Supporting Information

B(MIDA)-Directed Site-Selective Intermolecular Halofluoroalkylation of Alkenes:

Synthesis of Diversely Functionalized Building Blocks

Hengbo Wu,^{1,2,‡} Ruitong Luo,^{1,2,‡} Jingjing Peng,^{1,2} Zijian Han,^{1,2} Renjie Zhang,^{2,3}

Zhijian Xu,^{1,2} Weiliang Zhu, ^{*1,2} Hong Liu, ^{*1,2,3}, Chunpu Li, ^{*1,2,3},

¹ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

² University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

³ School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China

*E-mail: lichunpu@simm.ac.cn, hliu@simm.ac.cn, wlzhu@simm.ac.cn [‡] These authors contributed equally to this work.

Table of Contents

1. General Information	S2
2. Optimization of reaction conditions	\$3
3. General procedure and characterization of starting materials.	\$4
4. General procedure and characterization of products	S19
5. Gram-scale preparation and transformations	S50
6. Mechanistic studies	S60
7. X-ray crystallographic data	S67
8. DFT calculations	S69
9. References	\$133
10. NMR spectrum of starting materials and products	S135

1. General Information

Analytical thin layer chromatography (TLC) was HSGF 254 (0.15-0.2 mm thickness). Preparative thin layer chromatography (PTLC) was HSGF 254 (0.4-0.5 mm thickness). All products were characterized by their NMR and MS spectra. ¹H, ¹⁹F, ³¹P, ¹¹B and ¹³C NMR spectra were recorded on a 400 MHz, 500 MHz, 600 MHz or 800 MHz instrument. Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), doublet of doublets (dd), doublet of triplets (dt), triplet of doublets (td), doublet of doublet of doublets (ddd), doublet of doublet of triplets (ddt) and broad (br). NMR yield was determined by ¹⁹F NMR using fluorobenzene as an internal standard before working up the reaction. High-resolution mass spectra (HRMS) were measured on Micromass Ultra Q-TOF spectrometer. Other reagents (chemicals) were purchased from Alfa Aesar, TCI, J&K Chemicals, Energy Chemical, Hangzi Biological Technology Co., Ltd., Shanghai, Bide Pharmatech Co., Ltd. and Adamas and used without further purification. Flash chromatography was performed on silica gel (300-400 mesh) using petroleum ether (PE)/ethyl acetate (EA) or dichloromethane (DCM)/methanol (MeOH).

2. Optimization of reaction conditions Table S1. Screening of solvents^{*a*}

		PdCl ₂ (dppf)•DCM (10 mol %)	P-
H.	FF	BINAP (10 mol %)	
B-0-++	BrCOOEt	K₂CO₃ (2 equiv)	EtOOC H B-O-
B-1	S-1	solvent , Ar, 85 °C, 12 h	1
entry		solvent	yield ^{b} (%)
1		EtOAc	90 (89)
2		Dioxane	61
3		DMF	43
4		DCE	44
5		MeOH	trace
6		MeCN	54
7		toluene	trace

^{*a*}Reaction conditions: **B-1** (0.27 mmol, 1.0 equiv), **S-1** (2.0 equiv), PdCl₂(dppf)•DCM (10 mol %), BINAP (10 mol %), K₂CO₃ (2.0 equiv), solvent (2 mL), 85 °C, Ar, 12 h, if otherwise noted. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard, and the number in parentheses is isolated yield.

Table S2. Screening of ligands^a

H ~ KN	F, F	ligand (10 mol %)	
B-0-++	Br COOEt	► K ₂ CO ₃ (2 equiv)	EtOOC H B-O-H
B-1	S-1	EA, Ar, 85 °C, 12 h	1
entry		ligand	yield ^b (%)
1		XPhos	40
2		Davephos	51
3		dppe	15
4		BINAP	90 (89)
5		Xantphos	62
6		CTC-Q-Phos	44
7		T-BINAP	72

^{*a*}Reaction conditions: **B-1** (0.27 mmol, 1.0 equiv), **S-1** (2.0 equiv), PdCl₂(dppf)·DCM (10 mol %), ligand (10 mol %), K₂CO₃ (2.0 equiv), EtOAc (2 mL), 85 °C, Ar, 12 h, if otherwise noted. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard, and the number in parentheses is isolated yield.

Table S3. Screening of palladium catalysts^a

	F、F	[Pd] (10 mol %) BINAP (10 mol %)	
B-O-++	Br COOEt	K₂CO₃ (2 equiv)	EtOOC H B-O-
B-1	S-1	EA, Ar, 85 °C, 12 h	1
entry		[Pd]	yield ^{b} (%)
1]	PdCl ₂ (MeCN) ₂	59
2		Pd(PPh ₃) ₄	85
3	Pd	lCl2(dppf)·DCM	90 (89)
4		$Pd(OAc)_2$	82
5		Sphos Pd G2	76

^{*a*}Reaction conditions: **B-1** (0.27 mmol, 1.0 equiv), **S-1** (2.0 equiv), [Pd] (10 mol %), BINAP (10 mol %), K₂CO₃ (2.0 equiv), EtOAc (2 mL), 85 °C, Ar, 12 h, if otherwise noted. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard, and the number in parentheses is isolated yield.

		PdCl ₂ (dppf)•DCM (10 mol %)	
H	F	BINAP (10 mol %)	F F Br
0-00	Br COOEt	base (2 equiv)	Н
B-1	S-1	EA, Ar, 85 °C, 12 h	1
entry		base	yield ^b (%)
1		KOAc	38
2		K2CO3	90 (89)
3		^t BuOK	23
4		NaOAc	17
5		^t BuONa	trace
6		Na ₂ CO ₃	51
7		NaHCO ₃	22
8		Cs_2CO_3	77
9		Li ₂ CO ₃	trace

Table S4. Screening of bases^a

^{*a*}Reaction conditions: **B-1** (0.27 mmol, 1.0 equiv), **S-1** (2.0 equiv), PdCl₂(dppf)·DCM (10 mol %), BINAP (10 mol %), base (2.0 equiv), EtOAc (2 mL), 85 °C, Ar, 12 h, if otherwise noted. ^{*b*}Determined by ¹⁹F NMR using fluorobenzene as an internal standard, and the number in parentheses is isolated yield.

3. General procedure and characterization of starting materials

Starting materials of 1, 2, 15-23, 36 and 37 are commercially available. Others were prepared according to the following procedure. Especially, starting materials of 3-6,¹ 25,² 26 and 29,³ 39,⁴ 41,⁵ 44,⁶ 46 and 48⁷, 56 and 59⁸ are known compounds and spectroscopic data of them were consistent with the reported values.

General procedure A:¹

$$Br \xrightarrow{F} O \rightarrow + R \land NH_2 \xrightarrow{rt} Br \xrightarrow{F} O \qquad Br \xrightarrow{F} O \land R$$

A mixture of bromodifluoroacetate (1 equiv.) and amine (1 equiv.) was stirred vigorously at room temperature for 2 hours. After the reaction was judged to be complete by TLC analysis, the reaction mixture was purified directly by column chromatography on silica gel with an appropriate solvent as eluent to afford the corresponding amide.

General procedure B:

A mixture of iododifluoroacetate (1 equiv.) and amine (1 equiv.) was stirred vigorously at 80 °C for 2 hours. After the reaction was judged to be complete by TLC analysis, the reaction mixture was purified directly by column chromatography on silica gel with an appropriate solvent as eluent to afford the corresponding amide.

A mixture of iododifluoroacetate or bromodifluoroacetate (1 equiv.) and aniline (1 equiv.) was stirred vigorously at 80 °C for 12 hours. After the reaction was judged to be complete by TLC analysis, the reaction mixture was purified directly by column chromatography on silica gel with an appropriate solvent as eluent to afford the corresponding amide.

General procedure D:9

To a 100 mL round bottle equipped with a Teflon-coated magnetic stir bar were added Boc and OMe-protected amino acids (1 equiv.) and DCM (20 mL). Subsequently, TFA (8 equiv.) was added dropwise. After the reaction was stirred at room temperature overnight, the solvent was removed. Then, Et_3N (10 equiv.) and BrCF₂CO₂Et (2 equiv.) were added to the crude oil product. The resulting mixture was stirred at room temperature vigorously for 2 hours. After the reaction was judged to be complete by TLC analysis, the reaction mixture was diluted with EtOAc, washed with brine for three times and the collected organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The concentrated crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

General procedure E:

BocHN-R
$$\begin{array}{c} 1) \text{ TFA, DCM, rt} \\ \hline 2) \text{ Et}_{3}\text{N, ICF}_{2}\text{COOEt, 80 °C, 2h} \end{array} \qquad \begin{array}{c} F \\ I \\ O \\ \end{array} \\ \begin{array}{c} F \\ N \\ O \\ \end{array} \\ \begin{array}{c} R \\ O \\ \end{array} \\ \end{array}$$

To a 100 mL round bottle equipped with a Teflon-coated magnetic stir bar were added Boc and OMe-protected amino acids (1 equiv.) and DCM (20 mL). Subsequently, TFA (8 equiv.) was added dropwise. After the reaction was stirred at room temperature overnight, the solvent was removed. Then, Et₃N (10 equiv.) and ICF₂CO₂Et (2 equiv.) were added to the crude oil product. The resulting mixture was stirred at 80 °C vigorously for 2 hours. After the reaction was judged to be complete by TLC analysis, the reaction mixture was diluted with EtOAc, washed with brine for three times and the collected organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The concentrated crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

General procedure F:

A mixture of bromodifluoroacetate (1 equiv.), Et₃N (20 equiv.) and amine (1 equiv.) was stirred vigorously in a 50 mL round bottom flask at room temperature for 2 hours. After the reaction was judged to be complete by TLC analysis, the mixture was diluted with EtOAc, washed with brine for three times and the collected organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The concentrated crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

General procedure G:

$$I \xrightarrow{F} G + R - NH_2 HCI \xrightarrow{Et_3N, 80 \ ^\circ C, 2h} I \xrightarrow{F} H_N R$$

A mixture of iododifluoroacetate (1 equiv.), Et₃N (20 equiv.) and amine (1 equiv.) was stirred vigorously in a 50 mL round bottom flask at 80 °C for 2 hours. After the reaction was judged to be complete by TLC analysis, the mixture was diluted with EtOAc, washed with brine for three times and the collected organic layer was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The concentrated crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

General procedure H:⁷

$$Br + R - NH_2 HCI = \frac{1) \text{ oxalyl chloride, DMF, DCM, rt}}{2) Et_3 N, DCM, rt}$$

To a stirred solution of 2-bromo-2,2-difluoroacetic acid (875 mg, 5.0 mmol, 1.0 equiv.) and oxalyl chloride (0.46 mL, 1.1 equiv.) in 10 mL of anhydrous CH₂Cl₂, was added 2 drops of anhydrous DMF at room temperature. The mixture was allowed to stir for 2 hours at rt before it was cooled to 0 °C and a solution of the corresponding amine hydrochloride (1.1 equiv.) and Et₃N (6.91 mL, 10.0 equiv.) in 10 mL anhydrous CH₂Cl₂ was added dropwise. The resulting reaction mixture was stirred at room temperature until completion as monitored by TLC. The reaction was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layer was washed with a saturated aqueous solution of NaHCO₃ and dried over Na₂SO₄ then the solvent was removed. The crude was purified with silica gel chromatography with an appropriate solvent as eluent to afford the pure product. *Note:* Starting material of 39 was synthesized through this protocol and the spectroscopic data was consistent with the reported value.⁴

General procedure I:⁷

To a stirred solution of 2-bromo-2,2-difluoroacetic acid (875 mg, 5.0 mmol, 1.0 equiv.) and oxalyl chloride (0.46 mL, 1.1 equiv.) in 10 mL of anhydrous CH₂Cl₂, was added 2 drops of anhydrous DMF at room temperature. The mixture was allowed to stir for 2 hours at rt before it was cooled to 0 °C and a solution of the corresponding alcohol (1.1 equiv.) and Et₃N (0.76 mL, 1.1 equiv.) in 10 mL anhydrous CH₂Cl₂ was added dropwise. The resulting reaction mixture was stirred at room temperature until completion as monitored by TLC. The reaction was diluted with H₂O and extracted with CH₂Cl₂. The combined organic layer was washed with a saturated aqueous solution of NaHCO₃ and dried over Na₂SO₄ then the solvent was removed. The crude was purified with silica gel chromatography with an appropriate solvent as eluent to afford the pure product.

General procedure J:10

$$R \xrightarrow{\text{Bpin}} Bpin \xrightarrow{\text{MIDA, HC(OMe)_3}} R \xrightarrow{\text{Bpin}} R \xrightarrow{\text{Bpin}} R \xrightarrow{\text{Bpin}} R$$

The anhydrous DMSO (5 mL) was added to dissolve the olefin Bpin (1.0 equiv.) which was then added via syringe to a suspension of *N*-methyliminodiacetic acid (MIDA, 1.5 equiv.) and CH(OMe)₃ (3.0 equiv.) in anhydrous DMSO (5 mL). The resulting mixture was stirred at 100 °C until the starting material was totally consumed by TLC monitoring. After cooling to room temperature, the reaction mixture was diluted with EtOAc (20 mL) and water (10 mL). The organic phase was separated and the aqueous layer was extracted with ethyl acetate (20 mL) for three times. The combined organic

layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

General procedure K:¹⁰

$$R \longrightarrow \begin{array}{c} HBpin, Cp_2ZrHCl, Et_3N \\ \hline \\ Ar, 60 \ ^{\circ}C \end{array} \xrightarrow{R} \begin{array}{c} MIDA, HC(OMe)_3 \\ \hline \\ DMSO, 100 \ ^{\circ}C \end{array} \xrightarrow{R} \begin{array}{c} \\ B_{-O} - \\ O \end{array} \xrightarrow{O} \\ O \end{array}$$

Alkyne (1.0 equiv.) was added to a dry, cooled Schlenk tube. The tube was pumped under high vacuum and then backfilled with argon, and this cycle repeated three times. Then pinacolborane (HBpin, 1.2 equiv.) was added, followed by Et₃N (0.1 equiv.) and Schwartz's reagent (0.1 equiv.). The resulting beige slurry was heated to 60 °C and stirred vigorously for 24 hours while protected from light. After the reaction was completed, the crude reaction mixture was purified through a short column of silica gel and concentrated in vacuo to a heavy oil. The anhydrous DMSO (5 mL) was added to dissolve the olefin Bpin oil (1.0 equiv.) which was then added via syringe to a suspension of N-methyliminodiacetic acid (MIDA, 1.5 equiv.) and CH(OMe)₃ (3.0 equiv.) in anhydrous DMSO (5 mL). The resulting mixture was stirred at 100 °C until the starting material was totally consumed by TLC monitoring. After cooling to room temperature, the reaction mixture was diluted with EtOAc (20 mL) and water (10 mL). The organic phase was seperated and the aqueous layer was extracted with ethyl acetate (20 mL) for three times. The combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting crude product was purified by flash chromatography on silica gel with an appropriate solvent as eluent to afford the pure product.

Characterization of starting materials 2-bromo-*N*-(2,4-difluorobenzyl)-2,2-difluoroacetamide (S-7)

Following the general procedure A, the S-7 was obtained in 62% yield as a white solid. ¹H NMR (800 MHz, CDCl₃) δ 7.35 (td, J = 8.5, 6.4 Hz, 1H), 6.89 (ddd, J = 8.5, 2.2, 1.1 Hz, 1H), 6.85 (ddd, J = 10.5, 8.6, 2.3 Hz, 1H), 6.58 (s, 1H), 4.54 (d, J = 6.1 Hz, 2H). ¹³C NMR (201 MHz, CDCl₃) δ 163.1 (dd, J = 250.2, 12.1 Hz), 161.3 (dd, J = 249.8, 12.0 Hz), 160.1 (t, J = 27.7 Hz), 131.5 (dd, J = 9.5, 5.7 Hz), 119.3 (dd, J = 14.7, 3.7 Hz), 112.0 (dd, J = 21.4, 3.0 Hz), 111.7 (t, J = 315.9 Hz), 104.4 (t, J = 25.2 Hz), 37.9 (d, J = 2.6 Hz). ¹⁹F NMR (753 MHz, CDCl₃) δ -60.7 (s, 2F), -109.0 (m, 1F), -114.3 (q, J = 8.6 Hz, 1F). HRMS (ESI) calcd. for C₉H₇BrF₄NO [M+H]⁺: 299.9642, found: 299.9639.

2-bromo-2,2-difluoro-*N*-(4-isopropylbenzyl)acetamide (S-8)

Following the general procedure A, the **S-8** was obtained in 62% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.26 – 7.21 (m, 4H), 6.43 (s, 1H), 4.50 (d, J = 5.7 Hz, 2H), 2.92 (hept, J = 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.9 (t, J = 27.5 Hz), 149.4, 133.4, 128.2 (2C), 127.3 (2C), 111.9 (t, J = 316.1 Hz), 44.1, 34.0, 24.1 (2C). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -60.5 (s, 2F). **HRMS (ESI)** calcd. for C₁₂H₁₅BrF₂NO [M+H]⁺: 306.0300, found: 306.0297.

2-bromo-N-(2-chlorobenzyl)-2,2-difluoroacetamide (S-9)

Following the general procedure A, the S-9 was obtained in 52% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.36 (m, 2H), 7.32 – 7.26 (m, 2H), 6.65 (s, 1H), 4.63 (d, J = 6.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.0 (t, J = 27.7 Hz), 134.0, 133.7, 130.6, 130.0 (2C), 127.6, 111.8 (t, J = 316.0 Hz), 42.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.5 (s, 2F). HRMS (ESI) calcd. for C₉H₈BrClF₂NO [M+H]⁺: 297.9440, found: 297.9440.

2-bromo-2,2-difluoro-N-(naphthalen-1-ylmethyl)acetamide (S-10)

Following the general procedure A, the **S-10** was obtained in 56% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.93 (t, J = 8.4 Hz, 2H), 7.88 (dt, J = 7.6, 3.8 Hz, 1H), 7.60 (ddd, J = 8.4, 6.9, 1.5 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.50 – 7.44 (m, 2H), 6.43 (s, 1H), 4.99 (d, J = 5.4 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 159.8 (t, J = 27.6 Hz), 134.1, 131.4 (2C), 129.6, 129.2, 127.4, 127.3, 126.5, 125.5, 123.1, 111.8 (t, J = 316.2Hz), 42.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.6 (s, 2F). HRMS calcd. for C₁₃H₁₄BrF₂N₂O [M+NH₄]⁺: 331.0252, found: 331.0257.

2-bromo-2,2-difluoro-N-(3-(trifluoromethyl)phenethyl)acetamide (S-11)

Following the general procedure A, the S-11 was obtained in 84% yield as a white solid.

¹**H** NMR (500 MHz, CDCl₃) δ 7.55 – 7.52 (m, 1H), 7.48 – 7.44 (m, 2H), 7.42 – 7.39 (m, 1H), 6.24 (s, 1H), 3.64 (q, J = 6.8 Hz, 2H), 2.97 (t, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.2 (t, J = 27.7 Hz), 138.8, 132.3, 131.4 (q, J = 32.2 Hz), 129.5, 125.7 (q, J = 3.6 Hz), 124.12 (q, J = 272.4 Hz), 124.06 (dd, J = 7.4, 3.6 Hz), 111.7 (t, J = 315.9 Hz), 41.2, 35.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.7 (s, 2F), -62.7 (s, 3F). HRMS (ESI) calcd. for C₁₁H₁₀BrF₅NO [M+H]⁺: 345.9860, found: 345.9865.

N-(2-(benzo[*d*][1,3]dioxol-5-yl)ethyl)-2-bromo-2,2-difluoroacetamide (S-12)

Following the general procedure A, the S-12 was obtained in 63% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 6.76 (d, J = 7.9 Hz, 1H), 6.68 (d, J = 1.6 Hz, 1H), 6.64 (dd, J = 7.9, 1.7 Hz, 1H), 6.23 (s, 1H), 5.95 (s, 2H), 3.57 (q, J = 6.7 Hz, 2H), 2.80 (t, J= 6.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 160.0 (t, J = 27.4 Hz), 148.2, 146.7, 131.4, 121.9, 111.9 (t, J = 316.1 Hz), 109.1, 108.7, 101.2, 41.5, 34.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.5 (s, 2F). HRMS (ESI) calcd. for C₁₁H₁₁BrF₂NO₃ [M+H]⁺: 321.9885, found: 321.9884.

N-(2-(benzofuran-5-yl)ethyl)-2-bromo-2,2-difluoroacetamide (S-13)

Following the general procedure A, the **S-13** was obtained in 63% yield as a white solid. ¹H NMR (800 MHz, CDCl₃) δ 7.58 (d, J = 7.7 Hz, 1H), 7.50 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.7 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H), 6.34 (s, 1H), 3.70 (q, J = 6.6 Hz, 2H), 3.00 (t, J = 6.8 Hz, 2H). ¹³C NMR (201 MHz, CDCl₃) δ 160.2 (t, J = 27.6 Hz), 155.6, 142.2, 127.5, 124.9, 122.9, 119.4, 116.4, 111.9, 111.8 (t, J = 316.2 Hz), 39.7, 23.4. ¹⁹F NMR (753 MHz, CDCl₃) δ -60.6 (s, 2F). HRMS (ESI) calcd. for C₁₂H₁₁BrF₂NO₂ [M+H]⁺: 317.9936, found: 317.9938.

2-bromo-2,2-difluoro-N-(2-(thiophen-2-yl)ethyl)acetamide (S-14)

$$Br \bigcup_{O}^{F} \bigcup_{S}^{H} \bigcup_{S}$$

Following the general procedure A, the S-14 was obtained in 88% yield as a white solid. ¹H NMR (800 MHz, CDCl₃) δ 7.20 (d, J = 5.1 Hz, 1H), 6.97 (dd, J = 4.9, 3.5 Hz, 1H), 6.87 (d, J = 3.2 Hz, 1H), 6.35 (s, 1H), 3.64 (q, J = 6.4 Hz, 2H), 3.12 (t, J = 6.6 Hz, 2H). ¹³C NMR (201 MHz, CDCl₃) δ 160.1 (t, J = 27.4 Hz), 139.9, 127.4, 126.0, 124.7, 111.8 (t, J = 316.0 Hz), 41.5, 29.3. ¹⁹F NMR (753 MHz, CDCl₃) δ -60.6 (s, 2F). HRMS (ESI) calcd. for C₈H₉BrF₂NOS [M+H]⁺: 283.9551, found: 283.9549.

N-(tert-butyl)-2,2-difluoro-2-iodoacetamide (S-24)

Following the general procedure B, the **S-24** was obtained in 25% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 5.90 (s, 1H), 1.41 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.3 (t, J = 23.7 Hz), 92.3 (t, J = 325.5 Hz), 52.6, 28.2 (3C). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -56.2 (s, 2F). **HRMS (ESI)** calcd. for C₆H₁₁F₂INO [M+H]⁺: 277.9848, found: 277.9847.

