	2.29		1"	32.4	1.15, 1.81	
4-Me	12.4	1.11		2"	24.1	1.30, 1.35	
5	80.7	3.65		3"	36.2	1.58	
6	39.1	1.46, 1.90		4"	15.5	0.91	
1'	106	4.37	7.4	27	76.3	3.70	
2'	70.5	3.68	10.6, 9.6	28	23.1	1.43	
3'	71.8	3.19		29	29.6	1.13, 1.56	
3'-NMe ₂	42.1	2.66		30	35.9	1.46	
4'	70.8	3.43	10.3, 7.4	31	69.3	3.81	
5'	74.2	3.35	9.4	32	46.2	1.47	
6'	18.2	1.28	5.9	33	66.6	4.07	
7	69.9	3.81		34	39.7	2.35	
8	40.5	1.57		35	72.7	3.75	
8-Me	9.3	0.93		36	41.0	1.57	
9	79.9	3.91	7.3	36-Me	14.4	0.91	
10	137.1			37	30.5	1.18, 1.38	
10-Me	12.4	1.66		38	38.9	1.47, 1.94	
11	127.8	6.04	10.8	39	75.9	3.30	7.3
12	130.5	5.15	15.0, 10.2	40	41.7	1.48	
13	131.5	5.78	15.4, 8.3	40-Me	6.9	0.91	
14	40.4	2.66		41	75.9	3.70	
15	75.7	3.72		42	33.5	143, 1.60	
16	42.8	1.62		43	22.8	1.43	
16-Me	7.4	0.96		44	39.0	1.54, 1.91	
17	75.5	3.79		45	71.8	2.68	
18	36.1	1.56, 1.46		46	46.1	1.57	10.5.65
19	23.4	1.59, 1.34		47	70.9	4.27	12.7, 6.7
20	38.4	1.45		48	136.8	5.77	15.4, 8.3
21	70.8	3.57		49	130.9	5.73	6.4
22	44.9	1.6	1.5	50	72.7	5.44	6.4
23	77.4	4.23	6.7	51	20.8	1.35	6.4
24	139.1						

Figure S10. Structure and summary of the NMR data for deoxy-butyl-stambomycin (**5**). The 13 C NMR spectrum exhibits signals accounting for 70 carbons. Comparison of the 1 H and 13 C NMR data acquired on deoxy-butyl-stambomycin with that reported for stambomycin C⁶, revealed that the two compounds share the same macrocyclic structure, except for the alkyl chain present at position C-26. The HMBC correlations of H-50 ($\delta_{\rm C}$ 5.44) with the C-1 ($\delta_{\rm C}$ 173.1), C-51 ($\delta_{\rm C}$ 72.7), C-49 ($\delta_{\rm C}$ 130.9) and C-48 ($\delta_{\rm C}$ 136.8), show that a closed macrocycle is present. Connections between carbons and their respective protons were assigned based on the HSQC spectrum. The coupling constant are indicated in the table above when possible. Together, these data confirmed the identity of the metabolite as deoxy-butyl-stambomycin.

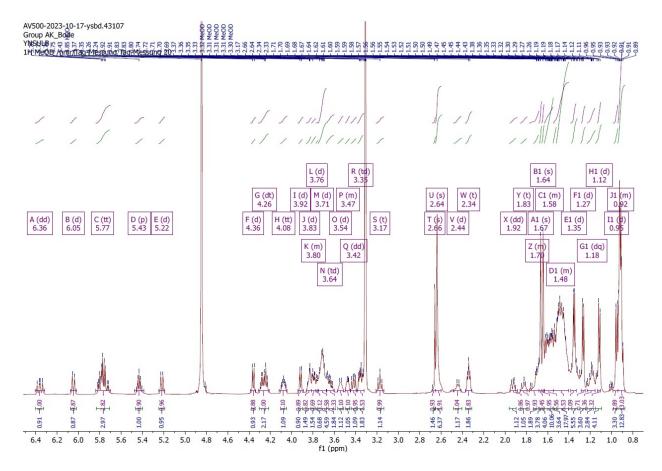


Figure S11. ¹H NMR spectrum of butyl-stambomycin (4).

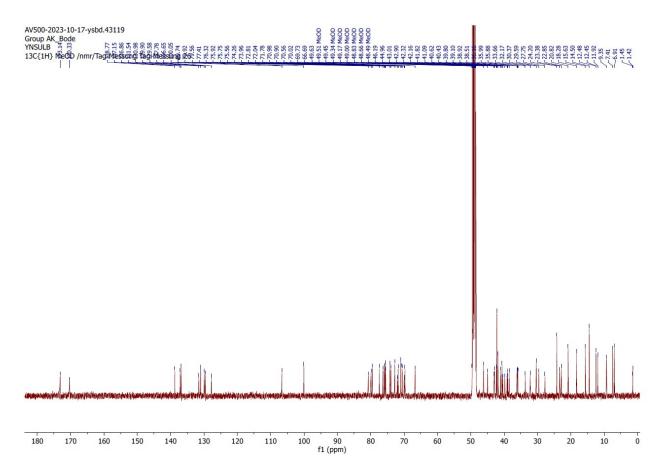


Figure S12. ¹³C NMR spectrum of butyl-stambomycin (4).

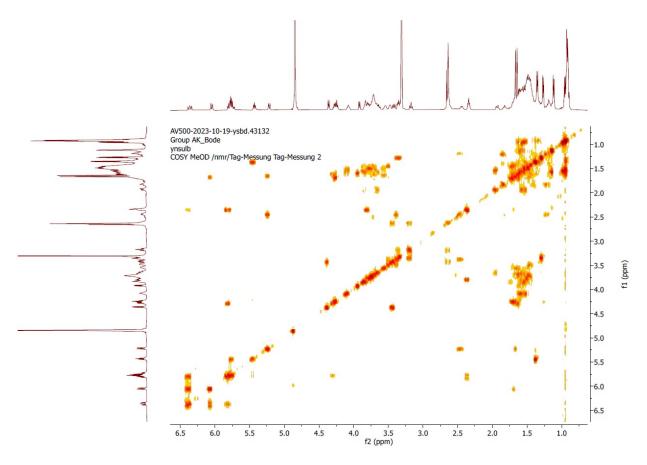


Figure S13. ¹H-¹H COSY spectrum of butyl-stambomycin (4).

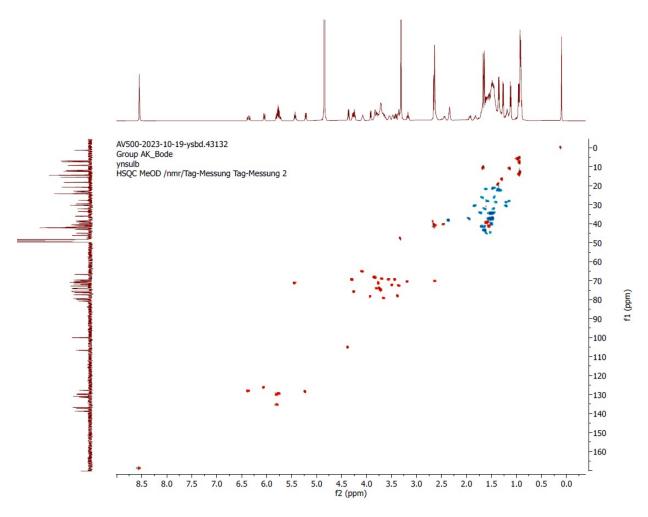


Figure S14. [¹H, ¹³C]-HSQC spectrum of butyl-stambomycin (4).

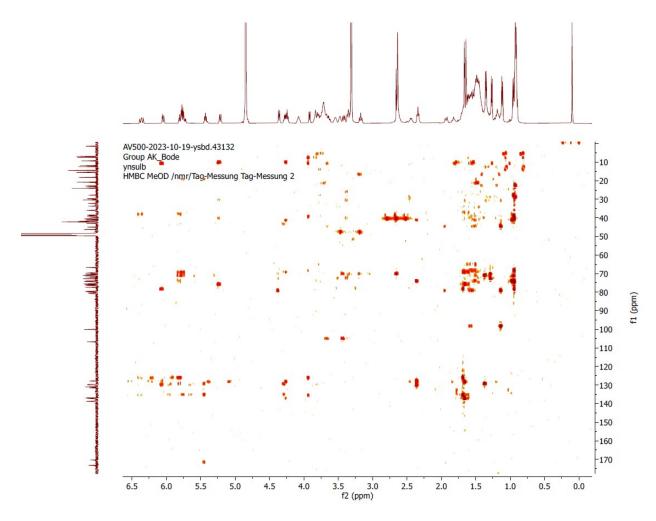


Figure S15. [¹H, ¹³C]-HSQC HMBC spectrum of butyl-stambomycin (4).

