The Mechanism of Spin-Phonon Relaxation in Endohedral Metallofullerene Single Molecule Magnets

Tanu Sharma^a, Rupesh Kumar Tiwari^a, Sourav Dey^a, Lorenzo A. Mariano^b, Alessandro Lunghi^{b*} and Gopalan Rajaraman^{a*}

- a- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India. Email: <u>rajaraman@chem.iitb.ac.in</u>.
- b- School of Physics and AMBER Research Centre, Trinity College, Dublin 2, Ireland. Email: <u>lunghia@tcd.ie</u>

Table S1: Summary of all the Endohedral metallofullerene based SMMs along with blocking temperature and the U_{eff} .

the Ueff.						
	Molecule	$T_{B,100s}(K)$	T _{B,hys} (K) _{(Field}	$T_{B,ZFC}$	Ueff (K)	Ref
			sweep mTs-1)is	(K)(temperature		
			given in bracket)	sweep (K min-1)		
Sr No				used is given in		
<u> </u>	$DySc_2N@D_3(6140)-C_{68}$	2.3	5 (2.9)	3.8 (5)	23.6	1
2	$DvSc_2N@D_{5h}(6)-C_{80}$	3.6	7 (2.9)	5.9 (5)	17.7	1
3	$DySc_2N@I_h(7)-C_{80}$	4.6	7 (2.9)	6.9 (5)	23.6	2
4	$DyY_2N@I_h(7)-C_{80}$	~6	8 (2.9)	8.4 (5)	929	3
5	$DyLu_2N@I_h(7)-C_{80}$	~6.5	9 (2.9)	9.5 (5)	24.2	3, 4
6	HoSc2N@Ih(7)- C_{80}			—	16.5	5
7	$Dy_2ScN@I_h(7)-C_{80}$	5	7 (2.9)	8 (5)	10.7/1735	6
8	$Dy_2YN@I_h(7)-C_{80}$	~3.5	5 (2.9)	4.7 (5)	43.8/680	3
9	$Dy_2LaN@I_h(7)-C_{80}$	~2	4 (2.9)	3.3 (5)		3
10	$Dy_2LuN@I_h(7)-C_{80}$	5.2	8 (2.9)	8 (5)	4.3	3, 4
11	$Dy_2GdN@I_h(7)-C_{80}$	~1.5	~1.8 (5.3)		15.1	7
12	DyErScN@ $I_h(7)$ -C ₈₀	~4.5	9 (33)	~8(3)	12.5	8
13	$Tb_2ScN@I_h(7)-C_{80}$	0.4	~0.4 (3.3)		1/10.5/56.4	9
14	$Dy_2ScN@D_{5h}(6)-C_{80}$	2.6	7 (2.9)	5.3 (5)	8.4	1
15	Dy ₂ ScN@D _s (51365)-C ₈₄	~1.8	5 (2.9)	3.3 (5)		1
16	$Dy_3N@I_h(7)-C_{80}$		~2 (0.8)			10
	TbCN@C2v(19138)-				12	11
17	C76b					
18	TbCN@C2(5)-C82b	—		—	10–20	12
19	TbCN@Cs(6)-C82b				10–20	12
20	TbCN@C2v(9)-C82b	—		—	10–20	12
21	Dy ₂ O@C _s (10528)-C ₇₂	3.4	7 (2.9)	8 (5)		13
22	Dy ₂ O@C ₂ (13333)-C ₇₄	5.0	14 (2.9)	14 (5)		13
23	$Dy_2O@C_{2v}(5)-C_{80}$	3.2	6 (2.9)	11 (5)	25.9	14
	$Dy_2O@C_s(6)-C_{82}$	2.8	6 (2.9)	10 (5)	10.8	15
24						
25	$Dy_2O@C_{3v}(8)-C_{82}$	5.9	7 (2.9)	9 (5)	7.8	15
26	$Dy_2O@C_{2v}(9)-C_{82}$	3.7	7 (2.9)	8 (5)	18.6	15
27	$Dy_2O@C_1(26)-C_{88}$	6	8 (2.9)	10.5 (5)	20.4	16
28	$Dy_2O@C_s(32)-C_{88}$	4.6	8 (2.9)	8.5 (5)		16
29	$Dy_2O@D_2(35)-C_{88}$	3.9	8 (2.9)	8.5 (5)		16
30	$Dy_2S@C_s(10528)-C_{72}$		3.0 (8.33)			17
	$\mathrm{Dy}_{2}\mathrm{S}@C_{\mathrm{s}}(6)-\mathrm{C}_{82}$		3.0 (8.33)		17.8	17, 18
31						

