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Materials and reagents

Single-walled carbon nanotubes (SWNTs, length 1~5 μm) were purchased from 

Nanjing XFNANO Materials Tech Co., Ltd., formamide and potassium bicarbonate 

(KHCO3) were provided by Macklin Biochemical Co., Ltd. Anhydrous ethanol (EtOH) 

and N, N-dimethylformamide (DMF) were obtained from Meryer Co., Ltd. All of other 

reagents were used directly and without any treatment.
CO2 electroreduction measurements

Electrochemical tests were conducted using a CHI 660E electrochemical workstation 

from CH Instruments, under ambient temperature and pressure in a three-electrode 

system. A platinum sheet served as the anode, a saturated Ag/AgCl electrode was used 

as the reference electrode, and a glassy carbon working electrode coated with the 

catalyst served as the cathode. An H-type electrolytic cell containing 0.5 M KHCO3 

was used as the electrolyte solution. Before the electrochemical tests, CO2 was bubbled 

into the KHCO3 solution at a flow rate of 40 mL/min for 0.5 hours to saturate the 

electrolyzer with CO2. During the tests, a continuous CO2 flow of 20 mL/min was 

maintained through the catholyte, and each potential was subjected to potentiostatic 

electrolysis for 0.5 hours. All potentials were referenced to the reversible hydrogen 

electrode (RHE) using the following equation: ERHE = E°Ag/AgCl (0.20 V) + EAg/AgCl + 

0.059 × pH. The gaseous products were collected using a gas bag and analyzed with an 

HXSP GC-950 gas chromatograph equipped with two thermal conductivity detectors 

(TCD) and a flame ionization detector (FID), using helium as the internal standard. 

Under constant temperature and pressure, 20 mL of the gas product from a gas bag 

(approximately 2.0 L) was injected into the GC using a sampling syringe. The mole 

fractions of CO and H2 were determined from the GC calibration curve. After 1 hour 

of potentiostatic electrolysis, liquid products were quantified using proton nuclear 

magnetic resonance (1H NMR, Bruker 400 MHz) with water peak suppression. The 

reported results are the averages of three trials. 

Electrochemical impedance spectroscopy (EIS) measurements were performed by 

applying an AC voltage with an amplitude of 5 mV over a frequency range from 100 

kHz to 100 mHz. The stability of the functionalized single-walled carbon nanotubes (f-



SWNTs-650) catalyst was assessed by continuous electrolysis for 48 hours, with gas 

phase components analyzed hourly via GC. The Faradaic efficiencies (FE) of CO and 

H2 and the partial current densities were calculated using the following equations:

FECO = CCO × S × (2FP/RT) / Itotal  FEH2 = CH2 × S × (2FP/RT) / Itotal

JCO = CCO × S × (2FP/RT) / A          JH2 = CH2 × S × (2FP/RT) / A

where CCO and CH2 are the concentrations of CO and H2 measured by GC, S is the 

flow rate of CO2 (15 mL/min), F is the Faraday constant (96485 C·mol−1), P is 

atmospheric pressure (101.3 kPa), R is the gas constant (8.314 J·mol−1·K−1), T is 

thermodynamic temperature (298.15 K), A is the geometric area of the electrode, and 

Itotal is the measured current.

The turnover frequency (TOF) of CO formation was calculated as:

TOF (h-1) = [(jCO × S / ZF)/(mcat. × w / MNi)] × 3600

where S is the geometric area of the working electrode (cm2), Z represents the number 

of electrons transferred in the reduction process at the cathode (Z = 2 for the formation 

of CO and H2), mcat. is the mass of the catalyst on the glassy carbon electrode (g), w is 

the loading of Ni in the catalyst, and MNi = 58.69 g mol-1. 

The Tafel equation is:Tafel slope was achieved from the Tafel equation:

E = a + blg (jCO)

where E is the overpotential, a is a constant, b is the Tafel slope. 

DFT calculations

The spin-polarized density functional theory calculations were conducted using the 

Vienna Ab-initio Simulation Package (VASP)[1,2]. The electron–ion interaction was 

described with the projector augmented-wave pseudopotential method, and the 

exchange-correlation interaction was treated within the generalized gradient 

approximation in the Perdew-Burke-Ernzerhof formalism[3,4]. The cutoff energy of 400 

eV was used. The vacuum thicknesses were more than 10 Å to avoid the interaction 

between periodic images. All atomic positions were allowed to relax with K-point mesh 

5 × 5 × 1 until the force on each atom is less than 0.02 eV/Å.