Position	δC (ppm)	δH (ppm)	HMBC	Position	δC (ppm)	δH (ppm)	HMBC
1	173.1			24-Me	11.9	1.64	
2	43.0	1.62, 1.67		25	129.9	5.22	10.4
3	100.0			26	40.4	2.65	
4	46.1	1.51, 1.60		1"	30.3	1.18, 1.38	
4-Me	12.4	1.12		2"	24.2	1.34	
5	80.7	3.64		3"	36.1	1.47, 1.71	
6	39.1	1.47		4"	14.5	0.91	
1'	106.6	4.36	7.4	27	79.5	3.35	
2'	70.5	3.68	7.4, 10.7	28	75.9	3.71	
3'	72.0	3.16	9.4, 9.4	29	27.7	1.43, 1.68	
3'-NMe ₂	42.1	2.44		30	35.9	1.47, 1.71	
4'	70.0	3.82		31	70.9	3.55	
5'	73.9	3.47	10.3, 7.4	32	46.1	1.51, 1.60	
6'	18.2	1.27		33	66.6	4.08	
7	69.7	3.81		34	41.8	1.48, 2.44	
8	41.0	1.57		35	72.8	3.74	
8-Me	9.3	0.91		36	40.6	1.57	
9	79.9	3.92	7.2	36-Me	15.6	0.94	
10	137.1			37	29.5	1.13, 1.57	
10-Me	12.4	1.66		38	33.6	1.44, 1.62	
11	128.7	6.05	10.9	39	76.3	3,75	
12	129.5	6.36	15.0, 10.9	40	42.1	1.48	
13	131.5	5.77	15.5, 7.4	40-Me	6.9	0.91	
14	39.8	2.34	6.9	41	75.7	3.71	
15	75.5	3.77		42	32.1	1.19, 1.82	
16	42.9	1.57		43	23.3	1.59	
16-Me	7.4	0.95		44	38.9	1.46, 1.94	
17	74.2	3.77		45	70.9	3.55	
18	35.8	1.47, 1.71		46	44.9	1.63	
19	22.8	1.45		47	71.7	2.61	
20	38.5	1.46		48	136.8	5.77	15.5, 7.4
21	70.9	3.43		49	130.9	5.77	15.5, 7.4
22	42.3	2.61		50	72.8	5.42	6.6, 6.4
23	77.4	4.26	6.6	51	20.8	1.35	6.6
24	138.7						

Figure S16. Structure and summary for the NMR data of butyl-stambomycin (4). The 1 H NMR data obtained on butyl-stambomycin are highly similar to those for butyl-deoxystambomycin, with the exception of the deshielded proton attached to C-28. Furthermore, the 13 C NMR spectrum of butyl-stambomycin also include 70 carbon signals, except that the C-28 carbon is relatively deshielded ($\delta_{\rm C}$ 76.3, $\delta_{\rm H}$ 3.75), consistent with the presence of the C-28 hydroxyl. The data corresponding to the alkyl chain at C-26 are similar to those of butyl-deoxystambomycin, allowing assignment of the side chain as *n*-butyl. Together, these data confirmed the identity of the compound as butyl-stambomycin.

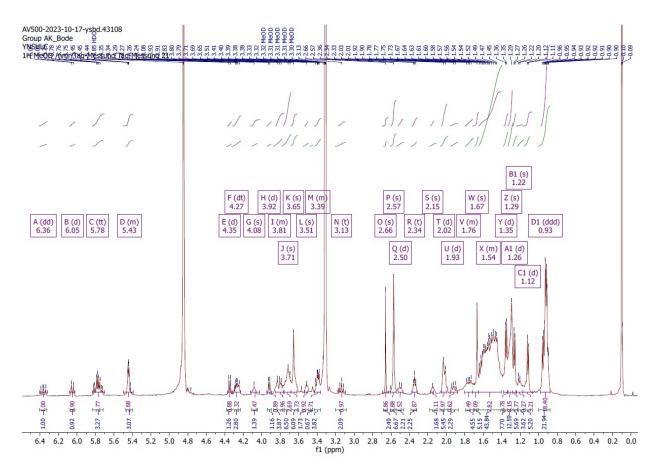


Figure S17. ¹H NMR spectrum of C-24-demethyl-butyl-stambomycin (12).

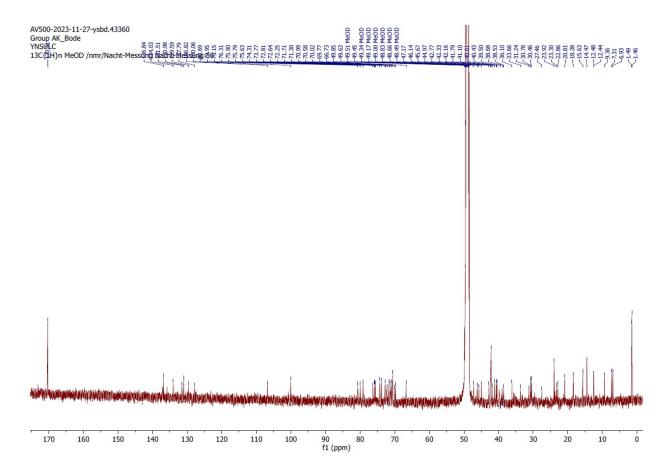


Figure S18. ¹³C NMR spectrum of C-24-demethyl-butyl-stambomycin (12).

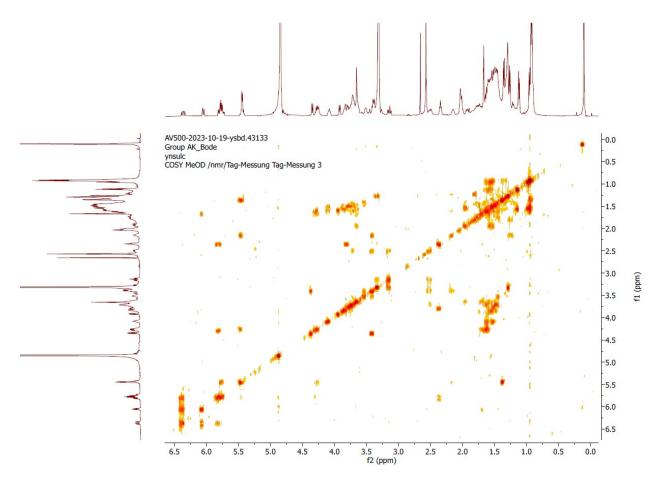


Figure S19. ¹H-¹H COSY spectrum of C-24-demethyl-butyl-stambomycin (12).

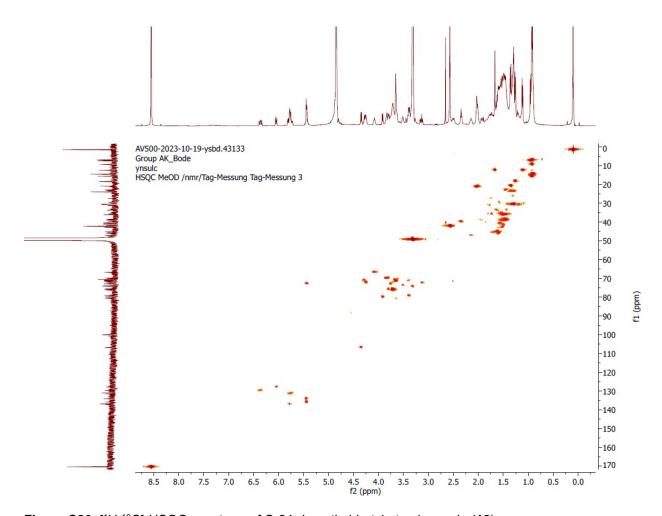
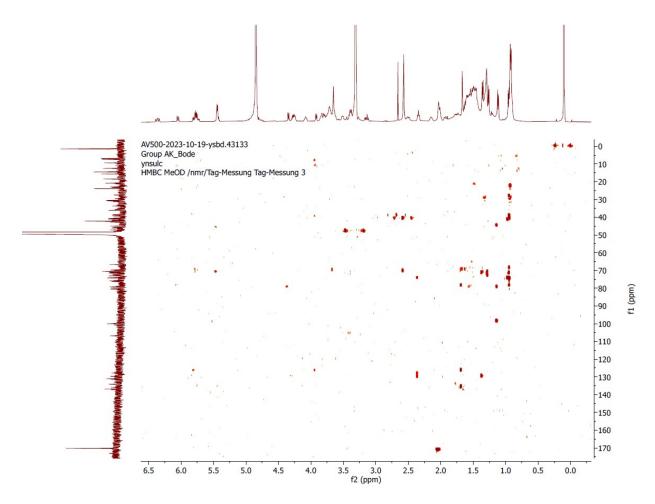



Figure S20. [1H,13C]-HSQC spectrum of C-24-demethyl-butyl-stambomycin (12).

Figure S21. [¹H,¹³C]-HMBC spectrum of C-24-demethyl-butyl-stambomycin (**12**).