	$Dy_2S@C_{3v}(8)-C_{82}$	2	5 (8.33)	4.0 (5)	6	17, 18
32						
33	$DyScS@C_{s}(6)-C_{82}$	~4	9 (10)	7.3 (5)	15.2	19
34	DyScS@ $C_{3v}(8)$ -C ₈₂	~2	9 (10)	7.3 (5)	6.5	19
35	DyYTiC@ $I_h(7)$ -C ₈₀	~5	7 (2.9)	8 (5)	14.9	20
36	$Dy_2TiC@I_h(7)-C_{80}$	1.7	3 (5)		9.5	21
37	$Dy_2TiC_2@I_h(7)-C_{80}$		1.8 (5)	—	—	21
38	$Dy_2TiC@D_{5h}(6)-C_{80}$		1.8 (5)	—	—	21
39	$Dy_2C_2@C_s(6)-C_{82}$	—	3.0 (8.33)	—	17.4	17
40	$Dy_2C_2@C_s(32)-C_{88}$	—	2.1 (2.9)	—	—	16
41	Dy ₂ C ₂ @D ₂ (35)-C ₈₈	—	2.1 (2.9)			16
	$Dy@C_{s}(6)-C_{81}N$	45	39 (3.5)/60	69 (1)	—	22
42			(10)			
43	$Dy_2@C_{80}(CH_2Ph)$	18	22 (2.9)	21.9 (5)	613	23
44	Dy2@C79N	12	24 (20)	21 (3)	669	24
45	Tb2@C79N	24	26 (2.9)	28 (5)	757	25
46	Tb2@C80(CH2Ph)	25.2	27 (9.5)	28.9 (5)	799	26
47	$Tb_2@C_{80}(CF_3)$	25	26 (2.9)	28.5 (5)	801	27
48	$Ho_2@C_{80}(CH_2Ph)$		—		334	26
49	Er2@C80(CH2Ph)a		—	—		26
50	TbGd@C ₈₀ (CH ₂ Ph)		—	14.4 (5)	—	26
51	TbY@C ₈₀ (CH ₂ Ph)	—	5 (2.9)	5 (5)	—	26
52	Nd2@C80(CF3)a					28
53	Gd2@C79Na	—	—		6.5	29, 30
54	$DyEr@C_{3v}(8)-C_{82}$		3 (33)	5 (3)		31

Table S2: |V(r)/G(r)| ratio of DySSc@C₈₂ and Fragment DyScS(C₈H₆)₂. (Here V(r) is the Virial Field function, G(r) is the electronic kinetic energy density, |V(r)/G(r)| is the ratio of Virial field function to Electronic kinetic energy.

Bond	V(r)	G(r)	$(\nabla^2 \rho(\mathbf{r}))$	H(r)	V(r)/G(r)			
DySSc@C ₈₂								
Dy-S	-0.071	0.056	0.159	-0.015	1.285			
Dy-C	-0.074	0.062	0.202	-0.008	1.189			
Dy-S	-0.081	0.043	0.137	-0.011	1.143			
Dy-C	-0.076	0.062	0.194	-0.014	1.219			
Note: $ V(r)/G(r) < 1$ - ionic interaction, $ V(r)/G(r) > 2$ - covalent interaction,								
1 < V(r)/G(r) < 2 – intermediate interaction.								

Figure S1:DyScS@C $_{82}$ structure showing the marked C atoms as the one having considerable delocalization indices.

Table S3 : Delocalisation index $\delta(Dy, C_{cage})$						
between Dy ^{III} and the	between Dy ^{III} and the cage carbon atoms.					
Carbon number	$\delta(Dy, C_{cage})$					
1	0.236					
2	0.315					
3	0.101					
4	0.208					
5	0.276					
6	0.163					
7	0.163					
8	0.237					
9	0.237					
10	0.345					
11	0.315					
12	0.236					
13	0.328					
14 0.276						
15	0.208					