2,2-difluoro-N-(4-fluorophenyl)-2-iodoacetamide (S-27)

Following the general procedure C, the **S-27** was obtained in 28% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (s, 1H), 7.57 – 7.52 (m, 2H), 7.13 – 7.05 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.5 (d, J = 246.4 Hz), 159.0 (t, J = 24.8 Hz), 131.3 (d, J = 2.7 Hz), 122.5 (d, J = 8.2 Hz, 2C), 116.3 (d, J = 22.9 Hz, 2C), 90.6 (t, J = 324.3Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -56.9 (s, 2F), -115.1 (m, 1F). **HRMS (ESI)** calcd. for C₈H₆F₃INO [M+H]⁺: 315.9441, found: 315.9443.

2,2-difluoro-2-iodo-N-(4-(trifluoromethoxy)phenyl)acetamide (S-28)

Following the general procedure C, the **S-28** was obtained in 24% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.84 (s, 1H), 7.65 – 7.59 (m, 2H), 7.26 (d, J = 8.5 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.0 (t, J = 25.0 Hz), 146.8, 134.0, 122.2 (2C), 121.9 (2C), 120.5 (q, J = 257.5 Hz), 90.3 (t, J = 324.5 Hz). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -57.1 (s, 2F), -58.1 (s, 3F). **HRMS (ESI)** calcd. for C₉H₆F₅INO₂ [M+H]⁺: 381.9358, found: 381.9358.

N-(2,4-difluorobenzyl)-2,2-difluoro-2-iodoacetamide (S-30)

Following the general procedure B, the **S-30** was obtained in 90% yield as a white solid. ¹**H NMR** (800 MHz, CDCl₃) δ 7.35 (td, J = 8.5, 6.3 Hz, 1H), 6.91 – 6.88 (m, 1H), 6.87 – 6.84 (m, 1H), 6.50 (s, 1H), 4.54 (d, J = 6.1 Hz, 2H). ¹³**C NMR** (201 MHz, CDCl₃) δ 163.1 (dd, J = 250.1, 12.1 Hz), 161.4 (t, J = 25.0 Hz), 161.3 (dd, J = 249.9, 12.2 Hz), 131.5 (dd, J = 9.6, 5.3 Hz), 119.4 (dd, J = 14.9, 3.8 Hz), 112.0 (dd, J = 21.3, 3.5 Hz), 104.4 (t, J = 25.3 Hz), 90.9 (t, J = 323.4 Hz), 37.8. ¹⁹F NMR (753 MHz, CDCl₃) δ - 57.0 (s, 2F), -109.1 (s, 1F), -114.3 (d, J = 14.8 Hz, 1F). HRMS (ESI) calcd. for C₉H₇F₄INO [M+H]⁺: 347.9503, found: 347.9505.

2,2-difluoro-2-iodo-N-(4-isopropylbenzyl)acetamide (S-31)

Following the general procedure B, the **S-31** was obtained in 69% yield as a white solid. ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.21 (m, 4H), 6.39 (s, 1H), 4.49 (d, J = 5.7 Hz, 2H), 2.92 (hept, J = 6.9 Hz, 1H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.3 (t, J = 24.8 Hz), 149.3, 133.6, 128.2 (2C), 127.2 (2C), 91.2 (t, J = 323.7 Hz), 44.0, 34.0, 24.1 (2C). ¹⁹F NMR (471 MHz, CDCl₃) δ -56.6 (s, 2F). HRMS (ESI) calcd. for C₁₂H₁₅F₂INO [M+H]⁺: 354.0161, found: 354.0163.

N-(2-chlorobenzyl)-2,2-difluoro-2-iodoacetamide (S-32)

Following the general procedure B, the **S-32** was obtained in 68% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.32 – 7.26 (m, 2H), 6.58 (s, 1H), 4.62 (d, J = 6.0 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.7 (t, J = 25.1 Hz), 133.4, 133.2, 130.0, 129.4, 129.3, 127.0, 90.4 (t, J = 323.6 Hz), 41.6. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -56.8 (s, 2F). **HRMS (ESI)** calcd. for C₉H₈ClF₂INO [M+H]⁺: 345.9302, found: 345.9305.

2,2-difluoro-2-iodo-N-(3-(trifluoromethyl)phenethyl)acetamide (S-33)

Following the general procedure B, the **S-33** was obtained in 78% yield as a yellow solid. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 7.6 Hz, 1H), 7.47 (dd, J = 8.8, 5.3 Hz, 2H), 7.41 (d, J = 7.7 Hz, 1H), 6.21 (s, 1H), 3.63 (q, J = 6.8 Hz, 2H), 2.97 (t, J = 7.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.6 (t, J = 24.7 Hz), 138.8, 132.3, 131.4 (q, J = 32.1 Hz), 129.5, 125.7 (dd, J = 7.2, 3.6 Hz), 124.1 (q, J = 272.5 Hz), 124.0 (dd, J = 7.4, 3.7 Hz), 90.9 (t, J = 323.4 Hz), 41.1, 34.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -56.9 (s, 2F), -62.6 (s, 3F). HRMS (ESI) calcd. for C₁₁H₁₀F₅INO [M+H]⁺: 393.9722, found: 393.9722.

N-(2-(benzo[*d*][1,3]dioxol-5-yl)ethyl)-2,2-difluoro-2-iodoacetamide (S-34)

Following the general procedure B, the **S-34** was obtained in 66% yield as a white solid. ¹**H NMR** (800 MHz, CDCl₃) δ 6.76 (d, J = 7.8 Hz, 1H), 6.69 (s, 1H), 6.65 (d, J = 7.8 Hz, 1H), 6.18 (s, 1H), 5.95 (s, 2H), 3.56 (q, J = 6.6 Hz, 2H), 2.80 (t, J = 6.9 Hz, 2H). ¹³**C NMR** (201 MHz, CDCl₃) δ 161.4 (t, J = 24.6 Hz), 148.2, 146.7, 131.5, 121.9, 109.2, 108.7, 101.2, 91.2 (t, J = 323.6 Hz), 41.4, 34.8. ¹⁹**F NMR** (753 MHz, CDCl₃) δ -56.7 (s, 2F). **HRMS (ESI)** calcd. for C₁₁H₁₁F₂INO₃ [M+H]⁺: 369.9746, found: 369.9749.

2,2-difluoro-2-iodo-N-(2-(thiophen-2-yl)ethyl)acetamide (S-35)

Following the general procedure B, the **S-35** was obtained in 85% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.20 (dd, J = 5.1, 1.1 Hz, 1H), 6.97 (dd, J = 5.1, 3.4 Hz, 1H), 6.88 (dd, J = 3.4, 0.8 Hz, 1H), 6.29 (s, 1H), 3.63 (q, J = 6.4 Hz, 2H), 3.11 (t, J = 6.6 Hz, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 161.5 (t, J = 24.9 Hz), 140.0, 127.4, 126.0, 124.6, 91.1 (t, J = 323.6 Hz), 41.4, 29.3. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -56.8 (s, 2F). **HRMS (ESI)** calcd. for C₈H₉F₂INOS [M+H]⁺: 331.9412, found: 331.9412.

(R)-2-bromo-2,2-difluoro-N-(octan-2-yl)acetamide (S-38)

Following the general procedure A, the **S-38** was obtained in 55% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 5.92 (s, 1H), 4.07 – 3.93 (m, 1H), 1.55 – 1.48 (m, 2H), 1.38 – 1.24 (m, 8H), 1.21 (d, J = 6.6 Hz, 3H), 0.88 (t, J = 6.9 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.4 (t, J = 26.9 Hz), 112.1 (t, J = 316.5 Hz), 46.9, 36.6, 31.8, 29.1, 25.9, 22.7, 20.5, 14.2. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -60.5 (s, 2F). **HRMS (ESI)** calcd. for C₁₀H₁₉BrF₂NO [M+H]⁺: 286.0613, found: 286.0621.

2-bromo-N-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,2-difluoroacetamide (S-40)

Following the general procedure F, the **S-40** was obtained in 30% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.02 (d, J = 7.5 Hz, 2H), 6.95 (dd, J = 8.2, 6.6 Hz, 1H), 6.76 (d, J = 4.6 Hz, 1H), 4.41 – 4.32 (m, 1H), 3.87 (dd, J = 9.4, 3.6 Hz, 1H), 3.78 (dd, J = 9.4, 3.0 Hz, 1H), 2.26 (s, 6H), 1.51 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.5 (t, J = 27.4 Hz), 154.5, 130.8 (2C), 129.3 (2C), 124.6, 112.0 (t, J = 316.1 Hz), 72.9, 46.7, 17.4, 16.3 (2C). ¹⁹F NMR (471 MHz, CDCl₃) δ -60.5 (m, 2F). HRMS (ESI) calcd. for C₁₃H₁₇BrF₂NO₂ [M+H]⁺: 336.0405, found: 336.0405.

dimethyl (2-bromo-2,2-difluoroacetyl)-L-glutamate (S-42)

Following the general procedure D, the **S-42** was obtained in 74% yield as a yellow oil. ¹**H NMR** (800 MHz, CDCl₃) δ 7.34 (d, J = 6.4 Hz, 1H), 4.59 (td, J = 7.8, 5.0 Hz, 1H), 3.78 (s, 3H), 3.68 (s, 3H), 2.48 – 2.38 (m, 2H), 2.32 – 2.23 (m, 1H), 2.11 (td, J = 14.7, 6.9 Hz, 1H). ¹³**C NMR** (201 MHz, CDCl₃) δ 173.4, 170.9, 160.0 (t, J = 28.1 Hz), 111.4 (t, J = 315.9 Hz), 53.1, 52.5, 52.2, 29.9, 26.6. ¹⁹**F NMR** (753 MHz, CDCl₃) δ -61.0 (m, 2F). **HRMS (ESI)** calcd. for C₉H₁₃BrF₂NO₅ [M+H]⁺: 331.9940, found: 331.9945.

methyl (2-bromo-2,2-difluoroacetyl)-D-phenylalaninate (S-43)

Following the general procedure F, the **S-43** was obtained in 45% yield as a white solid. ¹H NMR (800 MHz, CDCl₃) δ 7.32 – 7.29 (m, 2H), 7.29 – 7.26 (m, 1H), 7.11 – 7.05 (m, 2H), 6.71 (d, J = 5.4 Hz, 1H), 4.87 (dt, J = 7.5, 5.6 Hz, 1H), 3.79 (s, 3H), 3.25 (dd, J = 14.1, 5.7 Hz, 1H), 3.18 (dd, J = 14.1, 5.5 Hz, 1H). ¹³C NMR (201 MHz, CDCl₃) δ 170.6, 159.4 (t, J = 28.2 Hz), 134.7, 129.4 (2C), 129.0 (2C), 127.7, 111.4 (t, J = 315.9 Hz), 53.8, 53.0, 37.4. ¹⁹F NMR (753 MHz, CDCl₃) δ -60.8 (m, 2F). HRMS (ESI) calcd. for C₁₂H₁₁BrF₂NO₃ [M-H]⁻: 333.9896, found: 333.9894.

((3a*R*,5*R*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5b:4',5'-d]pyran-5-yl)methyl 2-bromo-2,2-difluoroacetate (S-45)

Following the general procedure I, the **S-45** was obtained in 51% yield as a yellow solid. ¹**H NMR** (500 MHz, CDCl₃) δ 5.53 (d, J = 4.9 Hz, 1H), 4.64 (dd, J = 7.9, 2.6 Hz, 1H), 4.52 (dd, J = 11.4, 4.7 Hz, 1H), 4.47 (dd, J = 11.4, 7.6 Hz, 1H), 4.34 (dd, J = 5.0, 2.6 Hz, 1H), 4.25 (dd, J = 7.9, 1.9 Hz, 1H), 4.12 – 4.07 (m, 1H), 1.51 (s, 3H), 1.46 (s, 3H), 1.34 (s, 3H), 1.33 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 159.6 (t, J = 31.6 Hz), 110.1, 109.1, 108.7 (t, J = 314.1 Hz), 96.3, 70.9, 70.8, 70.5, 66.8, 65.7, 26.1, 26.1, 25.1, 24.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.9 (m, 2F). Compound is decomposed in HRMS.

(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 2-bromo-2,2-difluoroacetate (S-47)

Following the general procedure I, the **S-47** was obtained in 45% yield as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.81 (s, 1H), 4.81 – 4.76 (m, 1H), 2.51 – 2.37 (m, 3H), 2.36 – 2.20 (m, 2H), 2.06 – 2.00 (m, 1H), 1.91 – 1.80 (m, 2H), 1.77 – 1.64 (m, 3H), 1.60 (ddd, J = 13.9, 7.2, 3.7 Hz, 2H), 1.49 – 1.37 (m, 2H), 1.24 (td, J = 12.8, 4.6 Hz, 1H), 1.20 (s, 3H), 1.16 – 1.00 (m, 2H), 1.00 – 0.93 (m, 1H), 0.90 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 201.5, 173.4, 159.7 (t, J = 31.0 Hz), 123.8, 109.0 (t, J = 314.6 Hz), 86.6, 53.6, 50.1, 43.3, 38.9, 36.5, 35.5, 35.4, 33.7, 32.9, 31.4, 26.9, 23.5, 20.5, 17.5, 11.9. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.7 (m, 2F). HRMS (ESI) calcd. for C₂₁H₂₈BrF₂O₃ [M+H]⁺: 445.1184, found: 445.1189.

Octadecyl (2*S*,4a*S*,6a*S*,6b*R*,8a*R*,10*S*,12a*S*,12b*R*,14b*R*)-10-(2-bromo-2,2difluoroacetoxy)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2carboxylate (S-49)

Following the general procedure I, the **S-49** was obtained in 31% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 5.66 (s, 1H), 4.69 (dd, J = 12.0, 4.7 Hz, 1H), 4.12 – 4.04 (m, 2H), 2.90 (dt, J = 13.6, 3.5 Hz, 1H), 2.36 (s, 1H), 2.13 (dd, J = 13.3, 3.4 Hz, 1H), 2.07 – 1.96 (m, 2H), 1.95 – 1.89 (m, 1H), 1.89 – 1.79 (m, 2H), 1.75 – 1.68 (m, 1H), 1.68 – 1.57 (m, 5H), 1.52 – 1.45 (m, 1H), 1.45 – 1.40 (m, 1H), 1.40 – 1.34 (m, 5H), 1.34 – 1.30 (m, 4H), 1.29 – 1.19 (m, 28H), 1.18 (s, 3H), 1.14 (d, J = 5.8 Hz, 6H), 1.11 – 1.04 (m, 1H), 1.04 – 0.99 (m, 1H), 0.95 (d, J = 1.7 Hz, 6H), 0.87 (t, J = 7.0 Hz, 3H), 0.83 (d, J = 11.6 Hz, 1H), 0.80 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 199.9, 176.6, 169.6, 159.5 (t, J = 30.8 Hz), 128.6, 109.1 (t, J = 314.7 Hz), 86.2, 64.7, 61.7, 55.1, 48.5, 45.5, 44.1, 43.4, 41.2, 38.7, 38.6, 37.9, 37.0, 32.8, 32.1, 32.0, 31.3, 29.8 (8C), 29.7 (2C), 29.5, 29.3, 28.9, 28.7, 28.6, 28.1, 26.6, 26.5, 26.1, 23.5, 23.2, 22.8, 18.8, 17.5, 16.6, 16.5, 14.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -60.6 (m, 2F). HRMS (ESI) calcd. for C₅₀H₈₂BrF₂O₅ [M+H]⁺: 879.5308, found: 879.5310.

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,2-difluoro-2-iodoacetamide (S-50)

Following the general procedure G, the **S-50** was obtained in 67% yield as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 7.02 (d, J = 7.6 Hz, 2H), 6.95 (dd, J = 8.2, 6.7 Hz, 1H), 6.70 (d, J = 5.5 Hz, 1H), 4.36 (dqd, J = 10.3, 6.9, 3.4 Hz, 1H), 3.86 (dd, J = 9.4, 3.7 Hz, 1H), 3.77 (dd, J = 9.4, 3.0 Hz, 1H), 2.27 (s, 6H), 1.49 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 160.9 (t, J = 24.7 Hz), 154.6, 130.8 (2C), 129.3 (2C), 124.6, 91.4 (t, J = 323.7 Hz), 73.0, 46.6, 17.3, 16.4 (2C). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -56.6 (m, 2F). **HRMS (ESI)** calcd. for C₁₃H₁₇F₂INO₂ [M+H]⁺: 384.0267, found: 384.0271.

methyl (2,2-difluoro-2-iodoacetyl)-L-alaninate (S-51)

Following the general procedure E, the S-51 was obtained in 27% yield as a yellow oil. ¹H NMR (800 MHz, CDCl₃) δ 6.91 (s, 1H), 4.57 (p, J = 7.2 Hz, 1H), 3.78 (s, 3H), 1.47 (d, J = 7.2 Hz, 3H). ¹³C NMR (201 MHz, CDCl₃) δ 172.2, 160.8 (t, J = 25.3 Hz), 90.7 (t, J = 323.4 Hz), 53.0, 48.8, 17.8. ¹⁹F NMR (753 MHz, CDCl₃) δ -57.2 (s, 2F). HRMS (ESI) calcd. for C₆H₉F₂INO₃ [M+H]⁺: 307.9590, found: 307.9589.

dimethyl (2,2-difluoro-2-iodoacetyl)-L-glutamate (S-52)

Following the general procedure E, the **S-52** was obtained in 29% yield as a yellow oil. ¹**H NMR** (800 MHz, CDCl₃) δ 7.21 (d, J = 6.0 Hz, 1H), 4.60 (td, J = 7.8, 5.2 Hz, 1H), 3.79 (d, J = 1.0 Hz, 3H), 3.69 (s, 3H), 2.50 – 2.38 (m, 2H), 2.32 – 2.25 (m, 1H), 2.16 – 2.08 (m, 1H). ¹³**C NMR** (201 MHz, CDCl₃) δ 173.4, 171.0, 161.3 (t, J = 25.3 Hz), 90.4 (t, J = 323.5 Hz), 53.1, 52.4, 52.3, 29.9, 26.7. ¹⁹**F NMR** (753 MHz, CDCl₃) δ -57.3 (m, 2F). **HRMS (ESI)** calcd. for C₉H₁₃F₂INO₅ [M+H]⁺: 379.9801, found: 379.9804.

methyl (2,2-difluoro-2-iodoacetyl)-D-phenylalaninate (S-53)

Following the general procedure G, the **S-53** was obtained in 29% yield as a yellow solid. ¹**H NMR** (800 MHz, CDCl₃) δ 7.33 – 7.30 (m, 2H), 7.29 – 7.26 (m, 1H), 7.12 – 7.10 (m, 2H), 6.65 (d, *J* = 5.8 Hz, 1H), 4.86 (dt, *J* = 7.6, 5.7 Hz, 1H), 3.79 (s, 3H), 3.24 (dd, *J* = 14.1, 5.6 Hz, 1H), 3.17 (dd, *J* = 14.1, 5.6 Hz, 1H). ¹³**C NMR** (201 MHz, CDCl₃) δ 170.7, 160.7 (t, *J* = 25.5 Hz), 134.8, 129.4 (2C), 129.0 (2C), 127.7, 90.5 (t, *J* = 323.4 Hz), 53.6, 52.9, 37.5. ¹⁹**F NMR** (753 MHz, CDCl₃) δ -57.0 (m, 2F). **HRMS (ESI)** calcd. for C₁₂H₁₃F₂INO₃ [M+H]⁺: 383.9903, found: 383.9903.

(E)-6-methyl-2-(oct-1-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (B-2)

Following the general procedure J, the **B-2** was obtained in 59% yield as a white solid. ¹H NMR (500 MHz, DMSO-*d6*) δ 5.94 (dt, J = 17.6, 6.4 Hz, 1H), 5.37 (d, J = 17.6 Hz, 1H), 4.17 (d, J = 17.1 Hz, 2H), 3.95 (d, J = 17.0 Hz, 2H), 2.73 (s, 3H), 2.07 (td, J = 7.6, 1.1 Hz, 2H), 1.40 – 1.32 (m, 2H), 1.31 – 1.21 (m, 6H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 169.2 (2C), 144.2, 61.2 (2C), 46.7, 34.8, 31.2, 28.3 (2C), 22.1, 13.9. ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.16. HRMS (ESI) calcd. for C₁₃H₂₃[¹¹B]NO₄ [M+H]⁺: 268.1715, found: 268.1718.

(E)-2-(5-chloropent-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (B-3)

Following the general procedure J, the **B-3** was obtained in 59% yield as a light yellow solid. ¹**H NMR** (500 MHz, DMSO-*d6*) δ 5.93 (dt, J = 17.7, 6.4 Hz, 1H), 5.43 (d, J = 17.7 Hz, 1H), 4.18 (d, J = 17.1 Hz, 2H), 3.97 (d, J = 17.0 Hz, 2H), 3.63 (t, J = 6.6 Hz, 2H), 2.74 (s, 3H), 2.20 (dt, J = 7.5, 3.8 Hz, 2H), 1.86 – 1.78 (m, 2H). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 169.2 (2C), 142.4, 61.2 (2C), 46.7, 44.9, 31.9, 31.1. ¹¹**B NMR** (160 MHz, DMSO-*d6*) δ 10.16. **HRMS (ESI)** calcd. for C₁₀H₁₆[¹¹B]ClNO4 [M+H]⁺: 260.0855, found: 260.0856.

(E)-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)allyl benzoate (B-5)

Following the general procedure K, the **B-5** was obtained in 62% yield as a yellow solid over two steps. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.03 – 7.99 (m, 2H), 7.70 – 7.65 (m, 1H), 7.54 (dd, *J* = 10.8, 4.7 Hz, 2H), 6.13 (dt, *J* = 17.9, 4.8 Hz, 1H), 5.78 (dt, *J* = 17.8, 1.5 Hz, 1H), 4.85 (dd, *J* = 4.8, 1.5 Hz, 2H), 4.23 (d, *J* = 17.1 Hz, 2H), 4.02 (d, *J* = 17.0 Hz, 2H), 2.77 (s, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 169.1 (2C), 165.4, 137.3, 133.4, 129.7, 129.2 (2C), 128.8 (2C), 66.1, 61.5 (2C), 46.8. ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.17. HRMS (ESI) calcd. for C₁₅H₁₆[¹¹B]NNaO₆ [M+Na]⁺: 340.0963, found: 340.0962.

(*E*)-2-(4-(1,3-dioxoisoindolin-2-yl)but-1-en-1-yl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (B-6)

Following the general procedure K, the **B-6** was obtained in 30% yield as a yellow solid over two steps. ¹H NMR (500 MHz, DMSO-*d*6) δ 7.88 – 7.81 (m, 4H), 5.91 (dt, *J* = 17.6, 6.7 Hz, 1H), 5.41 (d, *J* = 17.6 Hz, 1H), 4.15 (d, *J* = 17.0 Hz, 2H), 3.87 (d, *J* = 17.0 Hz, 2H), 3.67 (t, *J* = 6.9 Hz, 2H), 2.55 (s, 3H), 2.41 (q, *J* = 6.6 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 169.1 (2C), 167.9 (2C), 140.4, 134.4 (2C), 131.5 (2C), 128.9 (α -C of boron), 123.0 (2C), 61.1 (2C), 46.2, 36.9, 34.0. ¹¹B NMR (160 MHz, DMSO-*d*6) δ 10.45. HRMS (ESI) calcd. for C₁₇H₁₈[¹¹B]N₂O₆ [M+H]⁺: 357.1252, found: 357.1248.