Position	δC (ppm)	δH (ppm)	HMBC	Position	δC (ppm)	δН (ррт)	HMBC
1	171.6			25	130.9	5.78	15.4, 8.0
2	44.9	1.60-1.68		26	40.4	1.54	
3	100.0			1"	30.4	1.29	
4	46.1	1.54		2"	23.9	1.34	
4-Me	12.4	1.12		3"	36.1	1.54	
5	80.6	3.65		4"	14.4	0.93	
6	38.9	1.46		27	79.1	3.39	
1'	106.8	4.35	7.5	28	75.9	3.39	
2'	70.5	3.66		29	27.4	1.42, 1.76	
3'	71.7	3.64		30	35.4	1.47, 1.71	
3'-NMe ₂	42.1	2.50		31	70.9	4.27	
4'	70.0	3.81		32	45.6	1.54	
5'	72.8	3.71		33	66.7	4.08	
6'	18.3	1.26		34	41.7	1.54	
7	69.7	3.81		35	72.8	3.81	
8	41.1	1.57		36	40.6	1.54	
8-Me	9.3	0.93		36-Me	15.6	0.93	
9	79.9	3.92	7.3	37	30.7	1.29	
10	136.8			38	33.6	1.54, 1.67	
10-Me	12.4	1.67		39	75.7	3.68	
11	127.7	6.05	10.8	40	42.1	1.54	
12	129.5	6.36	15.0, 11.0	40-Me	6.9	0.93	
13	134.0	5.43		41	73.7	3.51	
14	39.8	2.34	6.9	42	31.2	1.76	
15	75.6	3.70		43	23.3	1.34	
16	42.7	1.53		44	38.6	1.54	
16-Me	7.3	0.93		45	71.3	3.71	
17	74.3	3.39		46	47.1	2.15	
18	35.6	1.54		47	72.2	3.13	
19	22.8	1.54		48	135.8	5.43	
20	38.5	1.54		49	131.5	5.78	15.4, 8.0
21	70.9	3.65	1	50	72.2	3.13	9.4, 9.4
22	42.3	1.54	1	51	20.8	1.35	6.4
23	76.3	3.72	7.6				
24	137.1	5.78	15.4, 8.0				

Figure S22. Structure and summary for the NMR data of C-24-demethyl-butyl-stambomycin (**12**). The NMR data obtained on this compound are overall similar to those for butyl-stambomycin and deoxy-butyl-stambomycin, except that C-24-demethyl-butyl-stambomycin is missing a methyl signal at (δ_H 1.64) corresponding to the methyl at C-24, and the chemical shift of an olefinic proton (δ_H 5.22 in the case of butyl-stambomycin and deoxy-butyl-stambomycin) has shifted to (δ_H 5.43). Additionally, coupling constants of 15.4 and 8.0 were observed for H-25, consistent with the presence of protons on both H-24 and H-26. Together, these data confirmed the identity of the metabolite as C-24-demethyl-butyl-stambomycin.

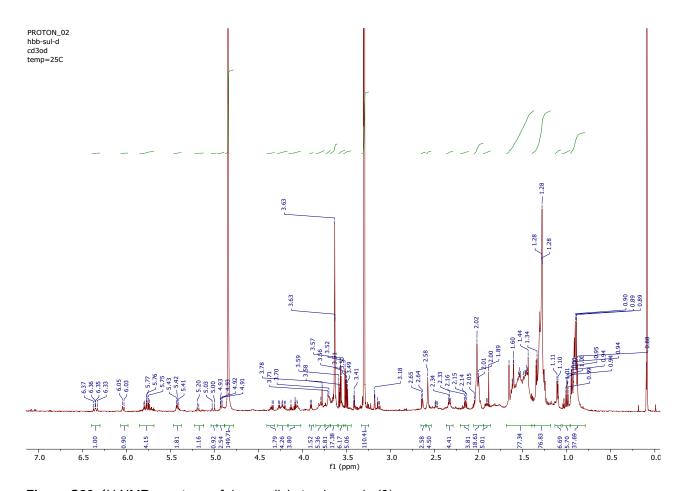


Figure S23. ¹H NMR spectrum of deoxy-allyl-stambomycin (3).

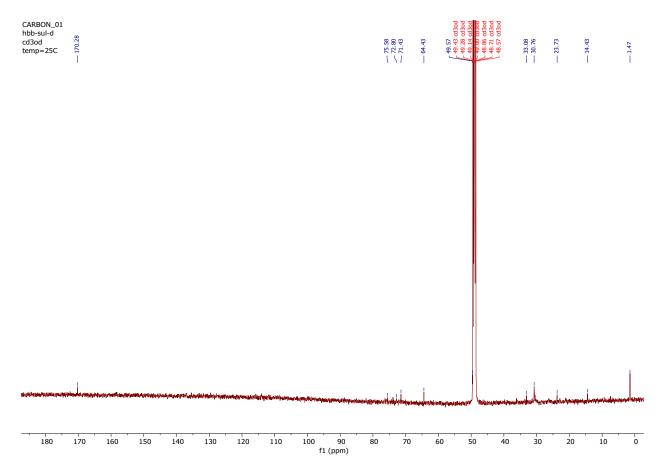


Figure S24. ¹³C NMR spectrum of deoxy-allyl-stambomycin (3).

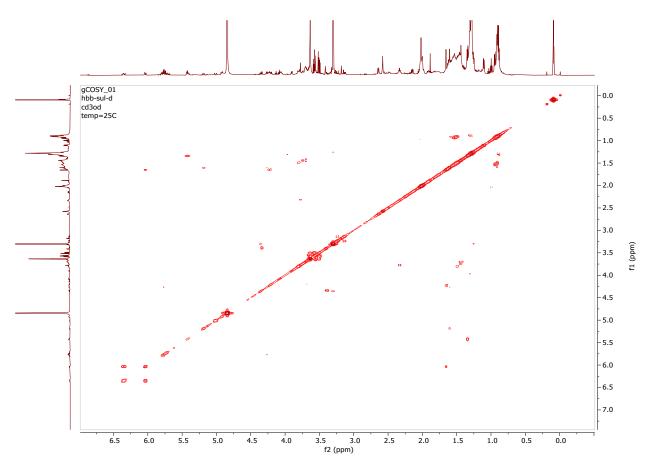
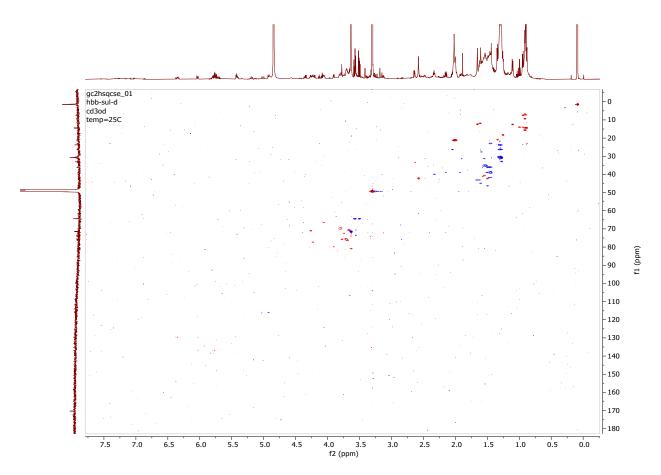
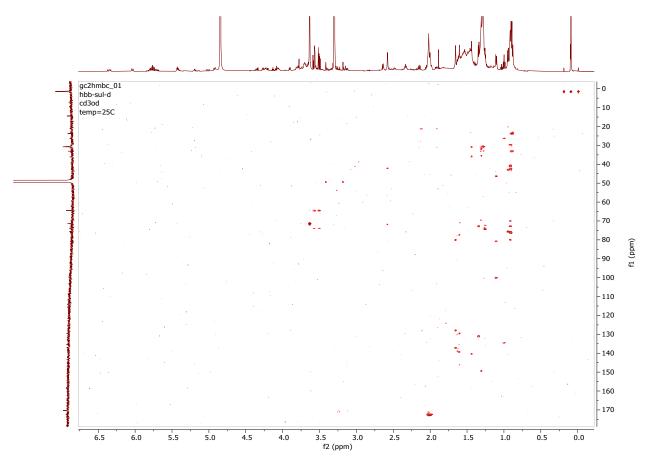
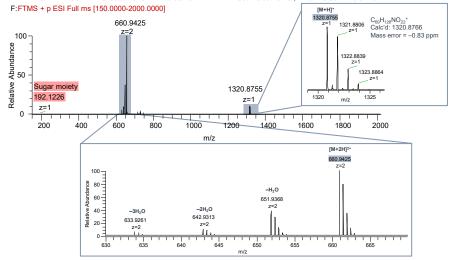
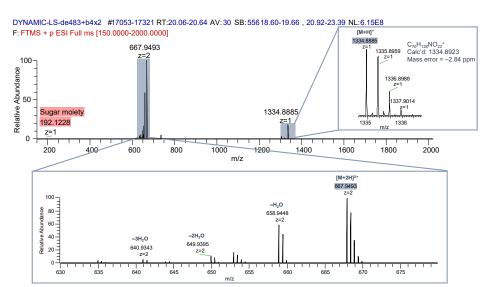
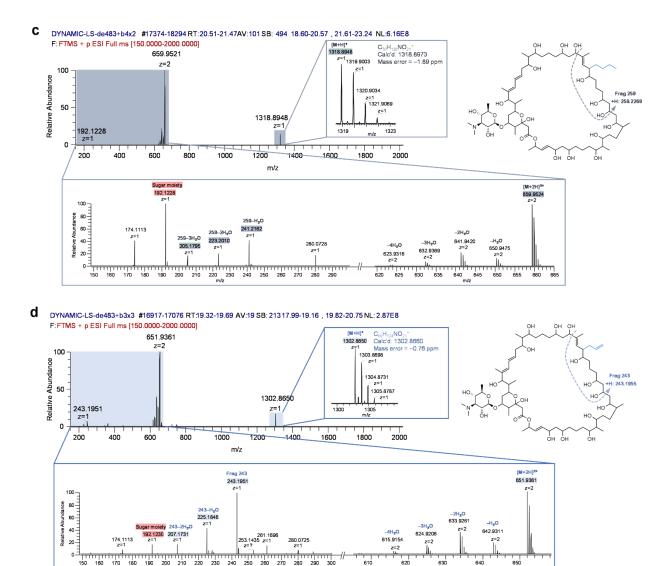




