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1. Dataset

As was mentioned, the collected dataset consisted of three phases (consult the paper

for detailed description and motivation for each of them). Using the quality controls and

group membership as filtering criteria, we obtained the following count distribution for

each of the phases:

1) Absolute values phase — 10978 labels used.

2) Active learning phase — 94810 labels used.

3) Ranking phase — 90295 labels used.

The sizes of three phases compared in the Figure S1.

Figure S1. Distribution of votes number across different phases.

Active learning allowed to collect labels for 164017 molecules, which is a significant

increase compared to other data-based approaches tackling the molecular complexity

determination.
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Each expert was asked their education level. The results are presented in Figure S2. As

can be seen, the largest group of experts consisted of PhD students pursuing organic

chemistry as their domain of expertise followed by experts who already obtained PhD in

organic chemistry.

Figure S2. Education level among the experts whose labels served as labels for the

ranking model training.

2. Active Learning

After collecting the initial set of labels with randomly sampled groups of molecules the

active learning was employed [links]. The reason for integrating active learning into the

data collection pipeline is to cover as much of the chemical space by using as little of

human effort as possible. During the most productive days of data collection, the

ensemble of ranking models was retrained nightly using the already collected data, after

which it was used to select a batch of unlabeled molecules using uncertainty in the

ranking score as a criterion. After this step, selected molecules were grouped into 5

clusters (corresponding to 5 complexity thresholds), and within each cluster most similar
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molecules were grouped into samples that were provided to the experts on the following

day. This step, thus achieved two goals: covering the chemical space as efficient as

possible as well as collecting the labels for the molecules that the model considers

highly similar.

3. Model Selection

Although having different data collection phases is beneficial simple merging of them for

the subsequent training might be hard due to the different sizes and types of molecules

in each phase. For instance, the second phase is based on the data collected during the

first phase and data collected during active learning. Therefore, we used the group

weight parameter between different phases of the GBDTs model as a hyperparameter

for the selection of best model. Other parameters included:

"loss_function": "YetiRank",
"iterations": 1000,
"depth": 8,
"learning_rate": 0.05,
"bootstrap_type": "MVS",

We found that changing them didn’t significantly change the performance of the model

on the test dataset that was obtained by random split. Therefore, the main

hyperparameter that was used corresponded to the group weight. The weight was

discretized up to 0.1 thus resulting in 66 different models. Pair Accuracy and Function

Group Test (FGT) was used as selection criteria. The functional groups included:

phenyl, methyl, amine, hydroxyl, carboxyl, aldehyde, t-Bu, isopropyl, nitril, sulfo,

fluorine, chlorine, bromine, iodine, and methoxy groups.

By equipping this approach for the hyperparameter tuning we were able to combine the

data collected in different phases by maximizing the ranking quality as well as having

the meaningful MC predictions validated by FGT. The detailed results of the conducted

analysis are presented in the Figure S3. As was mentioned in the main part of the

article, the selected phase weights correspond to 70%, 10%, and 20% distributed
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between the first, second, and third phases respectively. This distribution corresponds to

the optimal joint performance from both PA and FGT perspectives.

Figure S3. Ternary diagram visualization for the performance metrics. (a) pair accuracy
on different test phases obtained by random train/test split; (b) averaged pair accuracy
for different phases; (c) FGT results (the higher score/darker color shade is better).
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4. Interpreting molecular complexity
In addition to Fig. 1a, the complete SHAP beeswarm plot is given in Fig. S3.

Figure S4. SHAP beeswarm plot presenting the feature importance of all the features.

To further interpret the relationship between the molecular complexity and other
molecular features that were used for the training of the machine learning model, Fig.
S5 was made.
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Figure S5. MC plotted against the (a) SCScore, (b) molecular weight, (c) number of
aromatic rings, and (d) topological polar surface area. Molecules were taken from the
ChEMBL database.

Fig. S5 allows to explore further what guides scientists during the analysis of molecules
from the MC perspective.

5. FDA drugs results
Additionally to the 2D histogram presented in the Fig. 3a of the main text, we provide a
3D histogram (Fig. S6) to provide an additional perspective on the molecular complexity
evolution of small molecule drugs. Additionally, Fig. S6 contains the results of the Mann-
Kendall test, indicating clear growth of the molecular complexity over years.
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Figure S6. (a) 3D histogram illustrating the MC distribution of drugs over time; (b)
histogram with the results of Mann-Kendall test;

In addition to the molecules of the median molecular complexity per 5 years intervals
illustrated in the main text, we provide the MC-annotated molecular structures in Fig.
S7.
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Figure S7. FDA approved drugs with closest to the average molecular complexity value
per each year.
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6. Total syntheses with molecular complexity values
The schemes below contain the synthetic route strychnine and artemisinin. All the

schemes contain the intermediates with the biggest molecular complexity values.

1. Strychnine
a. Woodward 19541
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b. Overman 19932
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c. Mori 20023
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d. Vanderwal 20114

e. Biosynthesis5
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2. Artemisinin
a. Avery 19926

b. Cook 20127

c. Krieger 20188

d. Biosynthesis9
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7. Datasets used in the analysis

Several datasets were used during the performed analysis. In particular,
• Figure 1b relies on the sample of PubChem that was obtained according to the

description given in the Methods section.
• Results given in Figure 2a-b are the selection of ChEMBL drugs that can be

reproduced by using the Datamol framework (the dataset itself can be accessed
by datamol.data.chembl_drugs(as_df=True)). Figure 2c involves the analysis of
common benchmarking datasets. In particular, QM9, Tox21, and HIV datasets
were considered. The latter two were accessed through the therapeutics data
commons API.10

• Reaction Atlas in Figure 3 is constructed based on the Schneider 50k11 dataset
and is processed according to the methodology developed by Schwaller12 et al.

• Figure 4a relies on the collection of FDA-approved small molecule drugs, which
are publicly available. Additionally, the datasets collected by Ross et al. was used
for the quantitative analysis presented in Figure 4b-d. This involves both
measurements (that were received as described in corresponding
publication13)as well as docked structures.

• Results in Figure 5 involve the synthetic routes of two natural products that were
manually drawn and parsed by the authors of this work.
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