4. General procedure and characterization of products General procedure

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) derivatives (0.27 mmol, 1.0 equiv.), difluoro halides (2.0 equiv.), $PdCl_2(dppf) \cdot DCM$ (10 mol %), BINAP (10 mol %), K₂CO₃ (2.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. After the solution was cooled to room temperature, the crude reaction mixture was diluted with EA (5 mL) and washed with saturated aqueous NaCl (3 x 5 mL). The aqueous layer was extracted with EA (3 x 5 mL) and the combined organic layer was dried over anhydrous Na₂SO₄. Then, the solvent was removed under vacuo, and the residue was purified by a silica gel column chromatography with an appropriate solvent as eluent to give the desired product.

Caution: Pressure tube must be used for the reaction.

Characterization of products

Ethyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (1)

Following the general procedure, compound **1** was obtained in 89% yield (94 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 4.47 (d, J = 17.4 Hz, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.28 (d, J = 17.1 Hz, 1H), 4.11 (d, J = 17.4 Hz, 1H), 4.08 (d, J = 17.1 Hz, 1H), 3.66 (d, J = 10.4 Hz, 1H), 3.10 (s, 3H), 2.78 (dd, J = 31.2, 14.9 Hz, 1H), 2.70 – 2.55 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 163.2 (t, J = 32.4 Hz), 115.8 (t, J = 248.5 Hz), 63.4, 63.2, 63.1, 45.8, 38.1 (t, J = 23.8 Hz), 13.6. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -101.6 (dt, J = 257.0, 14.0 Hz, 1F), -106.6 (dt, J = 256.8, 17.6 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.14. HRMS (ESI) calcd. for C₁₁H₁₉BBrF₂N₂O₆ [M+NH₄]⁺: 402.0518, found: 402.0516.

Methyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (2)

Following the general procedure, compound **2** was obtained in 82% yield (83 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 4.47 (d, J = 17.4 Hz, 1H), 4.28 (d, J = 17.1 Hz, 1H), 4.11 (d, J = 17.3 Hz, 1H), 4.08 (d, J = 17.0 Hz, 1H), 3.86 (s, 3H), 3.66 (d, J = 11.0 Hz, 1H), 3.10 (s, 3H), 2.80 (dd, J = 30.9, 15.3 Hz, 1H), 2.72 – 2.55 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 163.7 (t, J = 32.5 Hz), 115.8 (dd, J = 252.8, 247.8 Hz), 63.4, 63.2, 53.7, 45.8, 38.2 (t, J = 23.7 Hz), 33.3 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -101.5 (dt, J = 257.3, 13.7 Hz, 1F), -106.7 (dt, J = 257.2, 18.0 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.05. HRMS (ESI) calcd. for C₁₀H₁₄[¹¹B]BrF₂NO₆ [M+H]⁺: 372.0060, found: 372.0055.

4-bromo-*N*-(*tert*-butyl)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (3)

Following the general procedure, compound **3** was obtained in 67% yield (75 mg) as a white solid after column chromatography. ¹H NMR (600 MHz, DMSO-*d6*) δ 7.96 (s, 1H), 4.47 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.1 Hz, 1H), 4.10 (d, *J* = 17.5 Hz, 1H), 4.07 (d, *J* = 17.2 Hz, 1H), 3.62 (d, *J* = 11.0 Hz, 1H), 3.09 (s, 3H), 2.72 – 2.63 (m, 1H), 2.62 – 2.53 (m, 1H), 1.31 (s, 9H). ¹³C NMR (151 MHz, DMSO-*d6*) δ 168.3, 168.2, 162.6 (t, *J* = 27.9 Hz), 117.1 (t, *J* = 253.7 Hz), 63.4, 63.2, 51.2, 45.6, 37.6 (t, *J* = 24.0 Hz), 33.6 (a-C of boron), 28.1 (3C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -101.9 (dt, *J* = 247.4, 15.3 Hz, 1F), -105.1 (m, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 9.78. HRMS (ESI) calcd. for C₁₃H₂₁BBrF₂N₂O₅ [M+H]⁺: 412.0726, found: 412.0722.

4-bromo-*N*-cyclohexyl-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (4)

Following the general procedure, compound **4** was obtained in 70% yield (84 mg) as a light red solid after column chromatography. ¹H NMR (600 MHz, DMSO-*d6*) δ 8.55 (d, *J* = 7.9 Hz, 1H), 4.46 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.0 Hz, 1H), 4.10 (d, *J* = 17.7 Hz, 1H), 4.07 (d, *J* = 17.2 Hz, 1H), 3.61 (d, *J* = 11.3 Hz, 1H), 3.58 (d, *J* = 8.0 Hz, 1H), 3.09 (s, 3H), 2.70 (dd, *J* = 32.4, 16.2 Hz, 1H), 2.62 – 2.52 (m, 1H), 1.75 – 1.66 (m, 4H), 1.57 (d, *J* = 12.7 Hz, 1H), 1.36 – 1.22 (m, 4H), 1.12 – 1.04 (m, 1H). ¹³C NMR (151 MHz, DMSO-*d6*) δ 168.3, 168.2, 162.2 (t, *J* = 28.3 Hz), 117.4 (t, *J* = 252.6 Hz), 63.4, 63.2, 48.4, 45.6, 37.7 (t, *J* = 23.9 Hz), 33.6 (α -C of boron), 31.8, 31.6, 25.0, 24.8

(2C). ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -102.3 (dt, *J* = 248.9, 15.3 Hz, 1F), -105.6 (m, 1F). ¹¹**B** NMR (160 MHz, DMSO-*d6*) δ 10.55. **HRMS (ESI)** calcd. for C₁₅H₂₃[¹¹B]BrF₂N₂O₅ [M+H]⁺: 439.0846, found: 439.0852.

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-phenylbutanamide (5)

Following the general procedure, compound **5** was obtained in 73% yield (86 mg) as a red solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 10.56 (s, 1H), 7.68 (d, *J* = 7.9 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 3H), 7.16 (t, *J* = 7.3 Hz, 1H), 4.47 (d, *J* = 17.4 Hz, 1H), 4.29 (d, *J* = 17.1 Hz, 1H), 4.12 (d, *J* = 17.3 Hz, 1H), 4.06 (d, *J* = 17.3 Hz, 1H), 3.72 (d, *J* = 11.1 Hz, 1H), 3.12 (s, 3H), 2.85 (dd, *J* = 31.2, 16.2 Hz, 1H), 2.79 – 2.68 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 161.7 (t, *J* = 29.2 Hz), 137.3, 128.7 (2C), 124.8, 120.9 (2C), 117.2 (t, *J* = 253.5 Hz), 63.4, 63.2, 45.7, 37.8 (t, *J* = 23.9 Hz), 33.5 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -101.2 (dt, *J* = 250.8, 13.9 Hz, 1F), -105.6 (dt, *J* = 250.6, 17.7 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 9.52. HRMS (ESI) calcd. for C₁₅H₁₇[¹¹B]BrF₂N₂O₅ [M+H]⁺: 433.0376, found: 433.0377.

N-benzyl-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (6)

Following the general procedure, compound **6** was obtained in 65% yield (79 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 9.33 (t, J = 5.9 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.27 (d, J = 7.1 Hz, 2H), 7.24 (dd, J = 11.4, 4.1 Hz, 1H), 4.45 (d, J = 17.4 Hz, 1H), 4.34 – 4.32 (m, 2H), 4.25 (d, J = 17.1 Hz, 1H), 4.09 (d, J = 16.2 Hz, 1H), 4.05 (d, J = 16.2 Hz, 1H), 3.60 (d, J = 10.9 Hz, 1H), 3.06 (s, 3H), 2.75 (dd, J = 34.1, 15.7 Hz, 1H), 2.65 – 2.51 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 163.3 (t, J = 28.6 Hz), 138.3, 128.3 (2C), 127.3 (2C), 127.0, 117.5 (t, J = 252.7 Hz), 63.4, 63.2, 45.6, 42.4, 37.6 (t, J = 23.7 Hz), 33.3 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -102.7 (dt, J = 250.7, 15.9 Hz, 1F), -105.1 (ddd, J = 250.7, 18.2, 14.4 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.07. HRMS (ESI) calcd. for C₁₆H₁₉BBrF₂N₂O₅ [M+H]⁺: 446.0569, found: 446.0576.

4-bromo-*N*-(2,4-difluorobenzyl)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (7)

Following the general procedure, compound **7** was obtained in 63% yield (83 mg) as a white solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 9.36 (t, J = 5.7 Hz, 1H), 7.39 (dd, J = 15.4, 8.6 Hz, 1H), 7.21 (td, J = 10.3, 2.5 Hz, 1H), 7.07 (td, J = 8.5, 1.9 Hz, 1H), 4.47 (d, J = 17.4 Hz, 1H), 4.35 (d, J = 5.7 Hz, 2H), 4.27 (d, J = 17.1 Hz, 1H), 4.11 (d, J = 17.5 Hz, 1H), 4.07 (d, J = 17.1 Hz, 1H), 3.60 (d, J = 11.0 Hz, 1H), 3.08 (s, 3H), 2.74 (dd, J = 33.7, 15.6 Hz, 1H), 2.65 – 2.52 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 163.4 (t, J = 28.8 Hz), 161.5 (dd, J = 245.5, 12.1 Hz), 160.0 (dd, J = 247.8, 12.4 Hz), 131.1 (dd, J = 9.8, 5.8 Hz), 121.2 (dd, J = 15.0, 3.5 Hz), 117.4 (t, J = 252.6 Hz), 111.3 (dd, J = 21.2, 3.5 Hz), 103.7 (t, J = 25.8 Hz), 63.4, 63.2, 45.6, 37.6 (t, J = 23.9 Hz), 35.9 (d, J = 3.5 Hz), 33.4 (α-C of boron). ¹⁹F NMR (753 MHz, DMSO-*d6*) δ -102.4 (dt, J = 27.7, 13.6 Hz, 1F), -105.4 (dt, J = 251.4, 16.3 Hz, 1F), -111.6 (m, 1F), -114.0 (dd, J = 17.3, 8.5 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.37. HRMS (ESI) calcd. for C₁₆H₁₇[¹¹B]BrF₄N₂O₅ [M+H]⁺: 483.0345, found: 483.0354.

4-bromo-2,2-difluoro-*N*-(4-isopropylbenzyl)-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (8)

Following the general procedure, compound **8** was obtained in 60% yield (80 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 9.31 (t, J = 5.9 Hz, 1H), 7.21 – 7.17 (m, 4H), 4.47 (d, J = 17.4 Hz, 1H), 4.32 – 4.25 (m, 3H), 4.09 (t, J = 16.4 Hz, 2H), 3.62 (d, J = 10.6 Hz, 1H), 3.09 (s, 3H), 2.85 (dt, J = 13.8, 6.9 Hz, 1H), 2.77 (dd, J = 33.9, 15.0 Hz, 1H), 2.66 – 2.52 (m, 1H), 1.18 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.2, 163.3 (t, J = 28.5 Hz), 147.2, 135.8, 127.4 (2C), 126.2 (2C), 117.5 (t, J = 252.9 Hz), 63.4, 63.2, 45.6, 42.2, 37.7 (t, J = 23.7 Hz), 33.5 (α -C of boron), 33.1, 23.9 (2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -102.9 (dt, J = 250.5, 15.9 Hz, 1F), -105.0 (ddd, J = 250.5, 18.2, 14.2 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.54. HRMS (ESI) calcd. for C₁₉H₂₅[¹¹B]BrF₂N₂O₅ [M+H]⁺: 489.1002, found: 489.1010.

4-bromo-*N*-(2-chlorobenzyl)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (9)

Following the general procedure, compound **9** was obtained in 72% yield (94 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 9.37 (t, J = 5.7 Hz, 1H), 7.45 (d, J = 7.4 Hz, 1H), 7.36 – 7.28 (m, 3H), 4.47 (d, J = 17.4 Hz, 1H), 4.43 (dd, J = 5.6, 3.4 Hz, 2H), 4.28 (d, J = 17.1 Hz, 1H), 4.11 (d, J = 17.4 Hz, 1H), 4.08 (d, J = 17.0 Hz, 1H), 3.65 (d, J = 10.6 Hz, 1H), 3.10 (s, 3H), 2.79 (dd, J = 34.2, 15.5 Hz, 1H), 2.70 – 2.55 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 163.5 (t, J = 28.8 Hz), 135.0, 132.0, 129.2, 128.8, 128.7, 127.1, 117.4 (t, J = 252.6 Hz), 63.4, 63.2, 45.6, 40.2, 37.6 (t, J = 23.6 Hz), 33.5 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.20. HRMS (ESI) calcd. for C₁₆H₁₈[¹¹B]BrClF₂N₂O₅ [M+H]⁺: 481.0143, found: 481.0148.

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(naphthalen-1-ylmethyl)butanamide (10)

Following the general procedure, compound **10** was obtained in 52% yield (70 mg) as a white solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 9.42 (t, J = 5.7 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.97 – 7.93 (m, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.56 (pd, J = 6.8, 1.3 Hz, 2H), 7.51 – 7.44 (m, 2H), 4.89 – 4.76 (m, 2H), 4.47 (d, J =17.4 Hz, 1H), 4.28 (d, J = 17.1 Hz, 1H), 4.13 – 4.04 (m, 2H), 3.62 (d, J = 10.4 Hz, 1H), 3.07 (s, 3H), 2.79 (dd, J = 34.0, 15.4 Hz, 1H), 2.70 – 2.55 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.1, 163.3 (t, J = 28.8 Hz), 133.4, 133.3, 130.8, 128.5, 127.8, 126.3, 125.8, 125.6, 125.3, 123.4, 117.5 (t, J = 253.1 Hz), 63.4, 63.2, 45.6, 40.5, 37.7 (t, J = 23.7 Hz), 33.5 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -102.4 (dt, J =251.1, 15.7 Hz, 1F), -104.8 (m, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.36. HRMS (ESI) calcd. for C₂₀H₂₁[¹¹B]BrF₂N₂O₅ [M+H]⁺: 497.0689, found: 497.0689.

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(3-(trifluoromethyl)phenethyl)butanamide (11)

Following the general procedure, compound **11** was obtained in 59% yield (85 mg) as a white solid after column chromatography. ¹H **NMR** (600 MHz, DMSO-*d6*) δ 8.89 (t, J = 5.5 Hz, 1H), 7.57 – 7.54 (m, 2H), 7.53 – 7.51 (m, 2H), 4.47 (d, J = 17.4 Hz, 1H), 4.28 (d, J = 17.1 Hz, 1H), 4.11 (d, J = 17.4 Hz, 1H), 4.06 (d, J = 17.1 Hz, 1H), 3.59 (t, J = 12.2 Hz, 1H), 3.41 (dd, J = 13.2, 6.9 Hz, 2H), 3.09 (s, 3H), 2.90 (t, J = 7.1 Hz, 2H), 2.65 (ddd, J = 19.0, 16.9, 8.5 Hz, 1H), 2.55 – 2.41 (m, 1H). ¹³C **NMR** (151 MHz, DMSO-*d6*) δ 168.3, 168.2, 163.3 (t, J = 28.5 Hz), 140.5, 132.9, 129.3, 129.1 (q, J = 31.4 Hz), 125.3 (d, J = 3.7 Hz), 124.3 (q, J = 272.1 Hz), 123.0 (d, J = 3.7 Hz), 117.3 (t,

J = 254.3 Hz), 63.4, 63.2, 45.7, 40.0, 37.6 (t, *J* = 23.6 Hz), 33.9, 33.4 (α-C of boron). ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -61.0 (s, 3F), -103.3 (dt, *J* = 250.0, 15.8 Hz, 1F), -105.8 (m, 1F). ¹¹**B NMR** (160 MHz, DMSO-*d6*) δ 10.59. **HRMS (ESI)** calcd. for $C_{18}H_{18}[^{11}B]BrF_5N_2O_5$ [M-H]⁻: 527.0418, found: 527.0424.

N-(2-(benzo[*d*][1,3]dioxol-5-yl)ethyl)-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (12)

Following the general procedure, compound **12** was obtained in 50% yield (69 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.80 (t, *J* = 5.5 Hz, 1H), 6.79 (dd, *J* = 12.0, 4.6 Hz, 2H), 6.65 (dd, *J* = 7.9, 1.4 Hz, 1H), 5.96 (s, 2H), 4.46 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.1 Hz, 1H), 4.09 (t, *J* = 17.3 Hz, 2H), 3.60 (d, *J* = 10.6 Hz, 1H), 3.36 – 3.29 (m, 2H), 3.09 (d, *J* = 6.6 Hz, 3H), 2.79 – 2.63 (m, 3H), 2.59 – 2.43 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.1, 163.2 (t, *J* = 28.4 Hz), 147.2, 145.6, 132.7, 121.5, 117.4 (t, *J* = 254.9 Hz), 109.0, 108.1, 100.7, 63.4, 63.2, 45.7, 40.6, 37.6 (t, *J* = 23.6 Hz), 34.0, 33.3 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -103.5 (dt, *J* = 249.5, 15.7 Hz, 1F), -105.5 (ddd, *J* = 249.5, 19.3, 14.0 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.41. HRMS (ESI) calcd. for C₁₈H₂₁[¹¹B]BrF₂N₂O₇ [M+H]⁺: 505.0588, found: 505.0599.

N-(2-(benzofuran-5-yl)ethyl)-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (13)

Following the general procedure, compound **13** was obtained in 34% yield (47 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.97 (t, *J* = 5.6 Hz, 1H), 7.81 (s, 1H), 7.67 (d, *J* = 7.3 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 7.29 (dtd, *J* = 21.8, 7.3, 1.1 Hz, 2H), 4.46 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.1 Hz, 1H), 4.08 (t, *J* = 17.6 Hz, 2H), 3.61 (d, *J* = 10.3 Hz, 1H), 3.47 (dd, *J* = 13.3, 7.1 Hz, 2H), 3.08 (s, 3H), 2.88 (t, *J* = 7.3 Hz, 2H), 2.73 (dd, *J* = 34.5, 14.9 Hz, 1H), 2.65 – 2.53 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.2, 163.3 (t, *J* = 28.6 Hz), 154.6, 142.3, 127.8, 124.3, 122.5, 119.7, 117.4 (t, *J* = 253.3 Hz), 117.2, 111.3, 63.4, 63.2, 45.6, 38.6, 37.6 (t, *J* = 23.9 Hz), 22.7. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.47. HRMS (ESI) calcd. for C₁₉H₂₁[¹¹B]BrF₂N₂O₆ [M+H]⁺: 501.0639, found: 501.0637.

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(2-(thiophen-2-yl)ethyl)butanamide (14)

Following the general procedure, compound **14** was obtained in 45% yield (57 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.92 (t, *J* = 5.5 Hz, 1H), 7.34 (dd, *J* = 5.1, 1.1 Hz, 1H), 6.95 (dd, *J* = 5.1, 3.4 Hz, 1H), 6.90 – 6.87 (m, 1H), 4.46 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.1 Hz, 1H), 4.08 (dd, *J* = 21.5, 12.1 Hz, 2H), 3.62 (d, *J* = 10.3 Hz, 1H), 3.38 (dd, *J* = 13.2, 7.1 Hz, 2H), 3.09 (s, 3H), 3.01 (t, *J* = 7.2 Hz, 2H), 2.80 – 2.66 (m, 1H), 2.65 – 2.51 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.2, 163.3 (t, *J* = 28.4 Hz), 141.0, 127.0, 125.3, 124.2, 117.4 (t, *J* = 254.1 Hz), 63.4, 63.2, 45.7, 40.6, 37.6 (t, *J* = 23.5 Hz), 28.5. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.31. HRMS (ESI) calcd. for C₁₅H₁₉[¹¹B]BrF₂N₂O₅S [M+H]⁺: 467.0254, found: 467.0258.

2-(1-bromo-3,3-difluoro-3-(phenylsulfonyl)propyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (15)

Following the general procedure, compound **15** was obtained in 62% yield (76 mg) as a white solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.02 (d, J = 7.6 Hz, 2H), 7.96 (t, J = 7.5 Hz, 1H), 7.80 (t, J = 7.9 Hz, 2H), 4.51 (d, J = 17.4 Hz, 1H), 4.29 (d, J = 17.1 Hz, 1H), 4.11 (d, J = 17.4 Hz, 1H), 4.09 (d, J = 17.1 Hz, 1H), 3.82 (d, J = 10.2 Hz, 1H), 3.12 (s, 3H), 3.08 (dt, J = 16.7, 12.2 Hz, 1H), 2.64 (tdd, J =17.1, 11.4, 6.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 136.5, 130.9, 130.5 (2C), 130.2 (2C), 123.7 (t, J = 288.1 Hz), 63.5, 63.2, 45.9, 32.9 (t, J = 19.2 Hz), 31.3 (α -C of boron). ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -101.9 (dd, J = 227.6, 30.7 Hz, 1F), -106.8 (dd, J = 228.3, 25.8 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.02. HRMS (ESI) calcd. for C₁₄H₁₅BBrClF₂NO₆S [M+Cl]⁻: 486.9595, found: 486.9598.

Diethyl (3-bromo-1,1-difluoro-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)propyl)phosphonate (16)

Following the general procedure, compound **16** was obtained in 30% yield (37 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 4.49 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.0 Hz, 1H), 4.22 (dd, *J* = 14.8, 7.5 Hz, 4H), 4.10 (d, *J* = 17.4 Hz, 1H), 4.08 (d, *J* = 17.1 Hz, 1H), 3.78 (d, *J* = 10.5 Hz, 1H), 3.12 (s, 3H),

2.81 (ddd, J = 38.7, 24.4, 8.7 Hz, 1H), 2.48 – 2.39 (m, 1H), 1.30 (t, J = 7.0 Hz, 6H). ¹³C **NMR** (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 120.1 (td, J = 262.7, 214.4 Hz), 64.4 (2C), 63.5, 63.2, 45.7, 37.0 (dd, J = 35.3, 19.5 Hz), 31.8 (α -C of boron), 16.2 (2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -110.8 (ddd, J = 132.9, 102.4, 27.3 Hz, 1F), -114.5 (dddd, J = 292.9, 106.4, 29.4, 9.5 Hz, 1F). ³¹P NMR (202 MHz, DMSO-*d6*) δ 6.5 (t, J = 103.7 Hz, 1P). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.30. HRMS (ESI) calcd. for C₁₂H₂₀[¹¹B]BrF₂NNaO₇P [M+Na]⁺: 472.0114, found: 472.0114.

2-(3-(benzo[*d*]oxazol-2-yl)-1-bromo-3,3-difluoropropyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (17)

Following the general procedure, compound **17** was obtained in 78% yield (92 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 7.90 (dd, *J* = 13.6, 8.0 Hz, 2H), 7.59 – 7.55 (m, 1H), 7.52 – 7.48 (m, 1H), 4.49 (d, *J* = 17.4 Hz, 1H), 4.29 (dd, *J* = 16.8, 6.7 Hz, 1H), 4.13 (d, *J* = 17.4 Hz, 1H), 4.08 (d, *J* = 17.1 Hz, 1H), 3.83 (d, *J* = 10.9 Hz, 1H), 3.22 (td, *J* = 17.3, 12.6 Hz, 1H), 3.12 (s, 3H), 2.98 (qd, *J* = 16.4, 11.8 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 156.9 (t, *J* = 33.3 Hz), 150.0, 139.5, 127.2, 125.6, 121.0, 116.6 (t, *J* = 243.3 Hz), 111.8, 63.4, 63.2, 45.8, 39.5 (t, *J* = 24.0 Hz), 33.1 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -92.9 (d, *J* = 270.1 Hz, 1F), -100.9 (dt, *J* = 270.2, 17.7 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 9.98. HRMS (ESI) calcd. for C₁₅H₁₅[¹¹B]BrF₂N₂O₅ [M+H]⁺: 431.0220, found: 431.0226.