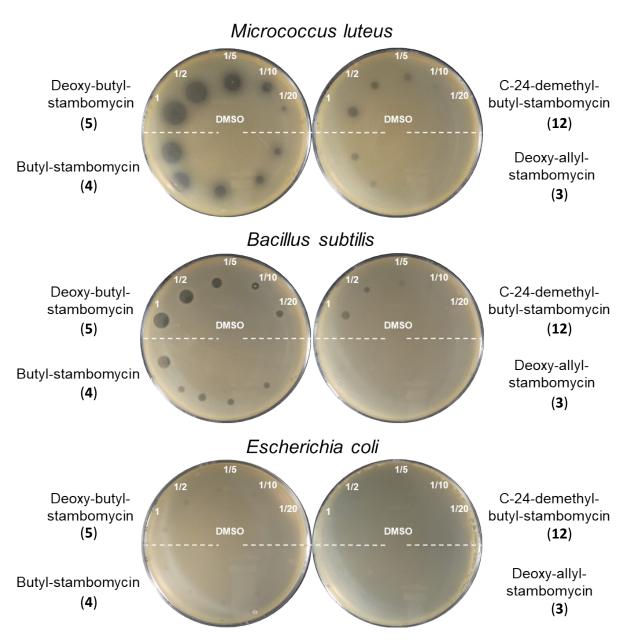
Figure S25. ¹H-¹H COSY spectrum of deoxy-allyl-stambomycin (3).

Figure S26. [¹H,¹³C]-HSQC spectrum of deoxy-allyl-stambomycin (3).


Figure S27. [¹H,¹³C]-HMBC spectrum of deoxy-allyl-stambomycin (3).


Position	δC (ppm)	δH (ppm)	HMBC	Position	δC (ppm)	δН (ррт)	HMBC
1	172.2			24-Me	11.8	1.60	
2	43.0	1.62		25	129.6	6.34	15.5, 10.9
3	100.5			26	42.1	2.57	
4	45.0	1.60		1"	33.1	1.28	
4-Me	12.4	1.10		2"	134.4	5.2	
5	80.8	3.63		3"	115.9	4.93	10.0
6	39.7	1.80		27	76.2	3.69	
1'	106.7	4.33		28	22.9	1.46	
2'	70.8	3.55	11.1, 6.0	29	30.7	1.28	
3'	71.6	3.64		30	35.0	1.53	
3'-NMe ₂	42.2	2.57		31	69.3	3.79	
4'	71.4	3.64		32	46.2	1.50	
5'	73.4	3.63		33	67.4	3.61	
6'	18.2	1.26		34	38.9	1.93	
7	69.8	3.81		35	72.7	3.73	
8	41.6	1.47		36	41.0	1.57	
8-Me	9.2	0.91		36-Me	14.7	0.89	
9	79.9	3.90	7.4	37	30.7	1.28	
10	136.8			38	38.9	1.46, 1.94	
10-Me	12.4	1.10		39	75.9	3.70	
11	127.8	6.02	10.9, 14.9	40	41.7	1.57	
12	130.6	5.74		40-Me	6.7	0.89	
13	131.5	5.78		41	72.3	3.31	
14	41.6	1.44		42	33.7	159	
15	75.8	3.70		43	21.2	2.01	
16	42.8	1.53		44	39.0	1.46, 1.93	
16-Me	7.3	0.94		45	71.8	3.64	
17	76.7	3.69		46	46.2	1.50	
18	36.0	1.57, 1.47		47	70.4	3.67	
19	23.7	1.30		48	136.8	5.77	
20	38.5	1.44		49	130.9	5.74	
21	70.8	3.55		50	72.7	5.42	6.3
22	45.0	1.60		51	20.8	1.34	6.3
23	77.1	4.24					
24	139.1						


Figure S28. Structure and summary for the NMR data for deoxy-allyl-stambomycin (3). Globally, the NMR data resemble those for deoxy-butyl-stambomycin, with the exception of those corresponding to the side chain attached to C-26. Specifically, we observe differences for the chemical shifts of C-2" (δ_C 134.4) and C-3" (δ_C 115.9) corresponding to the double bond of the allyl group. Although many of the expected ¹³C signals are missing from ¹³C NMR spectrum, close inspection of the cross peaks of the [¹H,¹³C]-HSQC and [¹H,¹³C]-HMBC spectra allowed their assignment. Together, these data confirmed the identity of the compound as deoxy-allyl-stambomycin.


b

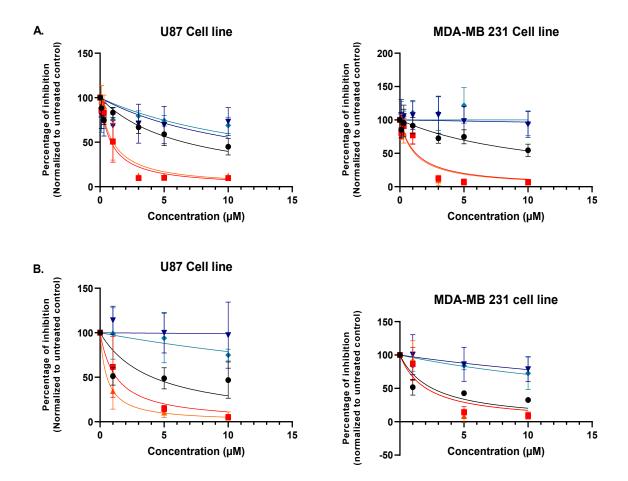


Figure S29. MS analysis of stambomycin analogues (a) C-24-demethyl-butylstambomycin (12), (b) butyl-stambomycin (4), (c) deoxy-butyl-stambomycin (5) and (d) deoxy-allyl-stambomycin (3). Similar to stambomycins A–F as shown previously⁸, fragments were also identified which are diagnostic for the C-26 side chains (deoxy-allyl-stambomycin: fragment 243 and derived water loss fragments; deoxy-butyl-stambomycin: fragment 259 and derived water loss fragments). Together, these data provide further support for the structural assignments.

Figure S30. Antibacterial activities of the four purified stambomycin analogues (**3**, **4**, **5** and **12**). For each analogue, 1 μ L of sample (from a 10 mM stock solution in DMSO) either undiluted or at various dilutions as shown, was plated onto a confluent lawn of indicator strain (the Gram-positive bacteria *M. luteus* and *B. subtillis* or the Gram-negative bacterium *E. coli*). Pure DMSO (1 μ L) was used as a control (plated in the centre).

Doxorubicin
 Deoxy-butyl-stambomycin (5)
 Butyl-stambomycin (4)
 C-24-demethyl-butyl-stambomycin (12)
 Deoxy-allyl-stambomycin (3)

Figure S31. Antiproliferative activities of the four purified stambomycin analogues (**3**, **4**, **5** and **12**) against two human cancer cell lines, U87-MG glioblastoma cells and MDA-MB-231 cells. **A.** MTT assays and **B.** Cell counting. In both cases, the percentage of inhibition is normalised relative to the untreated sample. The clinical anticancer agent doxorubicin was used as a control. All the assays were performed in triplicate in three independent experiments.

Table S1. Homologs of SamR0482 and SamR0483 in *S. ambofaciens* ATCC23877 revealed by BlastP analysis.