Table S4:	Table S4 : Energies, g-tensor, angle of the ground excited g_{zz} with the ground g_{zz} in					
$DyScS@C_{82}$ molecule and the $\underline{DyScS(C_8H_6)}$.						
KD	Energies					
	(cm^{-1})	g _{xx}	g _{yy}	g _{zz}	Angle (°)	
			DyScS@C ₈₂			
1	0.0	0.002	0.003	19.925		
2	239.3	0.009	0.012	17.078	2.5	
3	471.0	0.190	0.235	14.133	5.9	
4	659.7	0.249	0.567	11.697	20.1	
5	800.4	0.641	1.288	8.531	4.4	
6	889.7	6.186	5.695	3.801	45.7	
7	941.6	0.996	3.247	14.668	96.1	
8	1011.6	0.182	1.136	18.890	89.8	
		Ī	$DyScS(C_8H_6)_2$			
1	0.0	0.001	0.001	20.032		
2	271.9	0.012	0.018	17.726	27.8	
3	389.9	0.058	0.079	14.218	21.5	
4	520.3	0.875	1.029	12.453	16.6	
5	596.8	1.725	3.809	10.140	36.5	
6	671.5	3.383	5.859	9.881	86.8	
7	764.8	0.909	1.938	16.382	87.9	
8	988.9	0.043	0.075	20.059	93.4	

Figure S2: Relaxation mechanism of spin reversal in fragment $\underline{DyScS(C_8H_6)_2}$

Geometry optimisation input file

&GLOBAL

PROJECT

PRINT_LEVEL MEDIUM

RUN_TYPE GEO_OPT

FLUSH_SHOULD_FLUSH T

&END GLOBAL

&MOTION

&GEO_OPT

TYPE MINIMIZATION

MAX_FORCE 1.0E-07

MAX_ITER 1000

OPTIMIZER BFGS

&END GEO_OPT

&CONSTRAINT

&FIXED_ATOMS

&END FIXED_ATOMS

&END CONSTRAINT

&END MOTION

&FORCE_EVAL

METHOD Quickstep

&DFT

BASIS_SET_FILE_NAME /opt/cp2k-2.4.0/cp2k-2.4.0/tests/QS/BASIS_MOLOPT

POTENTIAL_FILE_NAME /opt/cp2k-2.4.0/cp2k-2.4.0/tests/QS/GTH_POTENTIALS

UKS T

CHARGE 0

MULTIPLICITY 1

&MGRID

NGRIDS 5

CUTOFF 1000

REL_CUTOFF 60

&END MGRID

&QS

EXTRAPOLATION PS

EXTRAPOLATION_ORDER 4

EPS_DEFAULT 1.0E-6

&END QS

&POISSON !Necessary to define POISSON section in non-perdiodic

PERIODIC NONE !boudary conditions as the default assumes PBCs

POISSON_SOLVER MT

&END POISSON

&SCF

SCF_GUESS ATOMIC

EPS_SCF 1.0E-8

MAX_SCF 200

&MIXING T

METHOD BROYDEN_MIXING

ALPHA 0.1

BETA 1.5

NBROYDEN 8

&END MIXING

&OUTER_SCF

EPS_SCF 1.0E-8

MAX_SCF 100

OPTIMIZER DIIS

&END OUTER_SCF

&OT ON

PRECONDITIONER FULL_KINETIC

MINIMIZER CG

N_HISTORY_VEC 7

&END OT

&PRINT

&RESTART

LOG_PRINT_KEY T

&END RESTART

&END PRINT

&END SCF

&XC

&XC_GRID

XC_SMOOTH_RHO NN50

XC_DERIV NN50_SMOOTH

&END XC_GRID

&XC_FUNCTIONAL PBE

&END XC_FUNCTIONAL

&VDW_POTENTIAL

POTENTIAL_TYPE PAIR_POTENTIAL

&PAIR_POTENTIAL

TYPE DFTD3

REFERENCE_FUNCTIONAL PBE

 $PARAMETER_FILE_NAME \ ./dftd3.dat$

R_CUTOFF 10

&END PAIR_POTENTIAL

&END VDW_POTENTIAL

DENSITY_CUTOFF 1.0E-9

GRADIENT_CUTOFF 1.0E-9

TAU_CUTOFF 1.0E-9

&END XC

&END DFT

&SUBSYS

&TOPOLOGY

&CENTER_COORDINATES T

&END CENTER_COORDINATES

&END TOPOLOGY

&PRINT

&END PRINT

&CELL

А	20.00000000	0.000000000	0.000000000			
В	0.000000000	20.00000000	0.000000000			
С	0.000000000	0.000000000	20.0000000			
PERIODIC NONE						