2-(1-bromo-3,3-difluoro-3-phenylpropyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8dione (18)

Following the general procedure, compound **18** was obtained in 81% yield (86 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 7.56 (dd, *J* = 6.9, 2.7 Hz, 2H), 7.51 (dd, *J* = 5.0, 1.7 Hz, 3H), 4.44 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.1 Hz, 1H), 4.08 (t, *J* = 16.9 Hz, 2H), 3.54 (d, *J* = 10.0 Hz, 1H), 3.07 (s, 3H), 2.94 – 2.80 (m, 1H), 2.72 (tt, *J* = 16.6, 11.1 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.2, 136.2 (t, *J* = 26.0 Hz), 130.2, 128.6 (2C), 124.9 (t, *J* = 5.9 Hz, 2C), 122.8 (t, *J* = 243.6 Hz), 63.4, 63.3, 45.6, 42.0 (t, *J* = 27.5 Hz), 34.3 (a-C of boron). ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -92.3 (m, 2F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 9.97. HRMS (ESI) calcd. for C₁₄H₁₄[¹¹B]BrF₂NO₄ [M-H]⁻: 388.0173, found: 388.0175. **2-(1-bromo-3-(4-bromophenyl)-3,3-difluoropropyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (19)**

Following the general procedure, compound **19** was obtained in 78% yield (103 mg) as a brown solid after column chromatography. ¹**H NMR** (500 MHz, DMSO-*d6*) δ 7.71 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 4.44 (t, *J* = 17.4 Hz, 1H), 4.26 (d, *J* = 17.1 Hz, 1H), 4.08 (d, *J* = 17.0 Hz, 1H), 4.05 (d, *J* = 16.9 Hz, 1H), 3.50 (d, *J* = 10.1 Hz, 1H), 3.06 (s, 3H), 2.93 – 2.78 (m, 1H), 2.72 (td, *J* = 27.2, 15.9 Hz, 1H). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 168.3, 168.2, 135.4 (t, *J* = 26.6 Hz), 131.7 (2C), 127.4 (t, *J* = 5.8 Hz, 2C), 123.8, 122.5 (t, *J* = 243.9 Hz), 63.4, 63.3, 45.7, 41.7 (t, *J* = 27.4 Hz), 34.3 (α -C of boron). ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -91.9 (m, 2F). ¹¹**B NMR** (160 MHz, DMSO-*d6*) δ 9.97. **HRMS** (**ESI**) calcd. for C₁₄H₁₃[¹¹B]Br₂F₂NO₄ [M-H]⁻: 465.9278, found: 465.9273.

2-(1-bromo-3-(4-chlorophenyl)-3,3-difluoropropyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (20)

Following the general procedure, compound **20** was obtained in 76% yield (88 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 7.58 (q, *J* = 8.8 Hz, 4H), 4.44 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.1 Hz, 1H), 4.07 (t, *J* = 17.3 Hz, 2H), 3.52 (d, *J* = 10.1 Hz, 1H), 3.07 (s, 3H), 2.94 – 2.80 (m, 1H), 2.73 (td, *J* = 27.4, 16.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.1, 135.0 (t, *J* = 26.7 Hz), 135.0, 128.7 (2C), 127.1 (t, *J* = 5.8 Hz, 2C), 122.5 (t, *J* = 243.9 Hz), 63.4, 63.3, 45.7, 41.8 (t, *J* = 27.5 Hz), 34.2 (α -C of boron). ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -91.7 (m, 2F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 9.92. HRMS (ESI) calcd. for C₁₄H₁₃[¹¹B]BrClF₂NO₄ [M-H]⁻: 421.9783, found: 421.9785.

2-(1-bromo-3,3-difluoro-3-(3-fluorophenyl)propyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (21)

Following the general procedure, compound **21** was obtained in 74% yield (83 mg) as a yellow solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 7.59 – 7.53 (m, 1H), 7.42 (d, *J* = 7.5 Hz, 2H), 7.36 (td, *J* = 8.6, 1.6 Hz, 1H), 4.44 (d, *J* = 17.4 Hz, 1H), 4.31 – 4.22 (m, 1H), 4.09 (d, *J* = 17.6 Hz, 1H), 4.05 (d, *J* = 17.1 Hz, 1H), 3.54 (d, *J* = 9.8 Hz, 1H), 3.07 (s, 3H), 2.87 (dd, *J* = 32.5, 16.2 Hz, 1H), 2.74 (ddd, *J* = 20.7, 16.4, 13.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.2, 162.0 (d, *J* = 244.7 Hz), 138.6 (td, *J* = 26.7, 7.3 Hz), 131.0 (d, *J* = 8.2 Hz), 122.1 (t, *J* = 243.6 Hz), 121.3

(d, J = 2.2 Hz), 117.2 (d, J = 20.9 Hz), 112.5 (dt, J = 23.7, 6.0 Hz), 63.4, 63.3, 45.7, 41.7 (t, J = 27.2 Hz), 34.2 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -91.5 (dt, J = 243.7, 15.5 Hz, 1F), -92.3 (m, 1F), -112.0 (dd, J = 15.4, 9.3 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.07. HRMS (ESI) calcd. for C₁₄H₁₃[¹¹B]BrF₃NO₄ [M-H]⁻: 406.0079, found: 406.0070.

2-(1-bromo-3-(4-(difluoromethyl)phenyl)-3,3-difluoropropyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (22)

Following the general procedure, compound **22** was obtained in 80% yield (96 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 7.72 (s, 4H), 7.11 (t, *J* = 55.7 Hz, 1H), 4.44 (d, *J* = 17.4 Hz, 1H), 4.27 (d, *J* = 17.0 Hz, 1H), 4.07 (t, *J* = 17.1 Hz, 2H), 3.55 (d, *J* = 10.8 Hz, 1H), 3.08 (s, 3H), 2.88 (q, *J* = 16.4 Hz, 1H), 2.82 – 2.68 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.2, 138.7 (t, *J* = 26.1 Hz), 135.8 (t, *J* = 22.3 Hz), 126.1 (t, *J* = 5.9 Hz, 2C), 125.7 (t, *J* = 5.7 Hz, 2C), 122.5 (t, *J* = 243.9 Hz), 114.4 (t, *J* = 236.5 Hz), 63.4, 63.3, 45.7, 41.8 (t, *J* = 27.2 Hz), 34.1 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.39. HRMS (ESI) calcd. for C₁₅H₁₄[¹¹B]BrF₄NO₄ [M-H]⁻: 438.0141, found: 438.0153.

Ethyl 2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoate (23)

Following the general procedure, compound **23** was obtained in 83% yield (98 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 4.41 (d, *J* = 17.4 Hz, 1H), 4.31 (dt, *J* = 10.5, 5.3 Hz, 3H), 4.14 (d, *J* = 17.4 Hz, 1H), 4.11 (d, *J* = 17.1 Hz, 1H), 3.41 (d, *J* = 10.4 Hz, 1H), 3.09 (s, 3H), 2.89 (q, *J* = 15.9 Hz, 1H), 2.62 (qd, *J* = 16.3, 11.5 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.0, 167.9, 163.1 (t, *J* = 32.4 Hz), 116.0 (t, *J* = 250.8 Hz), 63.7, 63.4, 63.1, 45.7, 38.9 (t, *J* = 23.5 Hz), 13.6, 6.8 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ - 102.3 (m, 1F), -106.1 (dt, *J* = 255.6, 17.2 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.13. HRMS (ESI) calcd. for C₁₁H₁₉BF₂IN₂O₆ [M+NH₄]⁺: 450.0380, found: 450.0376.

*N-(tert-*butyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (24)

Following the general procedure, compound **24** was obtained in 74% yield (93 mg) as a colorless oil after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.00 (s, 1H), 4.41 (d, *J* = 17.4 Hz, 1H), 4.31 (d, *J* = 17.2 Hz, 1H), 4.14 (d, *J* = 17.2 Hz, 1H), 4.09 (d, *J* = 17.0 Hz, 1H), 3.39 (dd, *J* = 11.1, 1.4 Hz, 1H), 3.08 (s, 3H), 2.84 – 2.72 (m, 1H), 2.57 (ddd, *J* = 16.6, 14.8, 8.2 Hz, 1H), 1.31 (s, 9H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1, 168.0, 162.6 (t, *J* = 28.1 Hz), 117.2 (t, *J* = 254.2 Hz), 63.7, 63.5, 51.3, 45.6, 38.3 (t, *J* = 23.6 Hz), 28.1 (3C), 7.4 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.53. HRMS (ESI) calcd. for C₁₃H₂₁[¹¹B]F₂IN₂O₅ [M+H]⁺: 461.0551, found: 461.0557.

N-cyclohexyl-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (25)

Following the general procedure, compound **25** was obtained in 82% yield (109 mg) as a light brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.53 (d, *J* = 7.9 Hz, 1H), 4.40 (d, *J* = 17.4 Hz, 1H), 4.30 (d, *J* = 17.1 Hz, 1H), 4.14 (d, *J* = 16.8 Hz, 1H), 4.09 (d, *J* = 16.6 Hz, 1H), 3.62 – 3.53 (m, 1H), 3.39 (d, *J* = 10.6 Hz, 1H), 3.09 (s, 3H), 2.79 (dd, *J* = 33.3, 16.3 Hz, 1H), 2.62 – 2.51 (m, 1H), 1.79 – 1.67 (m, 4H), 1.58 (d, *J* = 12.8 Hz, 1H), 1.35 – 1.25 (m, 4H), 1.08 (dd, *J* = 22.7, 10.6 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.0 (2C), 162.1 (t, *J* = 28.4 Hz), 117.5 (t, *J* = 253.2 Hz), 63.7, 63.5, 48.4, 45.6, 38.4 (t, *J* = 23.8 Hz), 31.8, 31.6, 25.0, 24.8 (2C), 7.4 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -103.1 (dt, *J* = 248.0, 15.8 Hz, 1F), -105.2 (m, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.34. HRMS (ESI) calcd. for C₁₅H₂₃BF₂IN₂O₅ [M+H]⁺: 486.0744, found: 486.0743.

2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-phenylbutanamide (26)

Following the general procedure, compound **26** was obtained in 76% yield (99 mg) as a purple solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 10.58 (s, 1H), 7.70 (d, *J* = 7.7 Hz, 2H), 7.36 (t, *J* = 7.9 Hz, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 4.41 (d, *J* = 17.4 Hz, 1H), 4.32 (d, *J* = 17.1 Hz, 1H), 4.13 (t, *J* = 17.7 Hz, 2H), 3.49 (d, *J* = 10.3 Hz, 1H), 3.11 (s, 3H), 3.00 – 2.86 (m, 1H), 2.81 – 2.62 (m, 1H). ¹³C NMR (126)

MHz, DMSO-*d6*) δ 168.1 (2C), 161.7 (t, *J* = 29.2 Hz), 137.3, 128.7 (2C), 124.8, 121.0 (2C), 117.5 (t, *J* = 254.2 Hz), 63.7, 63.5, 45.6, 38.5 (t, *J* = 23.6 Hz). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -101.8 (dt, *J* = 250.0, 13.5 Hz, 1F), -105.5 (dt, *J* = 30.9, 14.8 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.71. HRMS (ESI) calcd. for C₁₅H₁₇[¹¹B]F₂IN₂O₅ [M+H]⁺: 481.0238, found: 481.0237.

2,2-difluoro-*N*-(4-fluorophenyl)-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (27)

Following the general procedure, compound **27** was obtained in 53% yield (54 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 10.68 (s, 1H), 7.75 – 7.70 (m, 2H), 7.24 – 7.18 (m, 2H), 4.41 (d, *J* = 17.4 Hz, 1H), 4.32 (d, *J* = 17.2 Hz, 1H), 4.16 (d, *J* = 17.4 Hz, 1H), 4.12 (d, *J* = 17.2 Hz, 1H), 3.52 – 3.42 (m, 1H), 3.11 (s, 3H), 3.01 – 2.86 (m, 1H), 2.80 – 2.62 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1 (2C), 161.7 (t, *J* = 29.2 Hz), 159.0 (d, *J* = 241.5 Hz), 133.6 (d, *J* = 2.4 Hz), 123.0 (d, *J* = 8.0 Hz, 2C), 117.5 (t, *J* = 253.6 Hz), 115.4 (d, *J* = 22.4 Hz, 2C), 63.7, 63.5, 45.7, 38.5 (t, *J* = 23.6 Hz), 7.2 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -101.8 (dt, *J* = 249.8, 13.5 Hz, 1F), -105.8 (dd, *J* = 140.2, 124.8 Hz, 1F), -117.4 (m, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.72. HRMS (ESI) calcd. for C₁₅H₁₆[¹¹B]F₃IN₂O₅ [M+H]⁺: 499.0144, found: 499.0144.

2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(4-(trifluoromethoxy)phenyl)butanamide (28)

Following the general procedure, compound **28** was obtained in 72% yield (110 mg) as a purple solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 10.79 (s, 1H), 7.83 (d, *J* = 9.0 Hz, 2H), 7.38 (d, *J* = 8.8 Hz, 2H), 4.42 (d, *J* = 17.4 Hz, 1H), 4.33 (d, *J* = 17.1 Hz, 1H), 4.14 (t, *J* = 17.4 Hz, 2H), 3.49 (d, *J* = 11.0 Hz, 1H), 3.12 (s, 3H), 2.95 (dd, *J* = 31.0, 16.6 Hz, 1H), 2.83 – 2.65 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1, 168.0, 161.9 (t, *J* = 29.4 Hz), 144.7, 136.5, 122.5 (2C), 121.5 (2C), 120.7 (q, *J* = 255.8 Hz), 117.4 (t, *J* = 254.0 Hz), 63.7, 63.5, 45.7, 38.5 (t, *J* = 23.7 Hz), 7.2 (α -C of boron). ¹⁹F NMR (753 MHz, DMSO-*d6*) δ -57.1 (s, 3F), -101.7 (d, *J* = 250.6 Hz, 1F), -105.7 (d, *J* = 250.7 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.74. HRMS (ESI) calcd. for C₁₆H₁₆[¹¹B]F₅IN₂O₆ [M+H]⁺: 565.0061, found: 565.0062.

N-benzyl-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (29)

Following the general procedure, compound **29** was obtained in 80% yield (108 mg) as a colorless oil after column chromatography. ¹**H NMR** (600 MHz, DMSO-*d6*) δ 9.37 (t, *J* = 6.0 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.29 (s, 1H), 7.26 (dd, *J* = 14.0, 6.7 Hz, 2H), 4.41 (d, *J* = 17.4 Hz, 1H), 4.34 (t, *J* = 5.9 Hz, 2H), 4.30 (d, *J* = 17.1 Hz, 1H), 4.13 (d, *J* = 17.7 Hz, 1H), 4.10 (d, *J* = 17.3 Hz, 1H), 3.41 – 3.36 (m, 1H), 3.06 (s, 3H), 2.93 – 2.79 (m, 1H), 2.64 – 2.52 (m, 1H). ¹³**C NMR** (151 MHz, DMSO-*d6*) δ 168.1 (2C), 163.4 (t, *J* = 28.7 Hz), 138.3, 128.4 (2C), 127.4 (2C), 127.1, 117.7 (t, *J* = 253.1 Hz), 63.7, 63.5, 45.6, 42.4, 38.4 (t, *J* = 23.2 Hz), 7.2 (a-C of boron). ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -103.8 (dt, *J* = 249.4, 16.4 Hz, 1F), -104.8 (ddd, *J* = 249.4, 18.0, 13.7 Hz, 1F). ¹¹**B NMR** (160 MHz, DMSO-*d6*) δ 10.87. **HRMS (ESI)** calcd. for C₁₆H₁₉[¹¹B]F₂IN₂O₅ [M+H]⁺: 495.0394, found: 495.0406.

N-(2,4-difluorobenzyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (30)

Following the general procedure, compound **30** was obtained in 76% yield (110 mg) as a white solid after column chromatography. ¹**H NMR** (500 MHz, DMSO-*d6*) δ 9.35 (t, J = 5.7 Hz, 1H), 7.39 (dd, J = 15.4, 8.6 Hz, 1H), 7.22 (td, J = 10.3, 2.5 Hz, 1H), 7.07 (td, J = 8.5, 2.1 Hz, 1H), 4.41 (d, J = 17.4 Hz, 1H), 4.35 (d, J = 5.7 Hz, 2H), 4.30 (d, J = 17.2 Hz, 1H), 4.12 (dd, J = 17.1, 15.4 Hz, 2H), 3.38 (d, J = 10.6 Hz, 1H), 3.07 (s, 3H), 2.84 (dd, J = 34.4, 15.1 Hz, 1H), 2.66 – 2.53 (m, 1H). ¹³C **NMR** (126 MHz, DMSO-*d6*) δ 168.1, 168.0, 163.4 (t, J = 28.9 Hz), 161.5 (dd, J = 245.6, 12.2 Hz), 160.1 (dd, J = 247.9, 12.4 Hz), 131.1 (dd, J = 9.9, 5.8 Hz), 121.2 (dd, J = 15.0, 3.5 Hz), 117.5 (t, J = 252.4 Hz), 111.4 (dd, J = 21.2, 3.5 Hz), 103.7 (t, J = 25.8 Hz), 63.7, 63.5, 45.6, 38.4 (t, J = 249.8, 16.1 Hz, 1F), -105.2 (m, 1F), -111.6 (m, 1F), -114.0 (dd, J = 17.3, 8.7 Hz, 1F). ¹¹B **NMR** (160 MHz, DMSO-*d6*) δ 10.76. **HRMS (ESI)** calcd. for C₁₆H₁₇[¹¹B]F4IN₂O₅ [M+H]⁺: 531.0206, found: 531.0209.

2,2-difluoro-4-iodo-*N*-(4-isopropylbenzyl)-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (31)

Following the general procedure, compound 31 was obtained in 67% yield (98 mg) as

a white solid after column chromatography. ¹**H NMR** (500 MHz, DMSO-*d6*) δ 9.30 (t, J = 5.9 Hz, 1H), 7.20 (s, 4H), 4.41 (d, J = 17.4 Hz, 1H), 4.31 (dd, J = 11.4, 5.9 Hz, 3H), 4.12 (t, J = 16.7 Hz, 2H), 3.39 (d, J = 10.2 Hz, 1H), 3.07 (s, 3H), 2.92 – 2.79 (m, 2H), 2.58 (ddd, J = 24.3, 17.4, 12.4 Hz, 1H), 1.18 (d, J = 6.9 Hz, 6H). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 168.0 (2C), 163.2 (t, J = 28.7 Hz), 147.2, 135.7, 127.4 (2C), 126.2 (2C), 117.6 (t, J = 253.2 Hz), 63.7, 63.5, 45.6, 42.2, 38.4 (t, J = 23.4 Hz), 33.1, 23.9 (2C), 7.2 (α -C of boron). ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -103.9 (dt, J = 249.2, 16.4 Hz, 1F), -104.9 (ddd, J = 249.3, 18.4, 13.4 Hz, 1F). ¹¹**B NMR** (160 MHz, DMSO-*d6*) δ 10.82. **HRMS (ESI)** calcd. for C₁₉H₂₅[¹¹B]F₂IN₂O₅ [M+H]⁺: 537.0864, found: 537.0863.

N-(2-chlorobenzyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (32)

Following the general procedure, compound **32** was obtained in 62% yield (89 mg) as a white solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 9.38 (t, J = 5.7 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.39 – 7.26 (m, 3H), 4.43 (d, J = 3.7 Hz, 2H), 4.41 (d, J = 8.8 Hz, 1H), 4.31 (d, J = 17.2 Hz, 1H), 4.14 (d, J = 17.3 Hz, 1H), 4.11 (d, J = 17.1 Hz, 1H), 3.42 (d, J = 10.3 Hz, 1H), 3.08 (s, 3H), 2.89 (dd, J = 34.3, 16.8 Hz, 1H), 2.61 (ddd, J = 24.6, 17.1, 12.9 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1, 168.0, 163.6 (t, J = 29.0 Hz), 135.1, 132.0, 129.2, 128.9, 128.7, 127.2, 117.6 (t, J =253.0 Hz), 63.7, 63.5, 45.6, 40.3, 38.4 (t, J = 23.3 Hz). ¹⁹F NMR (471 MHz, DMSO*d6*) δ -103.6 (dt, J = 249.9, 16.2 Hz, 1F), -104.6 (m, 1F). ¹¹B NMR (160 MHz, DMSO*d6*) δ 10.62. HRMS (ESI) calcd. for C₁₆H₁₈[¹¹B]ClF₂IN₂O₅ [M+H]⁺: 529.0005, found: 529.0007.

2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(3-(trifluoromethyl)phenethyl)butanamide (33)

Following the general procedure, compound **33** was obtained in 70% yield (110 mg) as a white solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.89 (t, J = 5.5 Hz, 1H), 7.55 (d, J = 5.2 Hz, 2H), 7.52 (d, J = 2.9 Hz, 2H), 4.42 (d, J = 17.4 Hz, 1H), 4.33 (d, J = 17.1 Hz, 1H), 4.15 (d, J = 17.4 Hz, 1H), 4.11 (d, J = 17.1 Hz, 1H), 3.45 – 3.41 (m, 2H), 3.39 (d, J = 11.9 Hz, 1H), 3.09 (s, 3H), 2.92 (t, J = 7.1 Hz, 2H), 2.89 – 2.72 (m, 1H), 2.60 – 2.36 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1, 168.0, 163.3 (t, J = 28.6 Hz), 140.5, 132.9, 129.3, 129.1 (q, J = 31.3 Hz), 125.3 (d, J = 3.6 Hz), 124.3 (q, J = 272.3 Hz), 123.0 (d, J = 3.6 Hz), 117.5 (t, J = 253.1 Hz), 63.7, 63.5, 45.6, 40.0, 38.4 (t, J = 23.4 Hz), 33.9, 7.1 (α -C of boron). ¹⁹F NMR (753 MHz, DMSO-*d6*) δ -61.1 (s, 3F), -104.2 (d, J = 249.2 Hz, 1F), -105.6 (d, J = 249.2 Hz, 1F).

¹¹**B** NMR (160 MHz, DMSO-*d6*) δ 10.75. **HRMS (ESI)** calcd. for C₁₈H₂₀[¹¹B]F₅IN₂O₅ [M+H]⁺: 577.0425, found: 577.0432.