AA identities	Genome coordinates	Features	Accession number
Homologs of Sam	R0482 in <i>S. ambofaciens</i> ATC	CC23877	
29.8%	SAM23877_0423	AntF (acyl-CoA ligase, involved in antimycin biosynthesis pathway)	AKZ53472.1
34.5%	SAM23877_6654	Cgc22 (acyl-CoA synthetase, involved in congocidine biosynthesis pathway)	AKZ59699.1
27.8%	SAM23877_2750	FadD (Long-chain-fatty-acid-CoA ligase)	AKZ55799.1
28.1%	SAM23877_3675	AlkK (Medium-chain-fatty-acid-CoA ligase)	AKZ56720.1
Homologs of Sam	R0483 in <i>S. ambofaciens</i> ATC	CC23877	
52%%	SAM23877_0214 and SAM23877_7459	AlpX (putative carboxyl transferase, involved in kinamycin biosynthesis)	AKZ53263.1
59%	SAM23877_4747	PccB (propionyl-CoA carboxylase β chain)	AKZ57792.1
52%	SAM23877_5290	PccB (propionyl-CoA carboxylase β chain)	AKZ58335.1
31%	SAM23877_2811	Propionyl-CoA carboxylase	AKZ55860.1
29%	SAM23877_3346	Methyl crotonyl-CoA carboxylase carboxyl transferase	AKZ56393.1
26%	SAM23877_2503	Acetyl-coenzyme A carboxylase carboxyl transferase	AKZ55552.1

Table S2. List of strains and mutants.

Strains/mutants	Description and use (resistance)	Reference
Streptomyces		
ATCC/OE484	S. ambofaciens ATCC23877 carrying the integrative plasmid plB0484 (strain overexpressing the LAL regulator SamR0484) (Apra ^R)	6
ATCC/OE484/Δ482	PCR targeting mutant of ATCC/OE484 with the gene samR0482 (SAM23877_7109, AKZ60152.1) replaced by a "FRT+aadA+oriT+FRT" cassette (SpecR, ApraR)	16
ATCC/OE484/Δ483	PCR-targeting mutant of ATCC/OE484 with the gene samR0483 (SAM23877_7108, AKZ60151.1) replaced by a scar (Apra ^R)	This study
ATCC/pIB139/Δ483	PCR-targeting mutant of ATCC/pIB139 with the gene samR0483 replaced by a scar (Apra ^R)	This study
ATCC/OE484/Δ483::samR0483	ATCC/OE484/∆483 complemented with the conjugative and integrative plasmid pOSV809-PermE_samR0483 (Kan ^R , Apra ^R)	This study
ATCC/pIB139/Δ483:: <i>samR048</i> 3	ATCC/pIB139/∆483 complemented with the conjugative and integrative plasmid pOSV809_PermE_ samR0483 (Kan ^R , Apra ^R)	This study
ATCC/OE483/Δ483/MatB_cinna	ATCC/OE484/∆483 complemented with the conjugative and integrative plasmid pRT801_lacZ_PermE_MatB_cinna (Spec ^R , Apra ^R)	This study
E. coli		
DH5α	General cloning strain	17
BW25113/pKD20	PCR-targeting mutagenesis strain containing a λRED recombination plasmid pKD20 (Amp ^R)	18
ET12567/pUZ8002 (ETU)	Non-methylating strain containing a mobilization plasmid for conjugation with <i>Streptomyces</i> (Kan ^R , Cm ^R)	19
S17-1	The conjugative donor strain containing the <i>tra</i> gene on the chromosome	20

Table S3. List of BACs and plasmids.

BACs/plasmids	Properties and use (resistance)	Reference
BAC3	BAB19ZF4 from the genomic library of <i>S. ambofaciens</i> , in which the chloramphenicol resistance gene is replaced by a spectinomycin resistance gene (Spec ^R)	This study
BAC3_K7∆483	Mutant of BAC3 with gene samR0483 replaced by a "FRT+aadA+oriT+ FRT" cassette (SpecR, ApraR)	This study
pIB139	Conjugative and integrative vector (φC31 <i>attP-int</i> , <i>ermEp*</i>) (Apra ^R)	21
pOE484	pIB139+samR0484 (Apra ^R)	6
plJ778	Origin of "FRT+aadA+oriT+FRT" cassette, (SpecR)	3
plJ773	Origin of "FRT+aac(3)IV+oriT+FRT" cassette, (ApraR)	3
pUWL- <i>oriT-flp</i>	Conjugative plasmid for "FRT+aac(3)IV +oriT +FRT" cassette excision (recombinase FLP) (HygR)	5
pOSV809	Conjugative and integrative vector (φBT1 <i>attP-int</i>) (Kan ^R)	22
pOSV809_PermE_SamR483	For complementation of the ∆samR0483 mutant strain (Kan ^R)	This study
pRT801_lacZ_PermE_MatB_cinna	Overexpression of MatB_cinna from <i>Streptomyces</i> cinnamonensis (Spec ^R)	Gift from F Schulz, Ruhr-Universität Bochum, Germany

Table S4. List of primers.

Oligo name	Sequence	Usage
Spec_For	GAGTTATCGAGATTTTCAGGAGCTAAGGAAGCTAAAA	Replacement of the chloramphenicol gene
Spec_Foi	TGAAGTCTACACGAACCCTTTG	by spectinomycin
Spec_Rev	AGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTG	Replacement of the chloramphenicol gene
Spec_itev	CCCTTATTTGCCGACTACCTTGG	by spectinomycin
D483_For	GGAGGCAGGGTCGTCGTGTTGGAAGGTAGGGCTGGT	Deletion of samR0483
D-100_1 01	ATGATTCCGGGGATCCGTCGACC	
D483_Rev	GCCCCGTACAGGAGCGGCCGGCACGACGACGACGACGACGACGACGA	Deletion of samR0483
F483_For	CGGTTCCGTGCCGTCCGATA	Verification of deleted samR0483
F483_Rev	AGACCTCCAGCGGCAAGGTG	Verification of deleted samR0483
ermEp_For	TGCGGCCGCT <u>GCTAGC</u> CGAGTGTCCGTTCGAGTGGC GGCTTG	For amplification of ermEp*+RBS
ermEp_Rev	GGTCCTCCTGTGGAGTGGTGTGGATCCTACCAACCG GCACGATTG	For amplification of ermEp*+RBS
Comp483_For	CACCACTCCACAGGAGGACCATGTCGCTCCAGGAGC CTGTCTCGC	For amplification of samR0483
Comp483_Rev	GCGGCCGCT <u>ACTAGT</u> TCACAGGGGAATGTTCCCGTG TTTGCG	For amplification of samR0483
Ver483_For	CAAATGTAGCACCTGAAGTC	Verification of plasmid pOSV809- PermE_SamR483
Ver483_Rev	GTTCGGCCCCTTTTTTGGCC	Verification of plasmid pOSV809- PermE_SamR483
pOSV_For	GACTTCGCCCATCATGCGCTC	Verification of mutant ATCC/OE483/∆483/samR0483 and ATCC/pIB139/ ∆483:: samR0483
pOSV_Rev	GTGCTCAACGGGAATCCTGCTC	Verification of mutant ATCC/OE483/∆483/samR0483 and ATCC/pIB139/ ∆483:: samR0483
φBT1-attB_For	GACCTTGTGCTTGGTCGTCTTC	Verification of mutant ATCC/ OE483/∆483/samR0483 and ATCC/pIB139/∆483::samR0483
φBT1-attB_Rev	GTAGATCGACAGGGCCATCCAC	Verification of mutant ATCC/ OE483/∆483/samR0483 and ATCC/pIB139/∆483::samR0483

Key: "NNNNNN" and "NNNNNN" represent sequences identical to those at the right or left ends of the disruption cassette in the PCR-targeting system. "GCTAGC" is the restriction recognition site of Nhel, and "ACTAGT" is that for Spel.

Table S5. Calculated and observed masses of all metabolites in this study.