&END CELL

&COORD

С	9.852943614	11.496206211	13.760374766
С	11.078699185	12.098340519	13.323924624
С	12.098293098	11.078758088	13.323927748
С	11.496171073	9.852997063	13.760379490
С	10.110906752	10.110945522	14.032292840
С	11.919856109	8.595599571	13.233905836
С	13.021171913	8.587288375	12.334566679
С	13.634633003	9.817630026	11.907139897
С	13.130627151	11.067957675	12.346097621
С	13.165905149	12.153293467	11.401093405
С	13.674682202	12.019634709	10.049549163
С	7.945408693	13.488488475	8.859082876
С	14.055436188	9.646597357	10.536933061
С	13.767743439	8.280243283	10.173966009
С	13.078825340	7.640548966	11.247822717
С	13.488488735	7.945470100	8.859099399
С	13.448421126	8.968290064	7.848120805
С	13.664563895	10.329365470	8.185970982
С	12.954579357	11.311396959	7.397700356
С	11.888183661	10.884173251	6.514327762
С	11.573070437	9.513322781	6.276373389

С	12.437856751	8.568631013	6.881787049
С	11.930410215	7.297375241	7.298504347
С	12.481873482	6.956867545	8.581187669
С	11.676013768	6.393471531	9.611382199
С	12.011434023	6.723534943	10.991202694
С	10.992759516	6.654215328	11.977407730
С	10.942880747	7.572684970	13.077753275
С	9.645062702	6.301828540	11.635584910
С	7.075882756	7.075878655	10.784104583
С	10.297841568	6.013479554	9.270470241
С	9.844925473	6.193479766	7.920557801
С	10.642420415	6.922301753	6.971099568
С	9.793153536	7.805527951	6.218755969
С	10.188892887	9.153967315	5.969989327
С	8.432909750	7.438555941	6.540292360
С	8.453140635	6.417191993	7.570204450
С	7.448639289	6.401829328	8.578932837
С	7.899092186	6.246518570	9.938372801
С	7.494615346	7.494619454	12.072337033
С	6.246515239	7.899075853	9.938367839
С	6.401834602	7.448620509	8.578929559
С	6.417188880	8.453118653	7.570197620
С	6.193461880	9.844902351	7.920547231
С	6.013452631	10.297820721	9.270457722
С	5.983224170	9.280827107	10.312704303
С	7.438557086	8.432896602	6.540288934
С	7.805515759	9.793143450	6.218750704
С	9.153951635	10.188896982	5.969986574
С	6.922278077	10.642402862	6.971088958
С	7.297335860	11.930397934	7.298490717

С	8.568587378	12.437857091	6.881775779
С	9.513290689	11.573079314	6.276367654
С	10.884136998	11.888208521	6.514324978
С	7.640485199	13.078828449	11.247806582
С	9.280845084	5.983243445	10.312713673
С	10.685656929	14.011078681	9.569667554
С	14.011047862	10.685726315	9.569677388
С	13.021733332	13.021790041	9.221007237
С	12.019567402	13.674728850	10.049544076
С	12.153228224	13.165958278	11.401090232
С	11.067890034	13.130671366	12.346091352
С	9.817558106	13.634661917	11.907128463
С	9.646524741	14.055459114	10.536919854
С	8.587222123	13.021188662	12.334553536
С	8.280174905	13.767750764	10.173949628
С	12.639977845	12.640026385	7.878912209
С	6.723483706	12.011426467	10.991187014
С	6.393428313	11.675998316	9.611366511
С	6.956818062	12.481861294	8.581171188
С	6.654172549	10.992754014	11.977394995
С	7.572639293	10.942888565	13.077743662
С	8.595542964	11.919875461	13.233895924
С	7.818565287	9.556004225	13.393229941
С	7.020441342	8.755758767	12.528986646
С	6.301801586	9.645052255	11.635575358
С	8.968232185	13.448428866	7.848107527
С	8.755758687	7.020460775	12.528991262
С	9.555992612	7.818596216	13.393235345
С	9.117486870	9.117514073	13.808233119
С	11.311346073	12.954611336	7.397695953

