Supporting Information

Targeted anchoring of Cu sites in imine-based covalent organic

frameworks as catalytic centers for efficient Li-CO₂ batteries

Fig. S1 Schematic synthesis of Cu-TDCOF.

Fig. S2 The SEM images of (a, b) TDCOF.

Fig. S3 The FT-IR spectrogram of Cu-TDCOF and TDCOF.

Fig. S4 The full discharge capacities of Cu-TDCOF at 200 mA g^{-1} under Ar atmosphere.

Fig. S5 The CV curves of Cu-TDCOF, and TDCOF under the scan rate of 0.1 mV s⁻¹.

Fig. S6 The CV curves of Cu-TDCOF under the scan rate of 0.1 mV s⁻¹ under CO₂, and Ar atmosphere.

Fig. S7 The voltage/time curves of TDCOF at 200 mA g^{-1} with limited capacity of 1000 mAh g^{-1} .

Fig. S8 The voltage/time curves of Cu-TDCOF at 500 mA g⁻¹ under a limited capacity of (a)1000 mAh g⁻¹, (b) 8000 mAh g⁻¹.

Fig. S9 The SEM images of Cu-TDCOF in pristine, discharge, and recharge.

Cathode	Capacity/mAh g ⁻¹	Cycling time/h	Reference
(#)	(*)	(*)	
Graphene (1000)	6600 (100)	800 (50)	[1]
CFB@NCNT-Mo ₂ N	$5586.0 \ \mu Ah \ cm^{-2}$	$675 (40 \mu \text{Ah cm}^{-2})$	[2]
$(50\mu Ah \text{ cm}^{-2})$	$(10 \ \mu Ah \ cm^{-2})$		
RuAC+SA@NCB	10651 9 (100)	230 (300)	[3]
(500)	10031.9 (100)		
$Mo_2N@Ti_3C_2O_2$ (500)	8186 (300)	800(300)	[4]
Co _{0.1} Ni _{0.9} O _x /CNT (500)	9655.26 (50)	250 (200)	[5]
Ru/ACNF (1000)	11495 (200)	1000 (100)	[6]
ZnS QDs/N-rGO	10310 (100)	950 (400)	[7]
(1000)			
CuCo ₂ S ₄ -Co ₉ S ₈ (500)	3480 (20 µAh cm ⁻²)	480 (50 μA cm ⁻²)	[8]
RuCo NSs/CNT (500)	8057 (100)	180 (100)	[9]
Cu-TDCOF (1000)	12980 (200)	1100 (200)	This work

Table S1 The comparison of electrochemical performances for different cathodecatalysts of Li-CO2 batteries.¹⁻⁹

(*)/mA g⁻¹ represents current density.

(#)/mA g⁻¹ represents current density.

Reference

- 1. Z. Zhang, Q. Zhang, Y. Chen, J. Bao, X. Zhou, Z. Xie, J. Wei and Z. Zhou, *Angew. Chem. Int. Ed.*, 2015, **54**, 6550–6553.
- 2. L. Chen, J. Zhou, Y. Wang, Y. Xiong, J. Zhang, G. Qi, J. Cheng and B. Wang, *Adv. Energy Mater.*, 2023, **13**, 2202933.
- 3. J. Lin, J. Ding, H. Wang, X. Yang, X. Zheng, Z. Huang, W. Song, J. Ding, X. Han and W. Hu, *Adv. Mater.* 2022, **34**, 2200559.
- 4. R. Zheng, M. Yang, X. Zhu, Q. Fang, X. Wang, P. Lei, J. Zhou, B. Wang and J. Cheng, *Adv. Funct. Mater.*, 2024, **35**, 2412999.
- 5. X. Xiao, Z. Zhang, W. Yu, W. Shang, Y. Ma, X. Zhu and P. Tan, ACS Appl. Energy Mater., 2021, 4, 11858–11866.
- Y. Qiao, S. Xu, Y. Liu, J. Dai, H. Xie, Y. Yao, X. Mu, C. Chen, D. J. Kline, E. M. Hitz, B. Liu, J. Song, P. He, M. R. Zachariah and L. Hu, *Energy Environ. Sci.*, 2019, 12, 1100–1107.
- H. Wang, K. Xie, Y. You, Q. Hou, K. Zhang, N. Li, W. Yu, K. P. Loh, C. Shen and B. Wei, *Adv. Energy Mater.*, 2019, 9, 1901806.
- 8. X. Zhu, L. Chen, Q. Fang, J. Cheng, Y. Su, P. Ratajczak, F. Beguin and B. Wang, *ACS Sustainable Chem. Eng.*, 2024, **12**, 12755–12762.
- 9. Y. Wang, J. Zhou, C. Lin, B. Chen, Z. Guan, A. M. Ebrahim, G. Qian, C. Ye, L. Chen, Y. Ge, Q. Yun, X. Wang, X. Zhou, G. Wang, K. Li, P. Lu, Y. Ma, Y. Xiong, T. Wang, L. Zheng, S. Chu, Y. Chen, B. Wang, C. Lee, Y. Liu, Q. Zhang and Z. Fan, *Adv. Funct. Mater.*, 2022, **32**, 2202737.