Compound	Chemical formula	Retention Time (min)	Calculated Mass [M+2H] ²⁺	Observed Mass [M+2H] ²⁺ (mass error in ppm)	Calculated Mass [M+H] ⁺	Observed Mass [M+H]* (mass error in ppm)
Stambomycin F	C ₇₄ H ₁₃₅ NO ₂₂	24.2	694.9815	n.d.	1390.9549	1390.9517 (-2.30 ppm)
Stambomycin A/B	C ₇₃ H ₁₃₃ NO ₂₂	22.8	688.9736	688.9697 (–5.66 ppm)	1376.9392	1376.9358 (–2.47 ppm)
Stambomycin C/D	C ₇₂ H ₁₃₁ NO ₂₂	21.7	681.9659	681.9620 (-5.72 ppm)	1362.9236	1362.9207 (-2.13 ppm)
Stambomycin E	C ₇₁ H ₁₂₉ NO ₂₂	21.3	674.9539	674.9531 (–1.19 ppm)	1348.9058	1348.9046 (–1.11 ppm)
Demethyl-stambomycin E	C ₇₀ H ₁₂₇ NO ₂₂	20.5	667.9502	667.9493 (–1.35 ppm)	1334.8923	1334.8911 (-0.89 ppm)
Ethyl-stambomycin	C ₆₈ H ₁₂₃ NO ₂₂	n.d.	653.9345	n.d.	1306.8610	n.d.
Deoxy-ethyl-stambomycin (1)	C ₆₈ H ₁₂₃ NO ₂₁	19.1	645.9345	n.d.	1290.8660	1290.8647 (-1.00 ppm)
Isopropyl-stambomycin	C ₆₉ H ₁₂₅ NO ₂₂	n.d.	660.9419	n.d.	1320.8766	n.d.
Deoxy-isopropyl-stambomycin	C ₆₉ H ₁₂₅ NO ₂₁	n.d.	652.9445	n.d.	1304.8817	n.d.
Allyl-stambomycin (2)	C ₆₉ H ₁₂₃ NO ₂₂	19.3	659.9345	n.d.	1318.8610	1318.8606 (-0.30 ppm)
Deoxy-allyl-stambomycin (3)	C ₆₉ H ₁₂₃ NO ₂₁	19.5	651.9370	651.9361 (–1.38 ppm)	1302.8660	1302.8650 (-0.76 ppm)
C-24-demethyl-butyl-stambomycin (12)	C ₆₉ H ₁₂₅ NO ₂₂	19.9	660.9425	660.9420 (-0.75 ppm)	1320.8766	1320.8755 (-0.83 ppm)
Butyl-stambomycin (4)	C ₇₀ H ₁₂₇ NO ₂₂	20.3	667.9502	667.9493 (–1.35 ppm)	1334.8923	1334.8885 (–2.84 ppm)
Deoxy-butyl-stambomycin (5)	C ₇₀ H ₁₂₇ NO ₂₁	20.9	659.9527	659.9521 (-0.91 ppm)	1318.8973	1318.8948 (–1.89 ppm)
Benzyl-stambomycin (6)	C ₇₃ H ₁₂₅ NO ₂₂	21.5	684.9580	684.9417 (–23.8 ppm)	1368.8766	1368.8782 (1.17 ppm)
Deoxy-benzyl-stambomycin (7)	C ₇₃ H ₁₂₅ NO ₂₁	21.5	676.9423	676.9438 (2.22 ppm)	1352.8817	1352.8781 (-2.66 ppm)
Octyl-stambomycin (8)	C ₇₄ H ₁₃₅ NO ₂₂	25.4	695.9811	695.9805 (-0.86 ppm)	1390.9549	1390.9546 (-0.22 ppm)
Deoxy-octyl-stambomycin	C ₇₄ H ₁₃₅ NO ₂₁	n.d.	687.9836	n.d.	1374.9599	n.d.
Phenylpropyl-stambomycin	C ₇₅ H ₁₂₉ NO ₂₂	n.d.	698.9555	n.d.	1396.9079	n.d.
Deoxy-phenylpropyl-stambomycin	C ₇₅ H ₁₂₉ NO ₂₁	n.d.	690.9602	n.d.	1380.9130	n.d.
Phenoxypropyl-stambomycin (9)	C ₇₅ H ₁₂₉ NO ₂₃	22.5	706.9554	n.d.	1412.9028	1412.8993 (–2.48 ppm)
Deoxy-phenoxypropyl-stambomycin (10)	C ₇₅ H ₁₂₉ NO ₂₂	22.5	698.9555	n.d.	1396.9079	1396.9048 (–2.22 ppm)
Thiophenyl-stambomycin	C ₇₀ H ₁₂₁ NO ₂₂ S	n.d.	680.9123	n.d.	1360.8174	n.d.
Deoxy-thiophenyl-stambomycin	C ₇₀ H ₁₂₁ NO ₂₁ S	n.d.	672.9148	n.d.	1344.8225	n.d.
Thienylmethyl-stambomycin	C ₇₁ H ₁₂₃ NO ₂₂ S	n.d.	687.9201	n.d.	1374.8330	n.d.
Deoxy-thienylmethyl-stambomycin	C ₇₁ H ₁₂₃ NO ₂₁ S	n.d.	679.9227	n.d.	1358.8381	n.d.
Propargyl-stambomycin	C ₆₉ H ₁₂₁ NO ₂₂	n.d.	658.9263	n.d.	1316.8453	n.d.
Deoxy-propargyl-stambomycin	C ₆₉ H ₁₂₁ NO ₂₁	n.d.	650.9289	n.d.	1300.8504	n.d.
6-Bromohexyl-stambomycin (11) (lacking 2H)	C ₇₂ H ₁₂₈ NO ₂₂ Br	22.6	719.9129 (Br ⁷⁹) 720.9130 (Br ⁸¹)	719.9128 (Br ⁷⁹) (-0.14 ppm) 720.9130 (Br ⁸¹) (-0 ppm)	1438.8184 (Br ⁷⁹) 1440.8187 (Br ⁸¹)	1438.8164 (Br ⁷⁹) (-1.53 ppm) 1440.8183 (Br ⁸¹) (-0.28 ppm)
Deoxy-6-bromohexyl-stambomycin (lacking 2H)	C ₇₂ H ₁₂₈ NO ₂₁ Br	n.d.	711.9154 (Br ⁷⁹) 712.9155 (Br ⁸¹)	n.d.	1422.8235 (Br ⁷⁹) 1424.8238 (Br ⁸¹)	n.d.

n.d. = not detected

Table S6. Quantification of stambomycins in parental and mutasynthesis strains.

Strains (culture volume)	Integrated peak areas for stambomycins A, B, C, D (extracted ion (EI) = 1362.9236, 681.9659, 1376.9392, 688.9736)	Volume of final extract in MeOH (µL)	Calculated titer (mg L ⁻¹)	Average ± deviation (parental level, %)	
20190130-wtOE (50 mL)	4672442552	300	28.2	30 ± 2 (100%)	
20190913-wtOE (50 mL)	6621933694	240	31.7	3012(100%)	
20190130-de482OE#1 (50 mL)	3117290008	240	15.0	45.2 + 0.2 (50.99/)	
20190130-de482OE#2(50 mL)	2550403337	300	15.4	- 15.2 ± 0.3 (50.8%)	
20190130-de483OE (50 mL)	22253469	270	0.12		
20190206-de483OE (50 mL)	23710170	270	0.13		
20190226-de483OE#1 (50 mL)	10444147	220	0.049	0.00 + 0.04 (0.340()	
20190226-de483OE#2 (50 mL)	23826563	240	0.12	0.09 ± 0.04 (0.31%)	
20190430-de483OE (50 mL)	12248726	200	0.052		
20190913-de483OE (50 mL)	12525726	330	0.088		
20191108-de483OE::483#1 (50 mL)	2125375050	200	8.56	0.2 + 0.0 (20.8%)	
20191108-de483OE::483#2 (50 mL)	2337747862	210	9.88	9.2 ± 0.9 (30.8%)	

Table S7. Quantification of stambomycins and stambomycin analogues produced by the mutasynthesis strain ATCC/OE484/ \triangle 483 supplemented with various malonic acid alternatives. The Extracted ions (EIs) used for integration of stambomycins (A–D) and stambomycin analogues are shown in **Table S5**.