С	10.32930419	98	13.6645870)99	8.185961290			
S	9.69224582	7	9.69227139	95 1	10.364521316			
Sc	8.41906424	9	8.4190765	18	8.885125934			
Y	11.3545758	19	11.3546105	591	9.473953315			
&EN	D COORD							
&]	&KIND C							
E	ELEMENT C							
E	BASIS_SET DZVP-MOLOPT-GTH							
Р	OTENTIAL	G	ГН-РВЕ-q4					
&	END KIND							
&]	KIND S							
E	ELEMENT	S						
E	BASIS_SET	DZ	VP-MOLOP	PT-G7	ΓH			
P	OTENTIAL	G	TH-PBE-q6					
&	END KIND							
&]	KIND Sc							
E	ELEMENT	Sc						
E	BASIS_SET	DZ	VP-MOLOP	YT-SR	R-GTH			
Р	OTENTIAL	G	FH-PBE-q11					
&	END KIND							
&]	KIND Y							
E	ELEMENT	Y						
E	BASIS_SET	DZ	VP-MOLOF	PT-SR	R-GTH			
Р	OTENTIAL	G	FH-PBE-q11					
&	&END KIND							
&	&END SUBSYS							
&Е	&END FORCE_EVAL							

References

- C. Schlesier, L. Spree, A. Kostanyan, R. Westerström, A. Brandenburg, A. U. Wolter, S. Yang, T. Greber and A. A. Popov, *Chemical Communications*, 2018, 54, 9730-9733.
- R. Westerström, J. Dreiser, C. Piamonteze, M. Muntwiler, S. Weyeneth, H. Brune, S. Rusponi, F. Nolting, A. Popov and S. Yang, *Journal of the American Chemical Society*, 2012, **134**, 9840-9843.
- 3. Y. Hao, G. Velkos, S. Schiemenz, M. Rosenkranz, Y. Wang, B. Büchner, S. M. Avdoshenko, A. A. Popov and F. Liu, *Inorganic Chemistry Frontiers*, 2023, **10**, 468-484.
- 4. L. Spree, C. Schlesier, A. Kostanyan, R. Westerström, T. Greber, B. Büchner, S. M. Avdoshenko and A. A. Popov, *Chemistry–A European Journal*, 2020, **26**, 2436-2449.
- 5. J. Dreiser, R. Westerström, Y. Zhang, A. A. Popov, L. Dunsch, K. Krämer, S. X. Liu, S. Decurtins and T. Greber, *Chemistry–A European Journal*, 2014, **20**, 13536-13540.
- 6. D. Krylov, F. Liu, S. Avdoshenko, L. Spree, B. Weise, A. Waske, A. Wolter, B. Büchner and A. Popov, *Chemical Communications*, 2017, **53**, 7901-7904.
- 7. A. Kostanyan, C. Schlesier, R. Westerström, J. Dreiser, F. Fritz, B. Büchner, A. A. Popov, C. Piamonteze and T. Greber, *Physical Review B*, 2021, **103**, 014404.
- 8. M. Nie, J. Xiong, C. Zhao, H. Meng, K. Zhang, Y. Han, J. Li, B. Wang, L. Feng and C. Wang, *Nano Research*, 2019, **12**, 1727-1731.
- 9. A. Kostanyan, R. Westerström, D. Kunhardt, B. Büchner, A. A. Popov and T. Greber, *Physical Review B*, 2020, **101**, 134429.
- 10. R. Westerström, J. Dreiser, C. Piamonteze, M. Muntwiler, S. Weyeneth, K. Krämer, S.-X. Liu, S. Decurtins, A. Popov and S. Yang, *Physical Review B*, 2014, **89**, 060406.
- F. Liu, S. Wang, C. L. Gao, Q. Deng, X. Zhu, A. Kostanyan, R. Westerström, F. Jin, S. Y. Xie and A. A. Popov, *Angewandte Chemie*, 2017, **129**, 1856-1860.
- 12. F. Liu, C.-L. Gao, Q. Deng, X. Zhu, A. Kostanyan, R. Westerström, S. Wang, Y.-Z. Tan, J. Tao and S.-Y. Xie, *Journal of the American Chemical Society*, 2016, **138**, 14764-14771.
- 13. G. Velkos, W. Yang, Y.-R. Yao, S. M. Sudarkova, X. Liu, B. Büchner, S. M. Avdoshenko, N. Chen and A. A. Popov, *Chemical science*, 2020, **11**, 4766-4772.
- 14. G. Velkos, W. Yang, Y.-R. Yao, S. M. Sudarkova, F. Liu, S. M. Avdoshenko, N. Chen and A. A. Popov, *Chemical Communications*, 2022, **58**, 7164-7167.
- 15. W. Yang, G. Velkos, F. Liu, S. M. Sudarkova, Y. Wang, J. Zhuang, H. Zhang, X. Li, X. Zhang and B. Büchner, *Advanced Science*, 2019, **6**, 1901352.
- 16. W. Yang, G. Velkos, S. Sudarkova, B. Büchner, S. M. Avdoshenko, F. Liu, A. A. Popov and N. Chen, *Inorganic Chemistry Frontiers*, 2022, **9**, 5805-5819.
- 17. C.-H. Chen, D. S. Krylov, S. M. Avdoshenko, F. Liu, L. Spree, R. Yadav, A. Alvertis, L. Hozoi, K. Nenkov and A. Kostanyan, *Chemical science*, 2017, **8**, 6451-6465.
- 18. D. Krylov, G. Velkos, C.-H. Chen, B. Büchner, A. Kostanyan, T. Greber, S. M. Avdoshenko and A. A. Popov, *Inorganic chemistry frontiers*, 2020, **7**, 3521-3532.
- 19. W. Cai, J. D. Bocarsly, A. Gomez, R. J. L. Lee, A. Metta-Magaña, R. Seshadri and L. Echegoyen, *Chemical Science*, 2020, **11**, 13129-13136.
- 20. A. Brandenburg, D. S. Krylov, A. Beger, A. U. Wolter, B. Büchner and A. A. Popov, *Chemical Communications*, 2018, **54**, 10683-10686.
- K. Junghans, C. Schlesier, A. Kostanyan, N. A. Samoylova, Q. Deng, M. Rosenkranz, S. Schiemenz, R. Westerström, T. Greber and B. Büchner, *Angewandte Chemie International Edition*, 2015, 54, 13411-13415.
- 22. Z. Hu, Y. Wang, A. Ullah, G. M. Gutiérrez-Finol, A. Bedoya-Pinto, P. Gargiani, D. Shi, S. Yang, Z. Shi and A. Gaita-Ariño, *Chem*, 2023, **9**, 3613-3622.