N-(2-(benzo[*d*][1,3]dioxol-5-yl)ethyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (34)

Following the general procedure, compound **34** was obtained in 52% yield (78 mg) as a light purple solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.81 (t, J = 5.5 Hz, 1H), 6.83 – 6.76 (m, 2H), 6.65 (d, J = 7.9 Hz, 1H), 5.96 (s, 2H), 4.40 (d, J = 17.4 Hz, 1H), 4.31 (d, J = 17.1 Hz, 1H), 4.12 (t, J = 17.7 Hz, 2H), 3.40 – 3.29 (m, 3H), 3.08 (s, 3H), 2.80 (dd, J = 35.3, 15.8 Hz, 1H), 2.71 (t, J = 7.3 Hz, 2H), 2.59 – 2.43 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1, 168.0, 163.1 (t, J = 28.4 Hz), 147.2, 145.6, 132.8, 121.5, 117.5 (t, J = 253.2 Hz), 109.0, 108.1, 100.7, 63.7, 63.5, 45.6, 40.6, 38.4 (t, J = 23.5 Hz), 34.1, 7.2 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.94. HRMS (ESI) calcd. for C₁₈H₂₁[¹¹B]F₂IN₂O₇ [M+H]⁺: 553.0449, found: 553.0447.

2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(2-(thiophen-2-yl)ethyl)butanamide (35)

Following the general procedure, compound **35** was obtained in 64% yield (89 mg) as a colorless oil after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.92 (t, J = 5.5 Hz, 1H), 7.34 (dd, J = 5.1, 1.1 Hz, 1H), 6.95 (dd, J = 5.1, 3.4 Hz, 1H), 6.91 – 6.88 (m, 1H), 4.40 (d, J = 17.4 Hz, 1H), 4.31 (d, J = 17.2 Hz, 1H), 4.13 (d, J = 17.3 Hz, 1H), 4.10 (d, J = 17.1 Hz, 1H), 3.42 – 3.36 (m, 3H), 3.08 (s, 3H), 3.02 (t, J = 7.3 Hz, 2H), 2.81 (dd, J = 35.1, 15.2 Hz, 1H), 2.65 – 2.51 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1, 168.0, 163.3 (t, J = 28.6 Hz), 141.0, 127.0, 125.3, 124.2, 117.5 (t, J = 253.6 Hz), 63.7, 63.5, 45.6, 40.6, 38.4 (t, J = 23.3 Hz), 28.5. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.51. HRMS (ESI) calcd. for C₁₅H₁₉[¹¹B]F₂IN₂O₅S [M+H]⁺: 515.0115, found: 515.0113.

2-(3,3-difluoro-1-iodo-3-(phenylsulfonyl)propyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (36)

Following the general procedure, compound **36** was obtained in 57% yield (78 mg) as a white solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 8.01 (d, J = 7.8 Hz, 2H), 7.96 (t, J = 7.5 Hz, 1H), 7.80 (t, J = 7.8 Hz, 2H), 4.46 (d, J = 17.4 Hz, 1H), 4.31 (d, J = 17.1 Hz, 1H), 4.12 (dd, J = 17.3, 2.4 Hz, 2H), 3.55 (d, J = 10.5 Hz, 1H), 3.29 – 3.20 (m, 1H), 3.11 (s, 3H), 2.67 (dddd, J = 28.4, 17.0, 11.3, 6.0 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.0, 167.9, 136.4, 131.0, 130.5 (2C), 130.1 (2C), 123.7 (t, J = 288.5 Hz), 63.6 (2C), 45.7, 33.6 (t, J = 19.0 Hz), 4.3 (α -C of boron). ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -102.5 (dd, J = 227.2, 27.6 Hz, 1F), -106.8 (dd, J =224.5, 27.4 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.53. HRMS (ESI) calcd. for C₁₄H₁₅[¹¹B]F₂INNaO₆S [M+Na]⁺: 523.9618, found: 523.9616.

6-methyl-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohexyl)-1,3,6,2-dioxazaborocane-4,8-dione (37)

Following the general procedure, compound **37** was obtained in 81% yield (117 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 4.45 (d, *J* = 17.4 Hz, 1H), 4.31 (d, *J* = 17.1 Hz, 1H), 4.13 (d, *J* = 17.3 Hz, 2H), 3.58 (dd, *J* = 10.8, 1.3 Hz, 1H), 3.12 (s, 3H), 3.11 – 2.99 (m, 1H), 2.77 – 2.59 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.0, 167.9, 121.3 – 115.2 (m, 2C), 114.3 – 109.3 (m), 109.1 – 105.1 (m), 63.6 (2C), 45.7, 35.0 (t, *J* = 20.6 Hz), 3.4 (α -C of boron). ¹⁹F NMR (376 MHz, DMSO-*d6*) δ -80.9 (s, 3F), -113.7 (d, *J* = 277.1 Hz, 1F), -115.6 (d, *J* = 258.7 Hz, 1F), -124.7 (s, 2F), -126.1 (s, 2F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.19. HRMS (ESI) calcd. for C₁₁H₁₀[¹¹B]F₉INNaO₄ [M+Na]⁺: 551.9496, found: 551.9494.

2-(1-bromo-3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-6-methyl-1,3,6,2-

dioxazaborocane-4,8-dione (37-2)

Following the general procedure, compound **37-2** was obtained in 72% yield (114 mg) as a brown solid after column chromatography. ¹H NMR (500 MHz, DMSO-*d6*) δ 4.50 (d, *J* = 17.4 Hz, 1H), 4.30 (d, *J* = 17.1 Hz, 1H), 4.11 (dd, *J* = 17.2, 6.1 Hz, 2H), 3.83 (d, *J* = 10.1 Hz, 1H), 3.14 (s, 3H), 2.97 – 2.79 (m, 1H), 2.73 – 2.58 (m, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2, 168.1, 121.0 – 104.5 (m, 6C), 63.5, 63.2, 45.9, 34.2 (t, *J* = 20.8 Hz), 30.5 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -80.4 (t, *J* = 8.9 Hz, 3F), -112.0 (dd, *J* = 237.1, 140.3 Hz, 1F), -114.8 (dd, *J* = 267.9, 21.7 Hz, 1F), -121.7 (s, 2F), -122.8 (s, 2F), -123.4 (s, 2F), -125.9 (d, *J* = 9.4 Hz, 2F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.06. HRMS (ESI) calcd. for C₁₄H₁₁[¹¹B]BrF₁₃NO₆ [M+HCOO]⁻: 625.9661, found: 625.9666.

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-((*R*)-octan-2-yl)butanamide (38)

Following the general procedure, compound **38** was obtained in 75% yield (96 mg) as a brown solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 8.51 (s, 1H), 8.50 (s, 1H*), 4.47 (d, *J* = 17.4 Hz, 2H), 4.27 (d, *J* = 17.1 Hz, 2H), 4.10 (d, *J* = 17.2 Hz, 2H), 4.07 (d, *J* = 17.0 Hz, 2H), 3.86 – 3.76 (m, 2H), 3.64 – 3.61 (m, 1H), 3.60 (d, *J* = 11.4 Hz, 1H*), 3.10 (s, 6H), 2.71 (dd, *J* = 33.1, 16.4 Hz, 2H), 2.63 – 2.53 (m, 2H), 1.54 – 1.44 (m, 2H), 1.43 – 1.34 (m, 2H), 1.23 (s, 16H), 1.08 (d, *J* = 6.6 Hz, 6H), 0.85 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3 (2C), 168.2, 168.1*, 162.5 (t, *J* = 28.1 Hz), 162.4* (t, *J* = 28.1 Hz), 117.5 (t, *J* = 252.9 Hz), 117.4* (t, *J* = 250.8 Hz), 63.4 (2C), 63.2 (2C), 45.6 (2C), 45.0, 44.9*, 37.7 (t, *J* = 24.0 Hz, 2C), 35.3 (2C), 31.2 (2C), 28.5 (2C), 25.6 (2C), 22.0 (2C), 20.2, 20.1*, 13.9 (2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.39. HRMS (ESI) calcd. for C₁₇H₂₉[¹¹B]BrF₂N₂O₅ [M+H]⁺: 469.1315, found: 469.1322.

N-(1-((3*r*,5*r*,7*r*)-adamantan-1-yl)ethyl)-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (39)

Following the general procedure, compound **39** was obtained in 70% yield (99 mg) as a brown solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 8.25 (d, *J* = 9.4 Hz, 1H), 8.21 (d, *J* = 9.3 Hz, 1H*), 4.47 (dd, *J* = 17.4, 2.7 Hz, 2H), 4.26 (dd, *J* = 17.1, 1.9 Hz, 2H), 4.13 – 4.05 (m, 4H), 3.64 (d, *J* = 11.0 Hz, 1H), 3.61 (d, *J* = 7.0 Hz, 1H*), 3.58 (d, *J* = 10.2 Hz, 2H), 3.09 (s, 3H), 3.08 (s, 3H*), 2.80 – 2.66 (m, 2H), 2.65 – 2.54 (m, 2H), 1.92 (s, 6H), 1.64 (d, *J* = 11.8 Hz, 6H), 1.57 (d, *J* = 11.5 Hz, 6H), 1.50 (d, *J* = 12.3 Hz, 6H), 1.45 (d, *J* = 12.5 Hz, 6H), 1.03 (d, *J* = 2.4 Hz, 3H), 1.01 (d, *J* = 2.4 Hz, 3H*). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3 (2C), 168.2, 168.1*, 162.8 (t, *J* = 28.5 Hz), 162.7* (t, *J* = 28.1 Hz), 117.8 (t, *J* = 253.2 Hz), 63.5, 63.4*, 63.2 (2C), 53.0 (2C), 45.6, 45.5*, 38.0 (6C), 37.6 (t, *J* = 24.0 Hz, 2C), 36.6 (6C), 36.0, 35.9*, 27.7 (6C), 13.5, 13.3*.¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.45. HRMS (ESI) calcd. for C₂₁H₃₁[¹¹B]BrF₂N₂O₅ [M+H]⁺: 519.1472, found: 519.1467.

dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (40)

Following the general procedure, compound **40** was obtained in 54% yield (76 mg) as a purple oil after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 8.78 (s, 1H), 8.77 (s, 1H*), 7.00 (d, *J* = 7.0 Hz, 4H), 6.90 (t, *J* = 7.2 Hz, 2H), 4.47 (d, *J* = 17.5 Hz, 2H), 4.27 (d, *J* = 17.0 Hz, 4H), 4.08 (t, *J* = 14.7 Hz, 4H), 3.73 (dd, *J* = 14.0, 7.4 Hz, 4H), 3.66 (d, *J* = 11.3 Hz, 2H), 3.10 (s, 3H), 3.08 (s, 3H*), 2.82 – 2.69 (m, 2H), 2.67 – 2.56 (m, 2H), 2.20 (s, 12H), 1.27 (t, *J* = 6.8 Hz, 6H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.3 (2C), 168.2 (2C), 162.9 (t, *J* = 28.3 Hz, 2C), 155.0 (2C), 130.3 (4C), 128.8 (4C), 123.8 (2C), 117.4 (t, *J* = 255.1 Hz), 117.3* (t, *J* = 253.3 Hz), 73.5, 73.4*, 63.4 (2C), 63.2 (2C), 45.7, 45.6*, 45.5 (2C), 37.7 (t, *J* = 23.3 Hz, 2C), 33.4 (α -C of boron, 2C), 16.7, 16.5*, 15.9 (4C). ¹⁹F NMR (471 MHz, DMSO*d6*) δ -103.2 (m, 2F), -105.9 (m, 2F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.31. HRMS (ESI) calcd. for C₂₀H₂₇[¹¹B]BrF₂N₂O₆ [M+H]⁺: 519.1108, found: 519.1109. Methyl (4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2vl)butanovl)-*L*-alaninate (41)

Following the general procedure, compound **41** was obtained in 66% yield (80 mg) as a red solid after column chromatography, dr = 1.16:1 (determined by chiral HPLC analysis). ¹H NMR (500 MHz, DMSO-*d6*) δ 9.18 (s, 1H), 9.17 (s, 1H*), 4.47 (d, *J* = 17.4 Hz, 2H), 4.42 – 4.32 (m, 2H), 4.27 (dd, *J* = 17.1, 1.8 Hz, 2H), 4.09 (t, *J* = 16.3 Hz, 4H), 3.66 (d, *J* = 4.1 Hz, 1H), 3.64 (s, 6H), 3.63 – 3.62 (m, 1H*), 3.10 (s, 6H), 2.74 (qd, *J* = 16.9, 8.0 Hz, 2H), 2.59 (ddd, *J* = 27.6, 9.6, 6.8 Hz, 2H), 1.36 (s, 3H), 1.35 (s, 3H*). ¹³C NMR (126 MHz, DMSO-*d6*) δ 172.0 (2C), 168.3 (2C), 168.2 (2C), 163.3 (t, *J* = 29.0 Hz, 2C), 117.3 (t, *J* = 253.2 Hz), 117.2* (t, *J* = 252.8 Hz), 63.4 (2C), 63.2 (2C), 52.1 (2C), 47.9 (2C), 45.7 (2C), 37.8 (t, *J* = 23.3 Hz, 2C), 33.3 (α-C of boron, 2C), 16.3, 16.2*. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -104.3 (m, 3F), -105.3 (m, 1F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.51. HRMS (ESI) calcd. for C₁₃H₁₉[¹¹B]BrF₂N₂O₇ [M+H]⁺: 443.0431, found: 443.0432.

Conditions: ChiralPak IB column; hexane/EtOH = 50:50; flow rate = 1.0 mL/min; λ = 214 nm; tR1 = 6.0 min; tR2 = 7.4 min.

Dimethyl (4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*L*-glutamate (42)

Following the general procedure, compound **42** was obtained in 71% yield (100 mg) as a yellow solid after column chromatography, dr = 1.1:1 (determined by chiral HPLC analysis). ¹H NMR (500 MHz, DMSO-*d6*) δ 9.18 (dd, *J* = 7.1, 3.3 Hz, 2H), 4.48 (d, *J* = 17.4 Hz, 2H), 4.35 (tt, *J* = 9.8, 4.8 Hz, 2H), 4.27 (d, *J* = 17.1 Hz, 2H), 4.10 (d, *J* = 17.3 Hz, 2H), 4.08 (d, *J* = 17.1 Hz, 2H), 3.65 (s, 6H), 3.63 (d, *J* = 5.0 Hz, 1H), 3.60 (s, 1H*), 3.58 (s, 6H), 3.10 (s, 6H), 2.81 – 2.67 (m, 2H), 2.65 – 2.53 (m, 2H), 2.41 (t, *J* = 7.2 Hz, 4H), 2.15 – 2.06 (m, 2H), 2.03 – 1.91 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 172.6 (2C), 171.1 (2C), 168.3 (2C), 168.2 (2C), 163.8 (t, *J* = 30.2 Hz), 163.7* (t, *J* = 29.1 Hz), 117.3 (t, *J* = 253.2 Hz, 2C), 63.4 (2C), 63.2 (2C), 52.2 (2C), 51.5 (2C), 51.4 (2C), 45.6 (2C), 37.7 (t, *J* = 23.1 Hz, 2C), 33.3 (α -C of boron, 2C), 29.7 (2C), 25.1 (2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -103.7 (m, 3F), -105.3 (m, 1F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.44. HRMS (ESI) calcd. for C₁₆H₂₁[¹¹B]BrF₂N₂O₉ [M-H]⁻: 513.0497, found: 513.0505.

Conditions: ChiralPak IB column; hexane/EtOH = 40:60; flow rate = 1.0 mL/min; λ = 214 nm; tR1 = 6.1 min; tR2 = 7.7 min.

Methyl (4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*D*-phenylalaninate (43)

Following the general procedure, compound **43** was obtained in 71% yield (101 mg) as a yellow solid after column chromatography, dr = 1.2:1 (determined by chiral HPLC analysis). ¹H NMR (500 MHz, DMSO-*d6*) δ 9.21 (d, *J* = 3.5 Hz, 1H), 9.19 (d, *J* = 3.5 Hz, 1H*), 7.30 – 7.26 (m, 4H), 7.24 (d, *J* = 6.9 Hz, 4H), 7.22 – 7.17 (m, 2H), 4.61 – 4.53 (m, 2H), 4.47 (d, *J* = 17.4 Hz, 2H), 4.26 (d, *J* = 17.1 Hz, 2H), 4.09 (dd, *J* = 25.2, 9.7 Hz, 4H), 3.644 (s, 3H), 3.640 (s, 3H*), 3.58 (d, *J* = 10.2 Hz, 1H), 3.51 (t, *J* = 9.5 Hz, 1H*), 3.16 (ddd, *J* = 13.6, 4.9, 1.6 Hz, 2H), 3.08 (s, 3H), 3.06 (s, 3H*), 3.05 – 3.00 (m, 2H*), 2.69 – 2.53 (m, 2H), 2.48 – 2.33 (m, 2H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 171.0 (2C), 168.3 (2C), 168.1 (2C), 163.5 (t, *J* = 29.1 Hz, 2C), 137.2 (2C), 129.1 (4C), 128.3 (2C), 128.2 (2C), 126.6 (2C), 117.2 (t, *J* = 253.4 Hz, 2C), 63.4 (2C), 63.2 (2C), 53.7 (2C), 52.2 (2C), 45.6 (2C), 37.5 (t, *J* = 23.1 Hz, 2C), 35.7 (2C), 33.0 (α -C of boron, 2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -104.5 (ddd, *J* = 249.4, 21.3, 10.9 Hz, 1F), -105.3 (t, *J* = 16.5 Hz, 2F*), -105.7 (ddd, *J* = 249.4, 19.4, 14.5 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.39. HRMS (ESI) calcd. for C₁₉H₂₁[¹¹B]BrF₂N₂O₇ [M-H]⁻: 517.0599, found: 517.0608.

Conditions: ChiralPak IB column; hexane/EtOH = 50:50; flow rate = 1.0 mL/min; λ =

214 nm; tR1 = 7.2 min; tR2 = 9.1 min.

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (44)

Following the general procedure, compound **44** was obtained in 74% yield (100 mg) as a light brown solid after column chromatography, dr = 1:1 (determined by NMR). ¹**H NMR** (500 MHz, DMSO-*d6*) δ 4.81 – 4.76 (m, 1H), 4.74 (dd, *J* = 11.0, 4.3 Hz, 1H*), 4.48 (d, *J* = 17.4 Hz, 2H), 4.27 (d, *J* = 17.1 Hz, 2H), 4.13 – 4.05 (m, 4H), 3.68 – 3.61 (m, 2H), 3.10 (s, 6H), 2.76 (dt, *J* = 17.1, 11.1 Hz, 2H), 2.71 – 2.58 (m, 2H), 2.01 (dd, *J* = 8.6, 5.4 Hz, 2H), 1.85 (ddtd, *J* = 20.8, 13.7, 6.8, 2.5 Hz, 2H), 1.65 (d, *J* = 10.5 Hz, 4H), 1.55 – 1.45 (m, 4H), 1.14 – 1.02 (m, 4H), 0.89 (d, *J* = 2.1 Hz, 6H), 0.88 (d, *J* = 2.5 Hz, 6H*), 0.86 (d, *J* = 7.7 Hz, 2H), 0.74 (s, 3H), 0.72 (s, 3H*). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2 (2C), 168.1 (2C), 162.9 (t, *J* = 32.2 Hz), 162.8* (t, *J* = 32.4 Hz), 115.9 (t, *J* = 250.9 Hz, 2C), 77.2 (2C), 63.4 (2C), 63.2 (2C), 46.2 (2C), 45.7 (2C), 39.7, 39.5*, 37.8 (t, *J* = 23.7 Hz, 2C), 33.4 (2C), 30.7 (2C), 25.7 (2C), 22.9, 22.8*, 21.7 (2C), 20.4 (2C), 16.2, 16.1*. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -100.6 (ddt, *J* = 257.7, 28.8, 14.0 Hz, 2F), -106.3 (ddt, *J* = 62.2, 33.4, 16.5 Hz, 2F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.32. HRMS (ESI) calcd. for C₁₉H₂₉[¹¹B]BrF₂NNaO₆ [M+Na]⁺: 518.1132, found: 518.1145.

((3a*R*,5*R*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5b:4',5'-*d*]pyran-5-yl)methyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2dioxazaborocan-2-yl)butanoate (45)

Following the general procedure, compound **45** was obtained in 78% yield (128 mg) as a brown solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 5.47 (d, *J* = 3.1 Hz, 1H), 5.46 (d, *J* = 3.0 Hz, 1H*), 4.64 (d, *J* = 2.4 Hz, 1H), 4.63 (d, *J* = 2.4 Hz, 1H*), 4.47 (dd, *J* = 17.4, 0.9 Hz, 2H), 4.43 – 4.37 (m, 4H), 4.33 – 4.24 (m, 6H), 4.09 (dd, *J* = 17.2, 10.8 Hz, 4H), 4.02 (dd, *J* = 3.5, 1.6 Hz, 1H), 4.00 (dd, *J* = 3.5, 1.7 Hz, 1H*), 3.68 (d, *J* = 1.7 Hz, 1H), 3.66 (d, *J* = 3.0 Hz, 1H*), 3.10 (s, 6H), 2.85 – 2.72 (m, 2H), 2.69 – 2.54 (m, 2H), 1.43 (s, 3H), 1.42 (s, 3H*), 1.37 (s, 6H), 1.295 (s, 3H), 1.291 (s, 3H*), 1.27 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2 (2C), 168.1 (2C), 163.2 (t, *J* = 32.8 Hz), 163.1* (t, *J* = 32.6 Hz), 115.7 (t, *J* = 250.7 Hz, 2C), 108.8 (2C), 108.2, 108.1*, 95.5 (2C), 70.2, 70.1*, 70.0 (2C), 69.7 (2C), 65.7, 65.6*, 65.4, 65.2*, 63.4 (2C), 63.2 (2C), 45.7 (2C), 38.1 (t, *J* = 24.1 Hz, 2C), 33.0 (α -C of boron, 2C), 25.9 (2C), 25.7 (2C), 24.8 (2C), 24.3 (2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ 10.12. HRMS (ESI) calcd. for C₂₁H₂₉[¹¹B]BrF₂NNaO₁₁ [M+Na]*: 622.0877, found: 622.0890.