used for integration of stamborn	i ` ´	•				Volume
Strains (culture volume)	Peak areas for stambomycins A, B, C, D	Integrated peak areas for Stambomycin Analogues	Integrated peak areas for deoxy-Stambomycin Analogues	C-24-demethyl- Stambomycin Analogues	Cell pellets (g)	of final extract in MeOH (µL)
20191108-de4830E+ethylmalonic acid#1 (50 mL)	132876313	n.d.	132598	n.d.	2.6	180
20191108-de483OE+ethylmalonic acid#2 (50 mL)	143567324	n.d.	167324	n.d.	2.7	180
20191108-de483OE+ethylmalonic acid#3 (50 mL)	171220959	n.d.	153648	n.d.	3.0	210
Average ± deviation	149221532 ± 82602738	n.d.	151190 ± 17493	n.d.		
20190704-de483OE+isopropylmalonic acid#1 (50 mL)	63133287	n.d.	n.d.	n.d.	2.9	200
20190704-de483OE+isopropylmalonic acid#2 (50 mL)	56732414	n.d.	n.d.	n.d.	2.7	190
20190704-de483OE+isopropylmalonic acid#3 (50 mL)	69815755	n.d.	n.d.	n.d.	2.7	190
Average ± deviation	63227152 ± 6542175	n.d.	n.d.	n.d.		
20200121-de483OE+allylmalonic acid#1 (50 mL)	33235281	314576	57623911	n.d.	2.9	200
20200121-de4830E+allylmalonic acid#2 (50 mL)	36372141	373641	63992453	n.d.	2.9	200
20200121-de483OE+allylmalonic acid#3 (50 mL)	29473776	390322	76003233	n.d.	3.0	210
Average ± deviation	33027066 ± 28801362	359513 ± 36365569	65873199 ± 9332886	n.d.		
20200121-de483OE+butylmalonic acid#1 (50 mL)	31098375	735657630	3911597542	83759031	3.3	230
20200121-de483OE+butylmalonic acid#2 (50 mL)	33518173	693736419	3639924533	81335171	3.1	215
20200121-de483OE+butylmalonic acid#3(50 mL)	36089249	842196726	3274692780	70790032	2.9	200
Average ± deviation	33568599 ± 1537021995	757196925 ± 1630548827	3608738285 ± 1944062494	78628078 ± 6895288		
20191108-de483OE+benzylmalonic acid#1 (50 mL)	85980132	5598326	8973467	n.d.	2.8	195
20191108-de483OE+benzylmalonic acid#2 (50 mL)	75184735	4353298	9037041	n.d.	2.9	200
20191108-de483OE+benzylmalonic acid#3 (50 mL)	89638709	4490826	10775770	n.d.	2.9	200
Average ± deviation	83601192 ± 38443275	4814150 ± 2731834	9595426 ± 1022702	n.d.		
20191108-de483OE+octylmalonic acid#1 (50 mL)	132683570	11976573	n.d.	n.d.	3.0	210
20191108-de483OE+octylmalonic acid#2 (50 mL)	147359538	13467812	n.d.	n.d.	3.1	215
20191108-de483OE+octylmalonic acid#3 (50 mL)	163698892	15272458	n.d.	n.d.	2.8	195
Average ± deviation	147914000 ± 74240730	13572281 ± 1650424	n.d.	n.d.		
20191108-de483OE+phenylpropyl malonic acid#1 (50 mL)	106794320	n.d.	n.d.	n.d.	3.2	220
20191108-de483OE+phenylpropyl malonic acid#2 (50 mL)	108547211	n.d.	n.d.	n.d.	2.8	195
20191108-de483OE+phenylpropyl malonic acid#3 (50 mL)	94946315	n.d.	n.d.	n.d.	2.9	200
Average ± deviation	103429282 ± 7398560	n.d.	n.d.	n.d.		
20200121-de483OE+phenoxylpropyl malonic acid#1 (50 mL)	40974329	1978456	2389963	n.d.	2.9	200
20200121-de483OE+phenoxylpropyl malonic acid#2 (50 mL)	43458721	1829874	2558642	n.d.	3.1	215
20200121-de483OE+phenoxylpropyl malonic acid#3 (50 mL)	37665924	1941620	2151384	n.d.	3.2	220
Average ± deviation	40699658 ± 19334974	1916650 ± 282660	2366663 ± 204626	n.d.		
20191108-de4830E+thiophenyl malonic acid#1 (50 mL)	13290899	n.d.	n.d.	n.d.	2.8	195
20191108-de4830E+thiophenyl malonic acid#2 (50 mL)	16067843	n.d.	n.d.	n.d.	2.9	200
20191108-de483OE+thiophenyl malonic acid#3 (50 mL)	14717777	n.d.	n.d.	n.d.	2.8	195
Average ± deviation	14692173 ± 1388649	n.d.	n.d.	n.d.		
20191108-de4830E+thienylmethyl malonic acid#1 (50 mL)	18904562	n.d.	n.d.	n.d.	2.9	200
20191108-de4830E+thienylmethyl malonic acid#2 (50 mL)	17273940	n.d.	n.d.	n.d.	2.8	195
20191108-de4830E+thienylmethyl malonic acid#3 (50 mL)	16036282	n.d.	n.d.	n.d.	2.8	195
Average ± deviation	17404928 ± 1438619	n.d.	n.d.	n.d.	 	
20210119-de4830E+propargyl malonic acid#1 (50 mL)	85631272	n.d.	n.d.	n.d.	3.1	215
20210119-de4830E+propargyl malonic acid#2 (50 mL)	79409817	n.d.	n.d.	n.d.	2.7	190
20210119-de4830E+propargyl malonic acid#3 (50 mL)	75196466	n.d.	n.d.	n.d.	2.8	195
	1	=-		n.d.	+	
	80079185 ± 5249508	n.d.	n.a.		1	
Average ± deviation	80079185 ± 5249508 96347831	n.d. 4567832	n.d.		2.9	200
Average ± deviation 20210119-de483OE+6-bromohexyl malonic acid#1 (50 mL)	96347831	4567832	n.d.	n.d.	2.9	
Average ± deviation					2.9 3.2 3.0	200 220 210

n.d. = not detected

Table S8. Quantitative analysis by LC-HRMS using erythromycin (1 mM) as internal standard. [M+H]⁺ = 734.4683 was used as the extracted ion (EI) for peak integration of erythromycin. Els used for integration of stambomycins (A–D) and stambomycin analogues are shown in **Table S5**.

Strains (culture volume)	Integrated peak areas for Erythromycin (× 10 ⁹)	Integrated peak areas for stambomycins A, B, C, D (× 10°)	Integrated peak areas for Stambomycin Analogues (× 10°)	Cell pellets (g)	Volume of final extract in MeOH (µL)	Amount of stambomycins relative to internal standard	Amount of stambomycin analogues relative to internal standard
de4830E+ethylmalonic acid#1 (50 mL)	73.10	6.49	0.08	2.8	200	0.0888	0.0011
de4830E+ethylmalonic acid#2 (50 mL)	68.30	5.69	0.13	2.5	180	0.0833	0.0019
de483OE+ethylmalonic acid#3 (50 mL)	71.20	4.83	0.12	2.7	190	0.0678	0.0017
Average ± deviation						0.08 ± 0.0109	0.0016 ± 0.0004
de483OE::matB_cinna+ethylmalonic acid#1 (50 mL)	71.60	3.70	0.21	2.5	180	0.0517	0.0029
de483OE::matB_cinna+ethylmalonic acid#2 (50 mL)	68.80	2.69	0.23	2.65	190	0.0391	0.0033
de483OE::matB_cinna+ethylmalonic acid#3 (50 mL)	69.50	3.90	0.25	2.7	190	0.0561	0.0036
Average ± deviation						0.049 ± 0.0088	0.0033 ± 0.0003
de483OE+allylmalonic acid#1 (50 mL)	67.90	8.73	4.40	3.0	210	0.1286	0.0648
de483OE+allylmalonic acid#2 (50 mL)	67.40	8.69	4.80	2.8	200	0.1289	0.0712
de483OE+allylmalonic acid#3 (50 mL)	70.20	6.61	5.17	2.67	190	0.0942	0.0736
Average ± deviation						0.1172 ± 0.02	0.0699 ± 0.0046
de483OE::matB_cinna+allylmalonic acid#1 (50 mL)	70.00	4.13	9.25	2.7	190	0.0590	0.1321
de483OE::matB_cinna+allylmalonic acid#2 (50 mL)	71.30	5.45	9.91	2.6	190	0.0764	0.1390
de483OE::matB_cinna+allylmalonic acid#3 (50 mL)	72.30	6.23	8.38	2.65	190	0.0862	0.1159
Average ± deviation						0.0739 ± 0.0138	0.129 ± 0.0119
de483OE+butylmalonic acid#1 (50 mL)	61.60	0.52	54.50	3.0	210	0.0084	0.8847
de483OE+butylmalonic acid#2 (50 mL)	63.90	0.41	53.90	2.8	200	0.0064	0.8435
de483OE+butylmalonic acid#3 (50 mL)	64.50	0.54	58.70	3.1	205	0.0084	0.9101
Average ± deviation						0.0077 ± 0.0011	0.8794 ± 0.0336
de483OE::matB_cinna+butylmalonic acid#1 (50 mL)	63.20	0.06	44.20	2.7	190	0.0009	0.6994
de483OE::matB_cinna+butylmalonic acid#2 (50 mL)	67.20	0.06	49.20	2.7	190	0.0009	0.7321
de483OE::matB_cinna+butylmalonic acid#3 (50 mL)	66.30	0.08	46.40	2.8	195	0.0012	0.6998
Average ± deviation						0.001 ± 0.0002	0.7105 ± 0.0188
de483OE+benzylmalonic acid#1 (50 mL)	71.40	7.48	0.06	2.7	190	0.1048	0.0008
de483OE+benzylmalonic acid#2 (50 mL)	67.30	6.94	0.04	2.9	200	0.1031	0.0006
de483OE+benzylmalonic acid#3 (50 mL)	67.60	6.01	0.06	2.7	190	0.0889	0.0009
Average ± deviation						0.0989 ± 0.0087	0.0008 ± 0.0001
de483OE::matB_cinna+benzylmalonic acid#1 (50 mL)	60.70	0.82	0.13	2.8	200	0.0135	0.0022
de483OE::matB_cinna+benzylmalonic acid#2 (50 mL)	64.20	0.75	0.09	2.9	200	0.0117	0.0014
de483OE::matB_cinna+benzylmalonic acid#3 (50 mL)	65.30	0.89	0.10	2.8	200	0.0136	0.0015
Average ± deviation						0.0129 ± 0.0011	0.0017 ± 0.0004
WTOE+butenoic acid#1 (50 mL)	60.30	44.90	n.d.	3.5	250	0.7446	n.d.
WTOE+butenoic acid#2 (50 mL)	62.50	37.70	n.d.	3.1	215	0.6032	n.d.
WTOE+butenoic acid#3 (50 mL)	65.30	37.79	n.d.	2.7	200	0.5787	n.d.
Average ± deviation						0.6422 ± 0.0896	n.d.
WTOE+butryic acid#1 (50 mL)	68.60	59.60	8.31	3.0	210	0.8688	0.1211
WTOE+butryic acid#2 (50 mL)	67.90	55.60	6.74	2.9	200	0.8189	0.0993
WTOE+butryic acid#3 (50 mL)	66.50	56.52	8.08	3.1	215	0.8499	0.1215
Average ± deviation						0.8459 ± 0.0252	0.114 ± 0.0127
WTOE+phenyl propanoic acid#1 (50 mL)	65.60	9.10	n.d.	2.8	200	0.1387	n.d.
WTOE+phenyl propanoic acid#2 (50 mL)	65.30	8.54	n.d.	2.9	200	0.1308	n.d.
WTOE+phenyl propanoic acid#3 (50 mL)	67.20	8.52	n.d.	2.9	200	0.1268	n.d.
Average ± deviation						0.1321 ± 0.0061	n.d.

n.d. = not detected

Table S9. Conditions for the purification of mutasynthetic stambomycin analogues.