- F. Liu, D. S. Krylov, L. Spree, S. M. Avdoshenko, N. A. Samoylova, M. Rosenkranz, A. Kostanyan, T. Greber, A. U. Wolter and B. Büchner, *Nature communications*, 2017, 8, 16098.
- 24. Y. Wang, J. Xiong, J. Su, Z. Hu, F. Ma, R. Sun, X. Tan, H.-L. Sun, B.-W. Wang and Z. Shi, *Nanoscale*, 2020, **12**, 11130-11135.
- 25. G. Velkos, D. S. Krylov, K. Kirkpatrick, L. Spree, V. Dubrovin, B. Büchner, S. M. Avdoshenko, V. Bezmelnitsyn, S. Davis and P. Faust, *Angewandte Chemie International Edition*, 2019, **58**, 5891-5896.
- 26. F. Liu, G. Velkos, D. S. Krylov, L. Spree, M. Zalibera, R. Ray, N. A. Samoylova, C.-H. Chen, M. Rosenkranz and S. Schiemenz, *Nature communications*, 2019, **10**, 571.
- 27. Y. Wang, G. Velkos, N. J. Israel, M. Rosenkranz, B. Büchner, F. Liu and A. A. Popov, *Journal of the American Chemical Society*, 2021, **143**, 18139-18149.
- 28. W. Yang, G. Velkos, M. Rosenkranz, S. Schiemenz, F. Liu and A. A. Popov, *Advanced Science*, 2024, **11**, 2305190.
- 29. Z. Hu, B.-W. Dong, Z. Liu, J.-J. Liu, J. Su, C. Yu, J. Xiong, D.-E. Shi, Y. Wang and B.-W. Wang, *Journal of the American Chemical Society*, 2018, **140**, 1123-1130.
- 30. G. Velkos, D. Krylov, K. Kirkpatrick, X. Liu, L. Spree, A. Wolter, B. Büchner, H. Dorn and A. Popov, *Chemical Communications*, 2018, **54**, 2902-2905.
- 31. M. Nie, L. Yang, C. Zhao, H. Meng, L. Feng, P. Jin, C. Wang and T. Wang, *Nanoscale*, 2019, **11**, 18612–18618.