(3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoate (46)

Following the general procedure, compound **46** was obtained in 84% yield (144 mg) as a yellow solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 5.44 (s, 1H), 5.43 (s, 1H*), 4.67 (ddd, *J* = 16.1, 10.2, 4.2 Hz, 2H), 4.47 (d, *J* = 17.4 Hz, 2H), 4.28 (d, *J* = 17.1 Hz, 2H), 4.09 (t, *J* = 17.5 Hz, 4H), 3.65 (d, *J* = 11.1 Hz, 2H), 3.10 (s, 6H), 2.78 (q, *J* = 15.1 Hz, 2H), 2.70 – 2.57 (m, 2H), 2.44 – 2.36 (m, 6H), 2.11 – 2.04 (m, 2H), 2.04 – 1.97 (m, 2H), 1.87 (ddd, *J* = 18.2, 12.1, 7.7 Hz, 6H), 1.69 (ddd, *J* = 23.0, 10.8, 3.5 Hz, 6H), 1.60 (dd, *J* = 12.5, 8.4 Hz, 4H), 1.54 – 1.47 (m, 2H), 1.42 (ddd, *J* = 17.3, 13.5, 4.9 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.3, 13.5, 4.9 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.3, 13.5, 4.9 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.3, 13.5, 4.9 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.3, 13.5, 4.9 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.3, 13.5, 4.9 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.3, 13.5, 4.9 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.4 Hz, 2H), 1.32 – 1.25 (m, 2H), 1.19 (td, *J* = 17.4 Hz, 2H), 1.42 (ddd, *J* = 17.4 Hz, 2H), 1.42 (dddd, *J*

13.0, 4.0 Hz, 2H), 1.16 – 1.08 (m, 2H), 1.03 (s, 6H), 1.01 – 0.96 (m, 2H), 0.81 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 219.6 (2C), 168.2 (2C), 168.1 (2C), 162.6 (t, J = 32.3 Hz, 2C), 139.0 (2C), 122.4 (2C), 115.8 (t, J = 250.0 Hz, 2C), 76.8 (2C), 63.4 (2C), 63.2 (2C), 50.8 (2C), 49.5 (2C), 46.8 (4C), 45.8 (2C), 38.1 (t, J = 23.0 Hz, 2C), 37.0 (2C), 36.2 (2C), 35.3 (2C), 33.3 (α-C of boron, 2C), 31.1 (2C), 30.9 (2C), 30.2 (2C), 26.9, 26.8*, 21.4 (2C), 19.9 (2C), 18.9 (2C), 13.2 (2C). ¹⁹F NMR (471 MHz, DMSO *d*6) δ -101.3 (dt, J = 257.4, 13.3 Hz, 2F), -106.4 (ddt, J = 257.0, 50.0, 17.2 Hz, 2F*). ¹¹B NMR (160 MHz, DMSO-*d*6) δ 10.31. HRMS (ESI) calcd. for C₂₈H₃₇[¹¹B]BrClF₂NO₇ [M+Cl]⁻: 662.1509, found: 662.1504.

(8R,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo-

2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoate (47)

Following the general procedure, compound 47 was obtained in 83% yield (142 mg) as a yellow solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d*6) δ 5.63 (s, 2H), 4.70 (dd, *J* = 18.0, 9.2 Hz, 2H), 4.47 (d, *J* = 17.4 Hz, 2H), 4.28 (d, J = 17.1 Hz, 2H), 4.09 (t, J = 16.5 Hz, 4H), 3.67 – 3.59 (m, 2H), 3.10 (s, 6H), 2.77 (q, J = 15.3 Hz, 2H), 2.70 – 2.58 (m, 2H), 2.45 – 2.34 (m, 4H), 2.25 (d, J= 14.1 Hz, 2H), 2.15 (d, J = 16.2 Hz, 4H), 1.96 (d, J = 12.9 Hz, 2H), 1.84 - 1.68 (m, 4H), 1.59 (dd, J = 22.3, 9.1 Hz, 8H), 1.53 (d, J = 11.6 Hz, 2H), 1.43 – 1.30 (m, 4H), 1.26 - 1.18 (m, 2H), 1.15 (s, 6H), 1.10 (d, J = 11.4 Hz, 2H), 1.01 - 0.88 (m, 4H), 0.85(s, 3H), 0.84 (s, 3H*). ¹³C NMR (126 MHz, DMSO-*d6*) δ 198.0 (2C), 170.7 (2C), 168.2 (2C), 168.1 (2C), 163.1 (t, J = 32.3 Hz, 2C), 123.2 (2C), 115.8 (t, J = 250.0 Hz, 2C), 84.9 (2C), 63.4 (2C), 63.2 (2C), 52.9 (2C), 49.2 (2C), 45.7 (2C), 42.5, 42.4*, 38.2 (2C), 38.1 (t, J = 23.9 Hz, 2C), 36.0 (2C), 35.1 (2C), 34.6 (2C), 33.6 (2C), 31.8 (2C), 31.1 (2C), 26.7 (2C), 23.0 (2C), 20.0 (2C), 16.9 (2C), 11.8, 11.7*. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -100.4 (m, 2F), -106.4 (ddt, J = 147.0, 34.2, 16.9 Hz, 2F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.16. **HRMS (ESI)** calcd. for C₂₈H₃₇[¹¹B]BrClF₂NO₇ [M+H]⁺: 628.1887, found: 628.1890.

(3*S*,8*S*,9*S*,10*R*,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoate (48)

Following the general procedure, compound 48 was obtained in 86% yield (170 mg) as a yellow solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR $(500 \text{ MHz}, \text{DMSO-}d6) \delta 5.37 \text{ (s, 2H)}, 4.64 \text{ (s, 2H)}, 4.46 \text{ (d, } J = 17.5 \text{ Hz}, 2\text{H}), 4.27 \text{ (d, } J = 17.5 \text{ Hz},$ J = 17.1 Hz, 2H), 4.07 (dd, J = 25.1, 17.2 Hz, 4H), 3.63 (d, J = 11.4 Hz, 2H), 3.09 (s, 6H), 2.88 – 2.70 (m, 2H), 2.70 – 2.55 (m, 2H), 2.37 (s, 4H), 2.06 – 1.74 (m, 12H), 1.56 -1.44 (m, 9H), 1.42 - 1.29 (m, 9H), 1.08 (s, 16H), 0.98 (s, 12H), 0.88 (d, J = 2.6 Hz, 6H), 0.83 (d, J = 5.8 Hz, 12H), 0.64 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.2 (2C), 168.1 (2C), 162.5 (t, J = 32.2 Hz, 2C), 138.8 (2C), 122.7 (2C), 115.7 (t, J = 250.7 Hz, 2C), 76.7 (2C), 63.3 (2C), 63.1 (2C), 56.1 (2C), 55.6 (2C), 49.4 (2C), 45.7 (2C), 41.8 (2C), 39.2 (2C), 39.0 (2C), 38.1 (t, J = 22.8 Hz, 2C), 37.0 (2C), 36.3 (2C), 36.0 (2C), 35.7 (2C), 35.3 (2C), 31.3 (2C), 27.8 (2C), 27.4 (4C), 26.8 (2C), 23.8 (2C), 23.3 (2C), 22.6 (2C), 22.3 (2C), 20.5 (2C), 18.9 (2C), 18.5 (2C), 11.6 (2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -101.2 (d, *J* = 256.6 Hz, 2F), -106.7 (dd, *J* = 253.0, 31.5 Hz, 2F*). NMR (160 MHz, DMSO-d6) δ 10.17. HRMS (ESI) calcd. for ¹¹**B** C₃₆H₅₅[¹¹B]BrClF₂NO₆ [M+Cl]⁻: 760.2968, found: 760.2946.

Octadecyl (2*S*,4a*S*,6a*S*,6b*R*,8a*R*,10*S*,12a*S*,12b*R*,14b*R*)-10-((4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)oxy)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-

1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2carboxylate (49)

Following the general procedure, compound **49** was obtained in 85% yield (247 mg) as a brown solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 5.43 (s, 2H), 4.58 (s, 2H), 4.46 (d, *J* = 17.4 Hz, 2H), 4.27 (d,

J = 16.9 Hz, 2H), 4.07 (dd, *J* = 29.0, 17.3 Hz, 4H), 3.98 (s, 4H), 3.63 (t, *J* = 10.6 Hz, 2H), 3.09 (s, 6H), 2.83 – 2.69 (m, 2H), 2.68 – 2.57 (m, 2H), 2.12 – 1.92 (m, 4H), 1.68 (dd, *J* = 95.4, 52.2 Hz, 20H), 1.39 – 0.96 (m, 98H), 0.96 – 0.76 (m, 26H), 0.72 (s, 6H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 198.1 (2C), 175.2 (2C), 168.6 (2C), 168.1 (2C), 168.0 (2C), 162.9 (t, *J* = 31.9 Hz, 2C), 127.5 (2C), 115.8 (t, *J* = 251.7 Hz, 2C), 83.6 (2C), 63.5 (2C), 63.3 (2C), 63.1 (2C), 60.7 (2C), 53.5 (2C), 47.7 (2C), 45.6 (2C), 44.7 (2C), 43.4 (2C), 42.8 (2C), 37.9 (t, *J* = 21.1 Hz, 2C), 37.8, 37.7*, 36.4 (2C), 31.5 (2C), 31.3 (2C), 29.3 (36C), 29.2 (2C), 29.0 (2C), 28.8 (2C), 28.3 (2C), 28.2 (2C), 27.6 (2C), 27.4 (2C), 25.6 (2C), 23.0 (2C), 22.2 (2C), 18.2 (2C), 16.3 (2C), 16.0 (2C), 13.7 (2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -100.8 (t, *J* = 281.2 Hz, 2F), -106.3 (m, 2F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 9.53. HRMS (ESI) calcd. for C₅₇H₉₀[¹¹B]BrF₂NO₉ [M-H]⁻: 1060.5866, found: 1060.5864.

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (50)

Following the general procedure, compound **50** was obtained in 67% yield (104 mg) as a purple oil after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 8.78 (dd, *J* = 8.0, 4.3 Hz, 2H), 7.00 (d, *J* = 7.5 Hz, 4H), 6.93 – 6.84 (m, 2H), 4.41 (d, *J* = 17.4 Hz, 2H), 4.30 (d, *J* = 17.1 Hz, 2H), 4.27 – 4.19 (m, 2H), 4.13 (dd, *J* = 13.3, 4.1 Hz, 2H), 4.11 – 4.07 (m, 2H), 3.72 (qd, *J* = 9.1, 3.8 Hz, 4H), 3.43 (d, *J* = 11.2 Hz, 2H), 3.09 (s, 3H), 3.07 (s, 3H*), 2.96 – 2.77 (m, 2H), 2.66 – 2.53 (m, 2H), 2.21 (s, 12H), 1.29 (d, *J* = 2.6 Hz, 3H), 1.27 (d, *J* = 2.7 Hz, 3H*). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.1 (2C), 168.0 (2C), 162.9 (t, *J* = 28.5 Hz, 2C), 155.0 (2C), 130.3 (4C), 128.8 (4C), 123.8 (2C), 117.5 (t, *J* = 253.9 Hz), 117.4* (t, *J* = 253.6 Hz), 73.5, 73.4*, 63.7, 63.6*, 63.5 (2C), 45.6 (2C), 45.5 (2C), 38.5 (t, *J* = 23.4 Hz), 38.4* (t, *J* = 23.5 Hz), 16.7, 16.6*, 15.9 (4C), 7.1 (α -C of boron, 2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -104.2 (m, 2F), -105.6 (m, 2F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.79. HRMS (ESI) calcd. for C₂₀H₂₇[¹¹B]F₂IN₂O₆ [M+H]⁺: 567.0969, found: 567.0967.

Methyl (2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoyl)-*L*-alaninate (51)

Following the general procedure, compound **51** was obtained in 75% yield (100 mg) as a brown solid after column chromatography, dr = 1:1 (determined by chiral HPLC analysis). ¹H NMR (500 MHz, DMSO-*d6*) δ 9.20 (s, 1H), 9.18 (s, 1H*), 4.43 (d, *J* = 17.4 Hz, 2H), 4.40 – 4.35 (m, 2H), 4.32 (dd, *J* = 17.1, 4.2 Hz, 2H), 4.17 – 4.09 (m, 4H), 3.65 (s, 6H), 3.42 (d, *J* = 10.9 Hz, 2H), 3.10 (s, 6H), 2.96 – 2.77 (m, 2H), 2.67 – 2.53

(m, 2H), 1.38 (d, J = 2.9 Hz, 3H), 1.37 (d, J = 2.9 Hz, 3H*). ¹³C NMR (126 MHz, DMSO-*d6*) δ 172.1, 172.0*, 168.1 (2C), 168.0 (2C), 163.3 (t, J = 29.2 Hz, 2C), 117.4 (t, J = 253.1 Hz), 117.3* (t, J = 253.1 Hz), 63.7 (2C), 63.5 (2C), 52.1 (2C), 47.9 (2C), 45.6 (2C), 38.5 (t, J = 23.1 Hz, 2C), 16.3, 16.2*, 7.0 (α -C of boron, 2C). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -104.3 (ddd, J = 248.8, 21.0, 11.2 Hz, 1F), -105.0 (t, J = 16.2 Hz, 2F*), -105.6 (ddd, J = 248.8, 18.9, 14.8 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.51. HRMS (ESI) calcd. for C₁₃H₁₉[¹¹B]F₂IN₂O₇ [M+H]⁺: 491.0293, found: 491.0294.

Conditions: ChiralPak IB column; hexane/EtOH = 50:50; flow rate = 1.0 mL/min; λ = 214 nm; tR1 = 6.2 min; tR2 = 7.4 min.

Dimethyl (2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*L*-glutamate (52)

Following the general procedure, compound **52** was obtained in 76% yield (117 mg) as a brown solid after column chromatography, dr = 1:1 (determined by chiral HPLC analysis). ¹**H** NMR (500 MHz, DMSO-*d6*) δ 9.19 (s, 1H), 9.17 (s, 1H*), 4.42 (d, *J* = 17.4 Hz, 2H), 4.37 – 4.27 (m, 4H), 4.12 (dd, *J* = 17.2, 9.3 Hz, 4H), 3.65 (s, 6H), 3.59 (s, 6H), 3.39 (t, *J* = 12.2 Hz, 2H), 3.09 (s, 6H), 2.97 – 2.76 (m, 2H), 2.66 – 2.52 (m, 2H), 2.41 (t, *J* = 7.3 Hz, 4H), 2.10 (td, *J* = 13.0, 7.0 Hz, 2H), 2.04 – 1.92 (m, 2H). ¹³**C** NMR (126 MHz, DMSO-*d6*) δ 172.6 (2C), 171.1 (2C), 168.1 (2C), 168.0 (2C), 163.8 (t, *J* = 29.4 Hz), 163.7* (t, *J* = 29.3 Hz), 117.4 (t, *J* = 253.7 Hz, 2C), 63.7 (2C), 63.5 (2C), 52.2 (2C), 51.6, 51.5*, 51.4 (2C), 45.6 (2C), 38.4 (t, *J* = 23.3 Hz, 2C), 29.8 (2C), 25.2 (2C), 7.1 (α -C of boron, 2C). ¹⁹**F** NMR (471 MHz, DMSO-*d6*) δ -103.5 (ddd, *J* = 249.5, 20.3, 10.8 Hz, 1F), -104.7 (t, *J* = 16.2 Hz, 2F*), -105.1 (m, 1F). ¹¹**B** NMR (160 MHz, DMSO-*d6*) δ 10.69. **HRMS (ESI)** calcd. for C₁₆H₂₃[¹¹B]F₂IN₂O₉ [M+H]⁺:

563.0504, found: 563.0510.

Conditions: ChiralPak IB column; hexane/EtOH = 50:50; flow rate = 1.0 mL/min; λ = 214 nm; tR1 = 7.6 min; tR2 = 9.6 min.

Methyl (2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*D*-phenylalaninate (53)

Following the general procedure, compound **53** was obtained in 69% yield (107 mg) as a red solid after column chromatography, dr = 1:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d*6) δ 9.20 (t, *J* = 7.1 Hz, 2H), 7.31 – 7.26 (m, 4H), 7.24 (d, *J* = 7.0 Hz, 4H), 7.19 (td, *J* = 7.0, 2.7 Hz, 2H), 4.61 – 4.52 (m, 2H), 4.41 (dd, *J* = 17.4, 2.4 Hz, 2H), 4.30 (dd, *J* = 17.1, 3.9 Hz, 2H), 4.16 – 4.06 (m, 4H), 3.65 (s, 3H), 3.64 (s, 3H*), 3.36 (d, *J* = 4.7 Hz, 1H), 3.25 (d, *J* = 10.5 Hz, 1H*), 3.19 – 3.12 (m, 2H), 3.10 – 3.03 (m, 5H), 3.01 (s, 3H*), 2.80 – 2.62 (m, 2H), 2.39 (ddd, *J* = 18.6, 16.1, 9.3 Hz, 2H). ¹³C NMR (126 MHz, DMSO-*d*6) δ 171.5, 171.4*, 168.6, 168.53*, 168.5 (2C), 164.0 (t, *J* = 29.1 Hz), 163.9* (t, *J* = 29.1 Hz), 137.7, 137.6*, 129.6 (4C), 128.8 (2C), 128.7 (2C), 127.1, 127.0*, 117.7 (t, *J* = 253.0 Hz, 2C), 64.2, 64.1*, 64.0, 63.9*, 54.2 (2C), 52.7, 52.6*, 46.0 (2C), 38.8 (t, *J* = 22.9 Hz, 2C), 36.2 (2C), 7.2 (α-C of boron, 2C). ¹⁹F NMR (471 MHz, DMSO-*d*6) δ -104.1 (ddd, *J* = 248.2, 21.9, 8.7 Hz, 1F), -105.3 (ddd, *J* =

248.2, 20.5, 11.2 Hz, 1F*), -106.1 (m, 1F*), -106.7 (ddd, J = 248.1, 20.9, 14.0 Hz, 1F). ¹¹**B** NMR (160 MHz, DMSO-*d6*) δ 10.72. **HRMS (ESI)** calcd. for C₁₉H₂₃[¹¹B]F₂IN₂O₇ [M+H]⁺: 567.0606, found: 567.0607.

Ethyl (3*S*)-3-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-2,2difluorononanoate (54)

Following the general procedure, compound **54** was obtained in 25% yield (32 mg) as a brown oil after column chromatography and preparative HPLC (TFA), dr = 4:1 (determined by NMR). ¹**H** NMR (500 MHz, DMSO-*d6*) δ 4.43 (d, *J* = 10.8 Hz, 1H), 4.36 (dd, *J* = 17.5, 7.6 Hz, 1H), 4.28 – 4.20 (m, 3H), 4.11 (dd, *J* = 17.4, 7.4 Hz, 1H), 3.97 (dd, *J* = 25.2, 17.4 Hz, 1H), 3.03 (d, *J* = 6.3 Hz, 3H), 3.00 – 2.81 (m, 1H), 1.36 – 1.20 (m, 13H), 0.87 (dd, *J* = 9.2, 4.4 Hz, 3H). ¹³**C** NMR (126 MHz, DMSO-*d6*) δ 168.6, 168.5*, 168.2*, 167.7, 164.2 (t, *J* = 33.1 Hz), 164.1* (t, *J* = 32.7 Hz), 119.0 (dd, *J* = 258.3, 247.6 Hz), 63.1, 63.0, 62.9*, 62.8*, 62.5, 62.3*, 55.9 (TFA-N-CH₃), 52.9* (TFA-N-CH₃), 47.2*, 46.7*, 39.5 (t, *J* = 20.9 Hz), 37.0, 35.7*, 31.10, 31.07*, 28.6, 28.1*, 27.8, 27.7*, 22.0, 13.9, 13.61, 13.59*. ¹⁹**F** NMR (471 MHz, DMSO-*d6*) δ -96.1 (dd, *J* = 272.9, 19.2 Hz, 1F), -96.8 (dd, *J* = 270.7, 20.4 Hz, 1F*), -101.6 (dd, *J* = 270.6, 15.9 Hz, 1F*), -102.0 (dd, *J* = 272.9, 18.9 Hz, 1F). ¹¹**B** NMR (160 MHz, DMSO-*d6*) δ 10.22. HRMS (ESI) calcd. for C₁₇H₂₈[¹¹B]BrF₂NO₆ [M+H]⁺: 470.1156, found: 470.1157.

Ethyl (3*S*)-3-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-6chloro-2,2-difluorohexanoate (55)

Following the general procedure, compound **55** was obtained in 30% yield (37 mg) as a yellow oil after column chromatography and preparative HPLC (TFA), dr = 2.5:2:1 (determined by NMR). ¹**H NMR** (500 MHz, DMSO-*d6*) δ 4.50 – 4.40 (m, 1H), 4.39 – 4.34 (m, 1H), 4.34 – 4.20 (m, 3H), 4.14 – 4.06 (m, 1H), 4.05 – 3.92 (m, 1H), 3.74 – 3.58 (m, 2H), 3.10 – 3.02 (m, 3H), 3.02 – 2.82 (m, 1H), 2.22 – 1.87 (m, 2H), 1.86 – 1.70 (m, 2H), 1.31 – 1.25 (m, 3H). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 168.6, 168.5, 168.3*, 168.1*, 168.0*, 167.7*, 164.0 (t, *J* = 32.7 Hz), 163.3 (t, *J* = 32.6 Hz)*, 118.2 (ddd, *J* = 417.4, 251.4, 243.3 Hz), 63.4, 63.2, 63.1*, 63.0*, 62.9*, 62.7*, 62.3, 61.5*, 54.6 (TFA-N-CH₃), 51.7* (TFA-N-CH₃), 47.2*, 46.6*, 45.7*, 45.1, 44.6*, 44.5*, 43.5 (t, *J* = 20.8 Hz), 34.8, 33.5*, 32.0*, 31.5, 30.8*, 23.6*, 13.73, 13.67*, 13.6*.¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -96.8 (dd, *J* = 272.9, 21.5 Hz, 1F), -97.1 (dd, *J* = 271.3, 21.1 Hz, 1F*), -101.2 (dd, *J* = 271.3, 15.1 Hz, 1F*), -101.7 (dd, *J* = 272.9, 16.5 Hz, 1F), -105.1 (dd, *J* = 253.4, 10.7 Hz, 1F*), -108.4 (dd, *J* = 253.4, 18.7 Hz, 1F*). ¹¹**B NMR**

(160 MHz, DMSO-*d6*) δ 10.24. **HRMS (ESI)** calcd. for C₁₄H₂₁[¹¹B]BrClF₂NO₆ [M+H]⁺: 462.0296, found: 462.0299.

Following the general procedure, compound **56a** was obtained in 35% yield (40 mg) as a yellow oil after column chromatography and preparative HPLC (TFA). **56b** was detected by ¹⁹F NMR. ¹H NMR (500 MHz, DMSO-*d6*) δ 5.66 – 5.60 (m, 1H), 5.43 (dd, J = 15.5, 10.4 Hz, 1H), 4.27 (d, J = 7.8 Hz, 1H), 4.26 – 4.16 (m, 3H), 4.05 (d, J = 17.0 Hz, 1H), 3.84 (d, J = 17.2 Hz, 1H), 3.57 – 3.48 (m, 2H), 2.93 (s, 3H), 2.77 (ddd, J = 27.6, 13.2, 10.4 Hz, 1H), 2.64 – 2.52 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.6, 167.9, 163.9 (t, J = 33.2 Hz), 133.7, 125.0, 117.6 (dd, J = 253.8, 248.5 Hz), 62.4, 61.9, 61.5, 46.0, 36.8 (α -C of boron), 35.5, 34.0, 13.7. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -97.0 (dd, J = 254.3, 13.2 Hz, 1F), -102.1 (dd, J = 249.9, 4.8 Hz, 1F of **56b**). ^{-105.7} (dd, J = 254.3, 27.7 Hz, 1F), -114.0 (dd, J = 249.9, 23.3 Hz, 1F of **56b**). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.03. HRMS (ESI) calcd. for C₁₄H₂₀[¹¹B]BrF₂NO₆ [M+H]⁺: 426.0530, found: 426.0533.