The free energy of a pair of proton and electron ( ) can be considered as a H + e 



function of applied voltage relative to RHE as , based on 2
1(H )+ (e ) (H )-e
2

U    

the CHE model[5]. Using VASPKIT, a pre- and post-processing program for the VASP 

code, the free energies of adsorbates and non-adsorbed gas-phase molecules with the 

calculated electronic energy and frequency were obtained[6]. The solvent effect has been 

considered for *COOH and *CO by stabilizing 0.25 and 0.10 eV, respectively[7].
The charge density difference was calculated using the following expression:

4total NiN Ni NPs      

where represents the charge density of NiN4 & Ni NPs, and and are the total
4NiN Ni NPs

charge densities of the atomically dispersed NiN4 and metallic Ni NPs, respectively.
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Figure S1 (a, c) HAADF-STEM images and (c, d) the corresponding high-resolution 

images of selected area of f-SWNTs-650 catalyst.
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Figure S2 XRD patterns of SWNTs and f-SWNTs-T catalysts (T = 600, 650, 700 oC)
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Figure S3 Raman spectra of SWNTs and f-SWNTs-T catalysts (T = 600, 650 and 700 
oC)
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Figure S4 N2 adsorption-desorption isotherms of SWNTs and f-SWNTs-T catalysts (T 

= 600, 650 and 700 oC)
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Figure S5 FTIR spectra of PFA, SWNTs and f-SWNTs-T catalysts (T = 600, 650 and 

700 oC)
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Figure S6 Linear sweep voltammetry curves of f-SWNTs-650 were collected in Ar and 

CO2 saturated 0.5 M KHCO3 solution.
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Figure S7 (a) Linear sweep voltammetry curve and FECO of PFA@SWNTs sample.
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Figure S8 1H NMR spectrum of the electrolyte after 1 h CO2 electroreduction at -0.82 

V vs. RHE in CO2-saturated 0.5 M KHCO3 solution. There are no signal of liquid 

products in the electrolyte.
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Figure S9 XPS survey scan of the pristine SWNTs and f-SWNTs-650 catalyst.
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Figure S10 (a, b) Various DFT-optimized intermediates along the CO2RR pathway 

over NiN4-Ni (111) site and (c, d) Various DFT-optimized intermediates along the 

CO2RR pathway over NiN4 site.



Table S1. The results of N2 adsorption-desorption of different samples.

Sample Surface Area (m2.g-1)a V (cm3.g-1)b  (nm)cD

SWNTs 283.1 1.332 2.98

f-SWNTs-600 295.3 1.421 2.97

f-SWNTs-650 358.9 2.086 2.13

f-SWNTs-700 297.4 1.327 2.94

a SBET is calculated using BET method, b Vtotal is the single point adsorption at P/P0 = 0.99, 

c average pore diameter is calculated using BJH method.D



Table S2. EXAFS fitting parameters at the Ni K-edge for f-SWNTs-650 catalyst.

Sample Shell N a R (Å) b σ2 (Å2·10-3) c ΔE0 (eV) d R factor (%)

Ni-N 3.7 1.87 8.1 2.0 0.8
f-SWNTs-650

Ni-Ni 2.5 2.48 6.0 5.4 0.8
a N: coordination numbers; b R: bond distance; c σ2: Debye-Waller factors; d ΔE0: the inner potential 
correction. R factor: goodness of fit. Ѕ02 were set as 0.85/0.89 for Ni-N/Ni-Ni , which were obtained 
from the experimental EXAFS fit of reference Ni foil/NiPc by fixing CN as the known 
crystallographic value and was fixed to all the samples.



Table S3. Summary of performance of different single atom catalyst in CO2RR.

Catalyst Electrolyte

Optimal Potential for 

selective CO generation

(V vs.RHE)

jCO

(mA cm-2)

FEco

(%)
Ref.

f-SWNTs-650 0.5 M KHCO3 -0.92 -15.6 97.9 This work

Ni-N-C 0.5 M KHCO3 -0.7 -18.5 97 [8]

NC-CNTs (Ni) 0.5 M KHCO3 -1.0 -9.3 90.0 [9]

Ni-N4-C/O 0.1 M KHCO3 -0.9 -16.0 99.2 [10]

Ni-NCNT-3HS 0.5 M KHCO3 -1.0 -58.0 97.4 [11]

NiAD/AgNPs@CN 0.1 M KHCO3 -0.9 -4.5 99.9 [12]

NiPACN 0.1 M KHCO3 -0.8 -8.0 99 [13]

Ni-N3-C 0.5 M KHCO3 -0.65 -6.6 95.6 [14]

Ni(NC)-1 0.5 M KHCO3 -0.75 -10.5 99 [15]

Ni-N-CNTSs 0.5 M KHCO3 -0.75 -5.0 95.3 [16]

Ni1-N-C-50 0.5 M KHCO3 -0.7 -7.5 94 [17]

Ni/NPC 0.1 M KHCO3 -0.7 -16.0 97.2 [18]

h-Ni/N/C 0.5 M KHCO3 -0.8 -21.6 96 [19]

Ni-N4-SC 0.5 M KHCO3 -0.7 -15.0 95 [20]

Ni-NC-600 0.5 M KHCO3 -1.1 -12.0 99.9 [21]
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