1. Prep HPLC	
Solvents	ACN/H ₂ O +0.1%FA
0 min	10%
2 min	10%
27 min	50%
Column	Waters XBridge BEH C18 19x250mm
Detection UV	205 mAU
Retention time of deoxy-butyl- stambomycin (5)	18.5 min
Retention time of butyl-stambomycin (4)	17.6 min
Retention time of C-24-demethyl-butyl stambomycin (12)	17.1 min
Retention time of deoxy-allyl- stambomycin (3)	16.9 min
Amounts of purified compounds	
Deoxy-butyl-stambomycin (5)	36.3 mg
Butyl-stambomycin (4)	11.6 mg
C-24-demethyl-butyl-stambomycin (12)	3.1 mg
Deoxy-allyl-stambomycin (3)	1.8 mg

Table S10. IC_{50} values of the stambomycin analogues for two human cancer cell lines. The U87-MG (ATCC, HTB-14) cell line correspond to glioblastoma cells (brain cancer) and MDA-MB-231 (ATCC, HTB-26) cells are commonly used to model late-stage breast cancer. The clinical anticancer agent doxorubicin was used as a control. IC_{50} indicates the concentration needed to inhibit the growth of 50% of cells in the population.

				U87 cell line			MDA-MB-231 cell line				
	IC ₅₀ (μM)	Doxorubicin	Deoxy-butyl- stambomycin	stambomycin	C-24- demethyl- butyl- stambomycin	Deoxy-allyl- stambomycin	Doxorubicin	Deoxy-butyl- stambomycin	Butyl- stambomycin	C-24- demethyl- butyl- stambomycin	Deoxy-allyl- stambomycin
MTT assay	Experiment 1	9.4	1.1	1.3	6.7	12.7	8.9	1.0	0.7	> 1 mM	> 1 mM
	Experiment 2	5.9	0.8	0.7	5.5	25.4	9.5	1.5	1.5	26.4	47.5
	Experiment 3	5.2	0.8	1.1	74.5	10.6	18.6	1.2	1.3	71.4	> 1 mM
	Mean ± SD	6.8 ± 2.3	0.9 ± 0.2	1.0 ± 0.3	28.9 ± 39.5	16.2 ± 8.0	12.3 ± 5.4	1.2 ± 0.3	1.2 ± 0.4	48.9	47.5

Supplementary references

- 1. M. Grote and F. Schulz, Exploring the Promiscuous Enzymatic Activation of Unnatural Polyketide Extender Units *in Vitro* and *in Vivo* for Monensin Biosynthesis, *ChemBioChem*, 2019, **20**, 1183–1189.
- 2. S. Pinnert-Sindico, A new species of *Streptomyces* producing antibiotics *Streptomyces ambofaciens* n. sp., cultural characteristics, *Ann. Inst. Pasteur (Paris)*, 1954, **87**, 702–707.
- 3. B. Gust, G. L. Challis, K. Fowler, T. Kieser and K. F. Chater, PCR-targeted *Streptomyces* gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin, *Proc. Natl. Acad. Sci. U. S. A.*, 2003, **100**, 1541–1546.
- 4. D. J. MacNeil, K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons and T. MacNeil, Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector, *Gene*, 1992, **111**, 61–68.
- 5. N. Zelyas, K. Tahlan and S. E. Jensen, Use of the native flp gene to generate in-frame unmarked mutations in *Streptomyces* spp, *Gene*, 2009, **443**, 48–54.
- 6. L. Laureti, L. J. Song, S. Huang, C. Corre, P. Leblond, G. L. Challis and B. Aigle, Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in *Streptomyces ambofaciens, Proc. Natl. Acad. Sci. U. S. A.*, 2011, **108**, 6258–6263.
- 7. S. Reinhard, Ursula, B., Priefer., Alfred, Pühler., A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in Gram negative bacteria, *Nat. Biotechnol.*, 1983, **1**, 784–791.
- 8. L. Su, L. Hôtel, C. Paris, C. Chepkirui, A. O. Brachmann, J. Piel, C. Jacob, B. Aigle and K. J. Weissman, Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins, *Nat. Commun.*, 2022, **13**, 515.
- 9. D. Hanahan, Studies on transformation of *Escherichia coli* with plasmids, *J. Mol. Biol.*, 1983, **166**, 557–580.
- 10. Y. Yan, J. Chen, L. Zhang, Q. Zheng, Y. Han, H. Zhang, D. Zhang, T. Awakawa, I. Abe and W. Liu, Multiplexing of combinatorial chemistry in antimycin biosynthesis: expansion of molecular diversity and utility, *Angew. Chem. Int. Ed.*, 2013, **52**, 12308–12312.
- A. S. Eustáquio, R. P. McGlinchey, Y. Liu, C. Hazzard, L. L. Beer, G. Florova, M. M. Alhamadsheh, A. Lechner, A. J. Kale, Y. Kobayashi, K. A. Reynolds and B. S. Moore, Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-L-methionine, *Proc. Natl. Acad. Sci. U. S. A.*, 2009, **106**, 12295–12300.
- 12. Y. Li, W. Zhang, H. Zhang, W. Tian, L. Wu, S. Wang, M. Zheng, J. Zhang, C. Sun, Z. Deng, Y. Sun, X. Qu and J. Zhou, Structural Basis of a Broadly Selective Acyltransferase from the Polyketide Synthase of Splenocin, *Angew. Chem. Int. Ed.*, 2018, **57**, 5823–5827.
- 13. Amanda J. Hughes and A. Keatinge-Clay, Enzymatic Extender Unit Generation for *In Vitro* Polyketide Synthase Reactions: Structural and Functional Showcasing of *Streptomyces coelicolor* MatB, *Chem. Biol.*, 2011, **18**, 165–176.
- 14. I. Koryakina, J. McArthur, S. Randall, M. M. Draelos, E. M. Musiol, D. C. Muddiman, T. Weber and G. J. Williams, Poly Specific *trans*-Acyltransferase Machinery Revealed via Engineered Acyl-CoA Synthetases, *ACS Chem. Biol.*, 2013, **8**, 200–208.
- 15. D. Möller, S. Kushnir, M. Grote, A. Ismail-Ali, K. R. M. Koopmans, F. Calo, S. Heinrich, B. Diehl and F. Schulz, Flexible enzymatic activation of artificial polyketide extender units by *Streptomyces cinnamonensis* into the monensin biosynthetic pathway, *Lett. Appl. Microbiol.*, 2018, **67**, 226–234.
- 16. L. Laureti, PhD thesis, Université de Lorraine, 2010.
- 17. D. Hanahan, Studies on transformation of *Escherichia coli* with plasmids, *J. Mol. Biol.*, 1983, **166**, 557–580.
- 18. K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products, *Proc. Natl. Acad. Sci. U. S. A.*, 2000, **97**, 6640–6645.
- 19. D. J. Macneil, K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons and T. Macneil, Analysis of *Streptomyces avermitilis* genes required for avermectin biosynthesis utilizing a novel integration vector, *Gene*, 1992, **111**, 61–68.
- 20. S. Donadio and L. Katz, Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in *Saccharopolyspora erythraea*, *Gene*, 1992, **111**, 51–60.

- 21. C. J. Wilkinson, Z. A. Hughes-Thomas, C. J. Martin, I. Bohm, T. Mironenko, M. Deacon, M. Wheatcroft, G. Wirtz, J. Staunton and P. F. Leadlay, Increasing the efficiency of heterologous promoters in actinomycetes, *J. Mol. Microbiol. Biotechnol.*, 2002, **4**, 417–426.
- 22. C. Aubry, J. L. Pernodet and S. Lautru, Modular and Integrative Vectors for Synthetic Biology Applications in *Streptomyces* spp., *Appl. Environ. Microbiol.*, 2019, **85**, e00485-19.