(2*S*)-2-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-4-ethoxy-3,3-difluoro-4-oxobutyl benzoate (57)

Following the general procedure, compound **57** was obtained in 25% yield (35 mg) as a yellow oil after column chromatography and preparative HPLC, dr = 5:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 8.03 – 7.88 (m, 2H), 7.69 (t, *J* = 7.4 Hz, 1H), 7.55 (q, *J* = 7.7 Hz, 2H), 4.68 – 4.63 (m, 1H), 4.60 – 4.41 (m, 2H), 4.31 – 4.25 (m, 1H), 4.25 – 3.95 (m, 5H), 3.42 – 3.34 (m, 1H), 3.15 (s, 3H), 3.11 (s, 3H*), 3.07 (d, *J* = 4.6 Hz, 1H*), 1.27 (t, *J* = 7.1 Hz, 3H*), 1.10 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.7*, 168.3, 168.0, 167.6*, 165.1, 163.2 (t, *J* = 32.1 Hz), 133.8, 133.6*, 129.3* (2C), 129.2 (2C), 128.9, 128.83* (2C), 128.78 (2C), 115.4 (dd, *J* = 261.5, 250.3 Hz), 63.4 (2C), 63.2* (2C), 63.0, 61.6, 46.7*, 46.0, 42.6 (t, *J* = 21.0 Hz), 35.1 (α -C of boron), 13.6*, 13.4. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -97.3 (dd, *J* = 271.3, 20.7 Hz, 1F*), -101.3 (dd, *J* = 271.5, 18.2 Hz, 1F*), -105.0 (d, *J* = 260.1 Hz, 1F), -114.7 (dd, *J* = 260.0, 22.8 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.11. HRMS (ESI) calcd. for C₁₉H₂₂BBrF₂NO₈ [M+H]⁺: 519.0621, found: 519.0625.

Ethyl (3S)-3-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-5-

(1,3-dioxoisoindolin-2-yl)-2,2-difluoropentanoate (58)

Following the general procedure, compound **58** was obtained in 23% yield (35 mg) as a brown oil after column chromatography and preparative HPLC, dr = 3.3:1 (determined by NMR). ¹**H NMR** (500 MHz, DMSO-*d6*) δ 7.86 – 7.79 (m, 4H), 4.47 – 4.30 (m, 3H), 4.29 – 4.23 (m, 2H*), 4.23 – 4.14 (m, 2H), 4.13 – 4.08 (m, 2H*), 4.00 (dt, *J* = 21.0, 10.7 Hz, 2H), 3.75 (s, 1H), 3.70 (ddd, *J* = 9.3, 8.5, 4.7 Hz, 2H), 3.65 (dd, *J* = 7.9, 5.9 Hz, 2H*), 3.13 (s, 3H*), 3.04 (s, 3H), 3.01 (d, *J* = 3.8 Hz, 1H*), 2.10 – 2.04 (m, 2H*), 2.05 – 1.93 (m, 2H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H*). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 169.1*, 168.0*, 167.9, 167.8, 167.7 (2C), 163.1 (t, *J* = 32.7 Hz), 134.6* (2C), 134.2 (2C), 131.6 (2C), 131.4* (2C), 123.2* (2C), 123.0 (2C), 117.1 (t, *J* = 254.8 Hz), 64.0*, 63.4, 63.1, 62.8, 62.6*, 61.1*, 45.9*, 45.7, 42.3 (t, *J* = 21.5 Hz), 36.2, 25.5, 13.6, 13.4*. ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -100.7 (dd, *J* = 260.9, 6.0 Hz, 1F*), -105.2 (dd, *J* = 253.0, 15.7 Hz, 1F), -106.1 (dd, *J* = 253.0, 12.5 Hz, 1F), -110.2 (dd, *J* = 260.8, 21.3 Hz, 1F*). ¹¹**B NMR** (160 MHz, DMSO-*d6*) δ 10.50. **HRMS (ESI)** calcd. for C₂₁H₂₃[¹¹B]BrF₂N₂O₈ [M+H]⁺: 559.0693, found: 559.0697.

Ethyl (*S*,*E*)-2,2-difluoro-7-iodo-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-4-enoate (59a)

Following the general procedure, compound **59a** was obtained in 31% yield (40 mg) as a brown oil after column chromatography and preparative HPLC (TFA). **59b** was detected by ¹⁹F NMR. ¹H NMR (500 MHz, DMSO-*d6*) δ 5.65 – 5.56 (m, 1H), 5.41 (dd, J = 15.5, 10.3 Hz, 1H), 4.27 (d, J = 11.9 Hz, 1H), 4.25 – 4.17 (m, 3H), 4.05 (d, J = 17.0 Hz, 1H), 3.86 (d, J = 17.2 Hz, 1H), 3.29 – 3.20 (m, 2H), 2.94 (s, 3H), 2.76 (ddd, J = 27.7, 13.0, 10.6 Hz, 1H), 2.65 – 2.52 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.6, 167.9, 163.9 (t, J = 33.3 Hz), 135.4, 124.5, 117.6 (dd, J = 253.7, 248.4 Hz), 62.5, 61.9, 61.5, 46.1, 36.7 (α -C of boron), 36.2, 13.7, 7.4. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -96.9 (dd, J = 254.5, 13.0 Hz, 1F), -102.3 (dd, J = 248.0, 5.3 Hz, 1F of **59b**), -105.8 (dd, J = 254.5, 27.9 Hz, 1F), -115.1 (dd, J = 248.0, 23.4 Hz, 1F of **59b**). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 9.92. HRMS (ESI) calcd. for C₁₄H₂₀[¹¹B]F₂INO₆ [M+H]⁺: 474.0391, found: 474.0392.

(2*S*)-4-ethoxy-3,3-difluoro-2-(iodo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-4-oxobutyl benzoate (60)

Following the general procedure, compound **60** was obtained in 32% yield (49 mg) as a purple solid after column chromatography and preparative HPLC, dr = 6.7:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 7.92 (dd, *J* = 17.2, 7.7 Hz, 2H), 7.69 (t, *J* = 7.2 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 2H), 4.56 – 4.38 (m, 3H), 4.30 (d, *J* = 17.2 Hz, 1H), 4.17 – 3.91 (m, 4H), 3.78 – 3.63 (m, 1H), 3.16 (s, 3H), 3.14 – 3.04 (m, 1H), 3.01 (s, 3H*), 1.11 (dt, *J* = 14.0, 7.1 Hz, 3H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.4* (2C), 168.0 (2C), 165.1, 164.4*, 163.3 (t, *J* = 32.4 Hz), 133.8, 133.6*, 129.4* (2C), 129.2 (2C), 128.82, 128.78 (2C), 119.4 (t, *J* = 257.6 Hz), 64.5, 63.53, 63.49, 63.3, 45.8, 41.5 (t, *J* = 21.5 Hz), 13.4. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -96.9 (dd, *J* = 275.7, 11.4 Hz, 1F), -104.0 (dd, *J* = 274.5, 20.4 Hz, 1F), -105.3 (d, *J* = 258.4 Hz, 1F*), -115.6 (dd, *J* = 258.3, 22.4 Hz, 1F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 10.44. HRMS (ESI) calcd. for C₁₉H₂₂BF₂INO₈ [M+H]⁺: 567.0482, found: 567.0482.

Ethyl (3*S*)-5-(1,3-dioxoisoindolin-2-yl)-2,2-difluoro-3-(iodo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)pentanoate (61)

Following the general procedure, compound **61** was obtained in 22% yield (36 mg) as a purple solid after column chromatography and preparative HPLC, dr = 2.5:1 (determined by NMR). ¹H NMR (500 MHz, DMSO-*d6*) δ 7.86 – 7.79 (m, 4H), 4.44 – 4.30 (m, 3H), 4.26 (d, *J* = 17.2 Hz, 2H*), 4.22 – 4.17 (m, 2H), 4.14 – 4.08 (m, 2H*), 4.01 (dd, *J* = 17.0, 15.7 Hz, 2H), 3.75 – 3.66 (m, 2H), 3.63 (dd, *J* = 13.7, 6.9 Hz, 2H*), 3.52 (s, 1H), 3.15 (s, 3H*), 3.04 (s, 3H), 2.98 (s, 1H*), 1.91 (dd, *J* = 12.8, 7.2 Hz, 2H), 1.86 (dd, *J* = 9.6, 4.3 Hz, 2H*), 1.31 (t, *J* = 7.1 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H*). ¹³C NMR (126 MHz, DMSO-*d6*) δ 169.1*, 168.3*, 168.0, 167.9, 167.7 (2C), 167.6* (2C), 163.1 (t, *J* = 32.2 Hz), 134.6* (2C), 134.2 (2C), 131.7 (2C), 131.4* (2C), 123.2* (2C), 123.0 (2C), 117.2 (t, *J* = 255.1 Hz), 64.0*, 63.4, 63.2, 63.1, 62.8*, 61.1*, 45.8*, 45.5, 41.3 (t, *J* = 21.4 Hz), 36.0, 28.8, 13.6, 13.4*. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -100.4 (dd, *J* = 260.3, 3.8 Hz, 1F*), -104.9 (dd, *J* = 252.5, 15.6 Hz, 1F), -106.6 (dd, *J* = 252.5, 13.1 Hz, 1F), -112.3 (dd, *J* = 260.1, 22.6 Hz, 1F*). ¹¹B NMR (160 MHz, DMSO-*d6*) δ

10.23. **HRMS (ESI)** calcd. for $C_{21}H_{23}[^{11}B]F_2IN_2O_8$ [M+H]⁺: 607.0555, found: 607.0558.

5. Gram-scale preparation and transformations Gram-scale preparation

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (0.5 g, 2.73 mmol, 1.0 equiv.), ICF₂COOEt (1.37 g, 5.47 mmol, 2.0 equiv.), PdCl₂(dppf)·DCM (221.51 mg, 0.273 mmol, 10 mol %), BINAP (170.16 mg, 0.273 mmol, 10 mol %), K₂CO₃ (755.34 mg, 5.47 mmol, 2.0 equiv.) sequentially, ethyl acetate (EtOAc, 10.0 mL) was then added to dissolve the complex above. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. After the solution was cooled to room temperature, the crude reaction mixture was diluted with EA (30 mL) and washed with saturated aqueous NaCl (3 x 30 mL). The aqueous layer was extracted with EA (3 x 30 mL) and the combined organic layer was dried over anhydrous Na₂SO₄. Then, the solvent was removed under vacuo, and the residue was purified by a silica gel column chromatography with an appropriate solvent as eluent to give the desired product **23** (0.96 g, 81% yield).

Synthesis of 62:

To the 25 mL Schlenk tube with **23** (65.52 mg, 0.15 mmol, 1.0 equiv.) was added PhSNa (20 mg, 0.15 mmol, 1.0 equiv.). The reaction mixture was dissolved in anhydrous DMF (2.5 mL) and was then evacuated and backfilled with Ar for 3 times. The mixture was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (10 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product **62** in 70% yield (44 mg) as a white solid.

Ethyl 2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-4-(phenylthio)butanoate (62)

¹**H** NMR (500 MHz, Acetone-*d*6) δ 7.47 – 7.43 (m, 2H), 7.33 (dd, J = 10.6, 4.9 Hz, 2H), 7.23 – 7.19 (m, 1H), 4.39 (d, J = 17.2 Hz, 1H), 4.32 (d, J = 16.8 Hz, 1H), 4.25 – 4.19 (m, 4H), 3.30 (s, 3H), 3.03 (dd, J = 8.1, 4.6 Hz, 1H), 2.80 – 2.72 (m, 1H), 2.51 (ddd, J = 32.1, 15.7, 8.3 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H). ¹³**C** NMR (126 MHz, Acetone-*d*6) δ 168.2, 168.1, 164.6 (t, J = 32.5 Hz), 137.0, 129.9 (2C), 129.8 (2C), 127.0, 117.0 (t, J = 249.9 Hz), 64.5, 64.2, 63.5, 46.7, 38.6 (t, J = 23.9 Hz), 28.0 (α-C of boron), 14.0. ¹⁹**F** NMR (471 MHz, Acetone-*d*6) δ -103.9 (q, J = 16.1 Hz, 2F). ¹¹**B** NMR (160 MHz, DMSO-*d*6) δ 11.48. **HRMS (ESI)** calcd. for C₁₇H₂₁[¹¹B]F₂NO₆S [M+H]⁺: 416.1145, found: 416.1151.

Synthesis of 63:

To the 25 mL Schlenk tube with 23 (50 mg, 0.12 mmol, 1.0 equiv.) was added sodium benzo[d]thiazole-2-thiolate (24 mg, 0.13 mmol, 1.1 equiv.). The reaction mixture was dissolved in anhydrous DMF (2.5 mL) and was then evacuated and backfilled with Ar for 3 times. The mixture was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (10 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product 63 in 60% yield (31 mg) as a yellow solid.

Ethyl 4-(benzo[*d*]thiazol-2-ylthio)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (63)

¹**H NMR** (600 MHz, Acetone-*d*6) δ 7.94 (d, J = 7.9 Hz, 1H), 7.83 (d, J = 8.1 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.36 (t, J = 7.4 Hz, 1H), 4.47 (d, J = 17.4 Hz, 1H), 4.37 (d, J = 16.9 Hz, 1H), 4.29 (dd, J = 17.2, 5.4 Hz, 2H), 4.26 – 4.20 (m, 2H), 4.11 (dd, J = 10.3, 2.6 Hz, 1H), 3.37 (s, 3H), 2.95 – 2.86 (m, 1H), 2.64 – 2.52 (m, 1H), 1.20 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (151 MHz, Acetone-*d*6) δ 168.2, 168.0, 167.0, 164.3 (t, J = 32.5 Hz), 153.8, 136.4, 127.0, 125.4, 122.3, 122.2, 117.1 (t, J = 250.3 Hz), 64.5, 64.2, 63.5, 47.0,

37.8 (t, J = 23.6 Hz), 14.0. ¹⁹F NMR (376 MHz, Acetone-*d6*) δ -102.7 (dt, J = 266.3, 15.7 Hz, 1F), -104.0 (ddd, J = 266.4, 18.3, 14.5 Hz, 1F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 11.18. HRMS (ESI) calcd. for C₁₈H₂₀[¹¹B]F₂N₂O₆S₂ [M+H]⁺: 473.0818, found: 473.0812.

Synthesis of 64:11

To the 25 mL Schlenk tube with **23** (50 mg, 0.12 mmol, 1.0 equiv.) was added TTMSS (57.43 mg, 0.23 mmol, 2.0 equiv.). The reaction mixture was dissolved in PhMe (2.0 mL) and was then evacuated and backfilled with Ar for 3 times. The mixture was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product **64** in 65% yield (23 mg) as a white solid.

Ethyl 2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (64)

¹**H** NMR (600 MHz, DMSO-*d6*) δ 4.30 (q, J = 7.1 Hz, 2H), 4.22 (d, J = 17.0 Hz, 2H), 4.04 (d, J = 17.0 Hz, 2H), 2.87 (s, 3H), 2.10 – 1.92 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 0.64 – 0.58 (m, 2H). ¹³C NMR (151 MHz, DMSO-*d6*) δ 168.8 (2C), 163.7 (t, J = 33.0 Hz), 117.3 (t, J = 248.5 Hz), 62.8, 61.9 (2C), 45.6, 29.4 (t, J = 23.6 Hz), 13.8, 6.8 (α-C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -105.9 (t, J = 17.2 Hz, 2F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 12.46. HRMS (ESI) calcd. for C₁₁H₁₇[¹¹B]F₂NO₆ [M+H]⁺: 308.1112, found: 308.1113.

Synthesis of 65:

To a stirred solution of the **23** (163 mg, 0.38 mmol, 1.0 equiv.) in methanol (4.5 mL) was added aq KHF₂ solution (276 μ L, 1.24 mmol, 3.3 equiv, 4.5 M solution) and the mixture was stirred at 70 °C for 12 h. The solvent was removed under reduced pressure

and the crude residue was thoroughly dried under high vacuum. The solid was extracted with hot acetone and filtered and the solvent evaporated. The crude product was recrystallized (acetone/hexanes) to yield the corresponding potassium trifluoroborate derivative **65** as a brown solid (108 mg, 75%).

Ethyl 2,2-difluoro-4-iodo-4-(trifluoro-λ4-boraneyl)butanoate, potassium salt (65)

¹**H NMR** (500 MHz, Acetone-*d6*) δ 4.26 (q, J = 7.1 Hz, 2H), 2.90 (d, J = 4.5 Hz, 1H), 2.73 – 2.60 (m, 1H), 2.58 – 2.41 (m, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, Acetone-*d6*) δ 164.8 (t, J = 32.9 Hz), 117.8 (t, J = 249.0 Hz), 63.2, 41.1 (t, J = 23.4 Hz), 14.0. ¹⁹**F NMR** (471 MHz, Acetone-*d6*) δ -101.9 (dddd, J = 148.8, 28.4, 15.7, 12.3 Hz, 1F), -107.3 (m, 1F), -149.7 (s, 3F). ¹¹**B NMR** (160 MHz, Acetone-*d6*) δ 3.33 (t, J = 40.3 Hz). **HRMS (ESI)** calcd. for C₆H₈[¹¹B]F₅IO₂ [M-K]⁻: 344.9588, found: 344.9585.

Synthesis of 66:

To the 25 mL Schlenk tube with **23** (80.81 mg, 0.19 mmol, 1.0 equiv.) was added $BnNH_2$ (30 mg, 0.28 mmol, 1.5 equiv.). The reaction mixture was dissolved in anhydrous DMF (2.5 mL) and was then evacuated and backfilled with Ar for 3 times. The mixture was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (10 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product **66** in 78% yield (44 mg) as a yellow solid.

Ethyl (*E*)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)but-3-enoate (66)

¹**H NMR** (500 MHz, Acetone-*d6*) δ 6.39 (dt, J = 18.0, 2.3 Hz, 1H), 6.25 (dt, J = 18.0, 10.6 Hz, 1H), 4.35 – 4.29 (m, 4H), 4.15 (d, J = 17.0 Hz, 2H), 3.07 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (126 MHz, Acetone-*d6*) δ 168.8 (2C), 164.3 (t, J = 34.2 Hz), 136.6 (α-C of boron), 134.0 (t, J = 25.5 Hz), 113.5 (t, J = 246.9 Hz), 63.7, 62.8 (2C), 47.7, 14.2. ¹⁹**F NMR** (471 MHz, Acetone-*d6*) δ -104.9 (d, J = 10.0 Hz, 2F). ¹¹**B NMR** (160 MHz, Acetone-*d6*) δ 10.42. **HRMS (ESI)** calcd. for C₁₁H₁₃[¹¹B]F₂NO₆ [M-H]⁻:

304.0809, found: 304.0810.

Synthesis of 67:12

To the 25 mL Schlenk tube with 5 (177.7 mg, 0.41 mmol, 1.0 equiv.) were added pinacol (53.35 mg, 0.45 mmol, 1.1 equiv.) and K₃PO₄ (261.33 mg, 1.23 mmol, 3.0 equiv.). The reaction mixture was dissolved in THF (1.0 M), DCM (0.1 M) and H₂O (0.2 M) and then the mixture was vigorously stirred at 60 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (10 mL) and extracted with DCM (20 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product 67 in 81% yield (107 mg) as a yellow solid.

3,3-difluoro-1-phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrrolidin-2-one (67)

¹**H** NMR (500 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.39 (dd, J = 10.8, 5.2 Hz, 2H), 7.22 (t, J = 7.4 Hz, 1H), 3.90 (t, J = 7.5 Hz, 1H), 2.74 (tdd, J = 14.7, 10.4, 7.9 Hz, 1H), 2.57 – 2.43 (m, 1H), 1.14 (s, 6H), 1.04 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6 (t, J = 31.5 Hz), 138.4, 129.1 (2C), 126.4, 121.7 (2C), 117.9 (t, J = 250.3 Hz), 85.1 (2C), 126.4, 121.7 (2C), 117.9 (t, J = 250.3 Hz), 126.4 (2C), 126.4 (2C),40.6 (α -C of boron), 31.9 (t, J = 22.7 Hz), 24.7 (2C), 24.3 (2C). ¹⁹F NMR (471 MHz, CDCl₃) δ -105.4 (ddd, J = 266.2, 15.6, 10.6 Hz, 1F), -106.0 (ddd, J = 266.2, 18.1, 15.1 Hz, 1F). ¹¹B NMR (160 MHz, CDCl₃) δ 32.11. HRMS (ESI) calcd. for C₁₆H₂₁^{[11}B]F₂NO₃ [M+H]⁺: 324.1577, found: 324.1584.

Synthesis of 68:

68. 45%

To the 25 mL round bottom flask with 5 (253 mg, 0.58 mmol, 1.0 equiv.) was added

 NaN_3 (56.98 mg, 0.88 mmol, 1.5 equiv.). The reaction mixture was dissolved in anhydrous DMF (4.0 mL) and was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (10 mL) and extracted with EtOAc (30 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product **68** in 45% yield (104 mg) as a yellow oil.

4-azido-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-phenylbutanamide (68)

¹**H NMR** (500 MHz, DMSO-*d*6) δ 10.61 (s, 1H), 7.72 – 7.67 (m, 2H), 7.40 – 7.33 (m, 2H), 7.16 (t, J = 7.4 Hz, 1H), 4.39 (d, J = 17.3 Hz, 1H), 4.29 (d, J = 17.1 Hz, 1H), 4.16 (d, J = 17.1 Hz, 1H), 4.11 (d, J = 17.2 Hz, 1H), 3.29 – 3.25 (m, 1H), 3.04 (s, 3H), 2.52 – 2.45 (m, 1H), 2.43 (dd, J = 15.4, 4.4 Hz, 1H). ¹³**C NMR** (126 MHz, DMSO-*d*6) δ 168.5, 168.2, 161.9 (t, J = 29.2 Hz), 137.3, 128.7 (2C), 124.9, 121.0 (2C), 117.5 (t, J = 252.9 Hz), 62.9, 62.6, 46.1, 45.3 (α-C of boron), 34.0 (t, J = 23.5 Hz). ¹⁹**F NMR** (471 MHz, DMSO-*d*6) δ -103.2 (dt, J = 32.1, 16.3 Hz, 1F), -105.1 (dt, J = 250.0, 18.5 Hz, 1F). ¹¹**B NMR** (160 MHz, DMSO-*d*6) δ 10.55. **HRMS** (**ESI**) calcd. for $C_{15}H_{16}[^{11}B]F_2N_5NaO_5$ [M+Na]⁺: 418.1105, found: 418.1104.

Synthesis of 69 and 70:¹³

To the 25 mL Schlenk tube with **5** (250 mg, 0.58 mmol, 1.0 equiv.) was added BnNH₂ (92.8 mg, 0.87 mmol, 1.5 equiv.). The reaction mixture was dissolved in anhydrous DMF (3.5 mL) and was then evacuated and backfilled with Ar for 3 times. The mixture was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (10 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the eliminated product. Immediately, to the 25 mL Schlenk tube were added Pd(OAc)₂ (5 mol %), SPhos (10 mol %), eliminated MIDA boronate (1.0 equiv.) and aryl iodide (1.2 equiv.). THF (5 mL) and 3.0 M aqueous K₃PO₄ (7.5 equiv of base) were introduced to dissolve the mixture above. Then the Schlenk tube was evacuated and backfilled with Ar for 3 times and the reaction mixture was vigorously stirred at 60 °C for 12 h. After the reaction was complete, the reaction with water

(5 mL) and extracted with EtOAc (15 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product **69** in 22% yield (35 mg) and **70** in 20% yield (36 mg) as a yellow solid respectively over two steps.

(E)-2,2-difluoro-N,4-diphenylbut-3-enamide (69)

¹**H NMR** (500 MHz, DMSO-*d6*) δ 10.63 (s, 1H), 7.71 (d, J = 7.7 Hz, 2H), 7.67 – 7.63 (m, 2H), 7.46 – 7.35 (m, 5H), 7.15 (dd, J = 16.7, 9.3 Hz, 2H), 6.78 – 6.68 (m, 1H). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 161.6 (t, J = 31.3 Hz), 137.3, 136.1 (t, J = 9.5 Hz), 133.9, 129.6, 128.9 (2C), 128.8 (2C), 127.6 (2C), 124.9, 120.8 (2C), 119.7 (t, J = 25.2 Hz), 114.4 (t, J = 249.0 Hz). ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -100.3 (d, J = 10.8 Hz, 2F). **HRMS (ESI)** calcd. for C₁₆H₁₂F₂NO [M-H]⁻: 272.0892, found: 272.0897.

(E)-4-(4-acetylphenyl)-2,2-difluoro-N-phenylbut-3-enamide (70)

¹**H NMR** (500 MHz, DMSO-*d6*) δ 10.67 (s, 1H), 7.98 (d, J = 8.4 Hz, 2H), 7.81 (d, J = 8.4 Hz, 2H), 7.72 – 7.69 (m, 2H), 7.38 (dd, J = 10.8, 5.1 Hz, 2H), 7.24 (d, J = 16.3 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 6.90 (dt, J = 16.3, 11.4 Hz, 1H), 2.59 (s, 3H). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 197.4, 161.4 (t, J = 31.1 Hz), 138.3, 137.2 (2C), 135.1 (t, J = 9.5 Hz), 128.8 (2C), 128.7 (2C), 127.9 (2C), 124.9, 122.3 (t, J = 25.2 Hz), 120.9 (2C), 114.2 (t, J = 249.5 Hz), 26.8. ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ -100.7 (d, J = 11.2 Hz, 2F). **HRMS (ESI)** calcd. for C₁₈H₁₄F₂NO₂ [M-H]⁻: 314.0998, found: 314.1004.

Synthesis of 71:¹¹

To the 25 mL Schlenk tube with **29** (229 mg, 0.46 mmol, 1.0 equiv.) was added TTMSS (230.52 mg, 0.93 mmol, 2.0 equiv.). The reaction mixture was dissolved in DME (4.0 mL) and was then evacuated and backfilled with Ar for 3 times. The mixture was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel

with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product 71 in 85% yield (145 mg) as a yellow solid.

N-benzyl-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2vl)butanamide (71)

¹**H NMR** (500 MHz, DMSO-*d6*) δ 9.24 (t, *J* = 6.0 Hz, 1H), 7.32 (dd, *J* = 9.7, 5.2 Hz, 2H), 7.28 - 7.23 (m, 3H), 4.34 (d, J = 6.1 Hz, 2H), 4.21 (d, J = 17.1 Hz, 2H), 4.03 (d, J = 17.0 Hz, 2H), 2.84 (s, 3H), 2.06 – 1.92 (m, 2H), 0.64 – 0.56 (m, 2H). ¹³C NMR (126 MHz, DMSO-d6) δ 168.8 (2C), 163.9 (t, J = 29.5 Hz), 138.6, 128.4 (2C), 127.2 (2C), 127.0, 119.0 (t, J = 250.5 Hz), 61.9 (2C), 45.6, 42.1, 29.3 (t, J = 24.2 Hz), 7.1 (α -C of boron). ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -105.9 (t, *J* = 17.1 Hz, 2F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 12.84. **HRMS (ESI)** calcd. for C₁₆H₂₀[¹¹B]F₂N₂O₅ [M+H]⁺: 369.1428, found: 369.1429.

Synthesis of 72:14

72,88%

To a stirred solution of 71 (143.5 mg, 0.39 mmol, 1.0 equiv.) in THF (4 mL) at 0 °C was successively added 1.46 mL of NaOH (2.0 M, 7.5 equiv.) and 0.97 mL of 30% H₂O₂ dropwise. The reaction was stirred 10 minutes at 0 °C, followed by 1 hour at room temperature. Upon the completion of the reaction as determined by TLC, the mixture was cooled to 0 °C and saturated aqueous sodium thiosulfate solution (5.84 mL) was added dropwise. The aqueous layer was extracted with EtOAc (3 x 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by column chromatography on silica gel to provide 72 as a colorless oil (78 mg, 88%).

N-benzyl-2,2-difluoro-4-hydroxybutanamide (72)

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.32 (m, 2H), 7.31 – 7.25 (m, 3H), 6.99 (s, 1H), 4.47 (d, J = 5.8 Hz, 2H), 3.81 (t, J = 5.8 Hz, 2H), 2.81 (s, 1H), 2.35 (tt, J = 16.3, 5.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.8 (t, J = 29.0 Hz), 136.7, 129.0 (2C), 128.1, 127.9 (2C), 117.6 (t, J = 252.6 Hz), 56.3 (t, J = 6.2 Hz), 43.7, 37.4 (t, J = 22.6 Hz). ¹⁹F **NMR** (471 MHz, CDCl₃) δ -103.6 (t, J = 16.3 Hz, 2F). **HRMS (ESI)** calcd. for C₁₁H₁₄F₂NO₂ [M+H]⁺: 230.0987, found: 230.0991.

Synthesis of 73:

To the 25 mL round bottom flask with **29** (147 mg, 0.3 mmol, 1.0 equiv.) was added PhCOONa (47.17 mg, 0.33 mmol, 1.1 equiv.). The reaction mixture was dissolved in anhydrous DMF (2.5 mL) and was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (10 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product **73** in 42% yield (61 mg) as a light yellow oil.

4-(benzylamino)-3,3-difluoro-1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-4-oxobutyl benzoate (73)

¹**H NMR** (500 MHz, DMSO-*d6*) δ 9.20 (t, J = 6.0 Hz, 1H), 7.92 – 7.88 (m, 2H), 7.67 – 7.62 (m, 1H), 7.52 (t, J = 7.7 Hz, 2H), 7.33 – 7.28 (m, 2H), 7.21 (tt, J = 14.9, 7.6 Hz, 3H), 5.34 (dd, J = 11.0, 1.4 Hz, 1H), 4.39 (d, J = 17.3 Hz, 1H), 4.27 (d, J = 17.2 Hz, 1H), 4.21 (dd, J = 15.0, 6.2 Hz, 1H), 4.14 – 4.10 (m, 1H), 4.08 (d, J = 17.2 Hz, 1H), 3.97 (d, J = 17.2 Hz, 1H), 2.98 (s, 3H), 2.65 – 2.54 (m, 1H), 2.48 – 2.34 (m, 1H). ¹³**C NMR** (126 MHz, DMSO-*d6*) δ 168.6, 168.3, 165.3, 163.5 (t, J = 28.8 Hz), 138.3, 133.1, 130.1, 129.2 (2C), 128.6 (2C), 128.3 (2C), 127.2 (2C), 126.9, 117.7 (t, J = 252.2 Hz), 62.7, 62.4, 59.6 (α-C of boron), 46.1, 42.1, 34.8 (t, J = 23.5 Hz). ¹⁹**F NMR** (471 MHz, DMSO-*d6*) δ 10.34. **HRMS (ESI)** calcd. for C₂₃H₂₄[¹¹B]F₂N₂O₇ [M+H]⁺: 489.1639, found: 489.1644.

Synthesis of 74:

74, 77%

To the 25 mL round bottom flask with **29** (140 mg, 0.28 mmol, 1.0 equiv.) were added BnSH (38.72 mg, 0.31 mmol, 1.1 equiv.) and Et_3N (31.54 mg, 0.31 mmol, 1.1 equiv.). The reaction mixture was dissolved in anhydrous DMF (2.5 mL) and was vigorously stirred at 85 °C for 12 h. After the reaction was complete, the reaction mixture was quenched with water (5 mL) and extracted with EtOAc (10 mL). The combined organic layer was concentrated in vacuo and the residue was purified by flash chromatography on silica gel with a mixture of Petroleum ether and EtOAc as eluent to afford the pure product **74** in 77% yield (107 mg) as a light yellow oil.

N-benzyl-4-(benzylthio)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (74)

29

¹**H** NMR (500 MHz, DMSO-*d6*) δ 9.35 (t, J = 6.0 Hz, 1H), 7.30 (ddd, J = 8.6, 4.8, 4.3 Hz, 5H), 7.28 – 7.20 (m, 5H), 4.41 – 4.31 (m, 3H), 4.19 (d, J = 16.9 Hz, 1H), 4.00 (d, J = 17.3 Hz, 1H), 3.92 (d, J = 16.9 Hz, 1H), 3.82 (d, J = 12.0 Hz, 1H), 3.72 (d, J = 12.0 Hz, 1H), 2.71 (s, 3H), 2.69 – 2.55 (m, 1H), 2.47 – 2.30 (m, 1H), 2.24 (dd, J = 8.9, 3.2 Hz, 1H). ¹³C NMR (126 MHz, DMSO-*d6*) δ 168.5, 168.2, 163.9 (t, J = 28.9 Hz), 138.5, 138.1, 129.1 (2C), 128.4 (4C), 127.3 (2C), 127.0, 126.9, 118.1 (t, J = 251.9 Hz), 63.2, 63.1, 45.2, 42.3, 37.1 (t, J = 23.2 Hz), 36.0. ¹⁹F NMR (471 MHz, DMSO-*d6*) δ -103.2 (t, J = 17.8 Hz, 2F). ¹¹B NMR (160 MHz, DMSO-*d6*) δ 11.80. HRMS (ESI) calcd. for C₂₃H₂₆[¹¹B]F₂N₂O₅S [M+H]⁺: 491.1618, found: 491.1623.

Synthesis of 75:15,16

To the 50 mL round bottom flask with **12** (349 mg, 0.69 mmol, 1.0 equiv.) was added POCl₃ (1.06 g, 6.91 mmol, 10.0 equiv.). The reaction mixture was dissolved in anhydrous MeCN (5.0 mL) and was then evacuated and backfilled with Ar for 3 times. The reaction mixture was vigorously stirred at 110 °C for 12 h. After the reaction was complete, the solvent was removed under vacuum. The crude product was directly purified by preparative HPLC with a mixture of MeCN and water (0.1% HCl) as eluent

to afford the pure product 75 in 53% yield (149 mg) as a green solid.

(*S*)-1,1-difluoro-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-2,3,5,6tetrahydro-1*H*-[1,3]dioxolo[4,5-*g*]pyrrolo[2,1-*a*]isoquinolin-4-ium (75)

¹**H** NMR (500 MHz, DMSO-*d6*) δ 7.35 (s, 1H), 7.29 (s, 1H), 6.29 (s, 2H), 4.68 (s, 1H), 4.45 (d, J = 17.0 Hz, 2H), 4.34 (d, J = 16.8 Hz, 2H), 4.18 (d, J = 29.8 Hz, 3H), 3.40 – 3.28 (m, 1H), 3.16 (d, J = 18.5 Hz, 1H), 3.11 (s, 3H). ¹³**C** NMR (126 MHz, DMSO-*d6*) δ 168.3, 168.0, 160.9 (t, J = 32.3 Hz), 155.9, 147.6, 138.0, 126.6 (t, J = 250.1 Hz), 112.6, 109.9, 106.7, 103.6, 63.3, 63.0, 59.3 (α-C of boron), 47.5, 46.5, 33.6 (t, J = 22.5 Hz), 25.5. ¹⁹**F** NMR (471 MHz, DMSO-*d6*) δ -84.3 (dt, J = 273.5, 20.6 Hz, 1F), -88.0 (dd, J = 272.6, 17.4 Hz, 1F). ¹¹**B** NMR (160 MHz, DMSO-*d6*) δ 19.99, 9.76. HRMS (ESI) calcd. for C₁₈H₁₈[¹¹B]F₂N₂O₆ [M-C1]⁺: 407.1220, found: 407.1219.

6. Mechanistic studies Radical inhibition experiment

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), ICF₂COOEt (136.63 mg, 0.55 mmol, 2.0 equiv.), PdCl₂(dppf)·DCM (22.15 mg, 0.027 mmol, 10 mol %), BINAP (17.02 mg, 0.027 mmol, 10 mol %), K₂CO₃ (75.53 mg, 0.55 mmol, 2.0 equiv.), TEMPO (170.79 mg, 1.09 mmol, 4.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. After the solution was cooled to room temperature, the crude reaction mixture was diluted with EA (5 mL) and washed with saturated aqueous NaCl (3 x 5 mL). The aqueous layer was extracted with EA (3 x 5 mL) and the combined organic layer was dried over anhydrous Na₂SO₄. Then, the solvent was removed under vacuo, and the residue was purified by a silica gel column chromatography with an appropriate solvent as eluent to give the mixture of TEMPO-CF₂COOEt adduct (**76**) and TEMPO.

Ethyl 2,2-difluoro-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)acetate (76)

Known compound.¹⁷

¹⁹F NMR (471 MHz, CDCl₃) δ -71.4 (s, 2F). HRMS (ESI) calcd. for C₁₃H₂₄F₂NO₃ [M+H]⁺: 280.1719, found: 280.1718.

Radical clock experiment

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), ICF₂COOEt (136.63 mg, 0.55 mmol, 2.0 equiv.), PdCl₂(dppf)•DCM (22.15 mg, 0.027 mmol, 10 mol %), BINAP (17.02 mg, 0.027 mmol, 10 mol %), K₂CO₃ (75.53 mg, 0.55 mmol, 2.0 equiv.), 1-phenylvinylcyclopropane (39.41 mg, 0.27 mmol, 1.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. After the solution was cooled to room temperature, the crude reaction mixture was diluted with EA (5 mL) and washed with saturated aqueous NaCl (3 x 5 mL). The aqueous layer was extracted with EA (3 x 5 mL) and the combined organic layer was dried over anhydrous Na₂SO₄. Then, the solvent was removed under vacuo, and the residue was purified by a silica gel column chromatography with an appropriate solvent as eluent to give the pure product (77) in 78% yield (84 mg) with an isomerism ratio of 5:1 as a colorless oil.

Known compound.¹⁸

¹**H NMR** (500 MHz, CDCl₃) δ 7.36 – 7.30 (m, 5H), 7.29 – 7.26 (m, 5H*), 5.93 (t, J = 7.3 Hz, 1H*), 5.85 (t, J = 7.3 Hz, 1H), 4.03 (q, J = 7.2 Hz, 2H*), 3.89 (q, J = 7.2 Hz, 2H), 3.34 (t, J = 15.7 Hz, 2H), 3.24 (t, J = 7.0 Hz, 2H), 3.17 (t, J = 15.3 Hz, 2H*), 3.08 (t, J = 7.0 Hz, 2H*), 2.86 (q, J = 7.1 Hz, 2H), 2.74 (q, J = 6.9 Hz, 2H*), 1.21 (t, J = 7.2 Hz, 3H*), 1.15 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 163.8 (t, J = 32.5 Hz), 141.8, 134.5, 132.4 (t, J = 4.0 Hz), 128.6* (2C), 128.5 (2C), 127.7, 127.6*, 127.0 (2C), 115.0 (t, J = 252.5 Hz), 62.93, 62.86*, 35.9 (t, J = 24.6 Hz), 33.1, 32.9*, 14.0, 13.8*, 4.8, 4.4*. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -103.2 (t, J = 15.7 Hz, 2F*). **HRMS (ESI)** calcd. for C₁₅H₁₈F₂IO₂ [M+H]⁺: 395.0314, found: 395.0310.

Comparative experiment

To an oven-dried 25 mL of Schlenk tube were added vinyl Bpin (50 mg, 0.32 mmol, 1.0 equiv.), BrCF₂COOEt (131.79 mg, 0.65 mmol, 2.0 equiv.), PdCl₂(dppf)·DCM (26.32 mg, 0.032 mmol, 10 mol %), BINAP (20.22 mg, 0.032 mmol, 10 mol %), K₂CO₃ (89.73 mg, 0.65 mmol, 2.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. No target product **78** was detected by LC-MS.

To an oven-dried 25 mL of Schlenk tube were added styrene (50 mg, 0.48 mmol, 1.0 equiv.), BrCF₂COOEt (194.89 mg, 0.96 mmol, 2.0 equiv.), PdCl₂(dppf)·DCM (38.91 mg, 0.048 mmol, 10 mol %), BINAP (29.89 mg, 0.048 mmol, 10 mol %), K₂CO₃ (132.7 mg, 0.96 mmol, 2.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. No target product **79** was detected by LC-MS.

Control experiment

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), BrCF₂COOEt (110.94 mg, 0.55 mmol, 2.0 equiv.), BINAP (17.02 mg, 0.027 mmol, 10 mol %), K_2CO_3 (75.53 mg, 0.55 mmol, 2.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. No target product was detected by LC-MS.

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), BrCF₂COOEt (110.94 mg, 0.55 mmol, 2.0 equiv.), NiBr₂•DME (8.43 mg, 0.027 mmol, 10 mol %), 4,4'-diMeO-bpy (5.91 mg, 0.027 mmol, 10 mol %), K₂CO₃ (75.53 mg, 0.55 mmol, 2.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled

with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. After the solution was cooled to room temperature, fluorobenzene ($20 \mu L$, 0.2131 mmol) was added. The yield was determined by ¹⁹F NMR.

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), BrCF₂COOEt (110.94 mg, 0.55 mmol, 2.0 equiv.), AIBN (5.38 mg, 0.033 mmol, 12 mol %) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. After the solution was cooled to room temperature, fluorobenzene (20 μ L, 0.2131 mmol) was added. The yield was determined by ¹⁹F NMR.

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), BrCF₂COOEt (110.94 mg, 0.55 mmol, 2.0 equiv.), NiBr₂•DME (8.43 mg, 0.027 mmol, 10 mol %), 4,4'-diMeO-bpy (5.91 mg, 0.027 mmol, 10 mol %), K₂CO₃ (75.53 mg, 0.55 mmol, 2.0 equiv.), TEMPO (170.79 mg, 1.09 mmol, 4.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. No target product **76** and **1** were detected by LC-MS.

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), BrCF₂COOEt (110.94 mg, 0.55 mmol, 2.0 equiv.), AIBN (5.38 mg, 0.033 mmol, 12 mol %), TEMPO (170.79 mg, 1.09 mmol, 4.0 equiv.) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. No target product **76** and **1** were detected by LC-MS.

To an oven-dried 25 mL of Schlenk tube were added vinyl B(MIDA) (50 mg, 0.27 mmol, 1.0 equiv.), BrCF₂COOEt (110.94 mg, 0.55 mmol, 2.0 equiv.), PdCl₂(dppf)·DCM (22.15 mg, 0.027 mmol, 10 mol %), BINAP (17.02 mg, 0.027 mmol, 10 mol %) sequentially, ethyl acetate (EtOAc, 2.0 mL) was then added to dissolve the complex above. The mixture was then evacuated and backfilled with Ar for 3 times. The Schlenk tube was screw capped and stirred at 85 °C for 12 h. After the solution was cooled to room temperature, fluorobenzene (20 μ L, 0.2131 mmol) was added. The yield was determined by ¹⁹F NMR.

7. X-ray crystallographic data The single crystal structure of 23 (CCDC 2236620)

Bond precision:	C-C =	0.0104 A	Wavelength=0.	71073	
Cell:	a=51.2	208(5)	b=7.1184(7)		c=31.560(4)
	alpha=	=90	beta=126.597(7	7)	gamma=90
Temperature:	170 K				
		Calculated		Reporte	ed
Volume		9236.2(19)		9236.00	(18)
Space group		C 2/c		C 1 2/c	1
Hall group		-C 2yc		-C 2yc	
Moiety formula		C11 H15 B H	F2 I N O6	C11 H1	5 B F2 I N O6
Sum formula		C11 H15 B H	F2 I N O6	C11 H1	5 B F2 I N O6
Mr		432.95		432.95	
Dx,g cm-3		1.868		1.868	
Z		24		24	
Mu (mm-1)		2.128		2.128	
F000		5088.0		5088.0	
F000'		5079.72			
h,k,lmax		60,8,37		60,8,37	,
Nref		8235		7974	
Tmin,Tmax		0.743,0.938		0.015,0	.033
Tmin'		0.342			
Correction method	l= #	Tmin=0.015		Tmax=	0.033
Reported T Limits:					
AbsCorr = MULTI-					
SCAN					
Data complete	ness=	Theta(max)=	= 25.084		
0.968					
R(reflections)=		wR2(reflection	ons)=		
0.0421(5860)		0.0963(7974	4)		
S = 1.025		Npar= 601			

8. DFT calculations

Computational Studies

Density functional theory (DFT) calculations were performed with Gaussian16¹⁹. The B3LYP functional²⁰ with Grimme's D3BJ dispersion correction and a mixed basis set 6-31G(d)-SDD(Pd)²¹ were employed for geometry optimizations. All geometry optimizations were completed by using the continuum method PCM²² in the solution of ethyl acetate. Frequency calculations were performed to obtain thermodynamic energy corrections and to characterize the stationary points on the potential energy surface at the same level of theory as the optimizations. Intrinsic reaction coordinate (IRC) calculations were conducted to verify that transition states (TS) connected to the corresponding reactants and products. Based on the optimized geometries, single-point calculations were performed with the M06 functional²³ including Grimme D3 dispersion correction with zero-damping and the basis set $6-311++G(d,p)^{21c,24}$ for main elements and SDD for Pd. The energies showed in this work represent M06-D3/6-311++G(d,p)-calculated single-point energies with B3LYP-D3(BJ)/6-31G(d)calculated thermodynamic corrections, briefly denoted as ΔG for the sake of clarity. The molecular structures in the Supporting Information were drawn using CYLview²⁵. The type of interaction between Br and B was analyzed by IGM²⁶ using Multiwfn²⁷ and visualized by VMD^{28} .

Table S5. Energy values for the reported species and imaginary frequencies forthe Pathway1 and Pathway2

Zero-point energy, energy corrections, enthalpy corrections and free energy corrections of the structures calculated at B3LYP-D3(BJ)/6-31G(d) SDD, single point energies at the M06-D3/6-311++G(d,p) SDD//B3LYP-D3(BJ)/6-31G(d) SDD level of theory and imaginary frequencies of the transition states.

structures	ZPE	corr. to E	corr. to H	corr. to G	SP	IF	
	(Hartree)	(Hartree)	(Hartree)	(Hartree)	(Hartree)		
S-1	0.093162	0.103061	0.104005	0.055415	-3079.49308622	—	
C1	0.625032	0.663816	0.664761	0.552542	-2505.73565155	—	
C2	0.626732	0.667741	0.668686	0.548971	-5079.81731114	—	
INT1	0.090831	0.099434	0.100378	0.056098	-505.417555359	—	
B-1	0.180320	0.192022	0.192967	0.142626	-653.181674979	—	
P1-TS1	0.273020	0.293654	0.294599	0.222732	-1158.61022798	-328.72	
P1-INT2	0.275524	0.295858	0.296802	0.225138	-1158.65873729	_	
P1-INT3	0.907480	0.968833	0.969777	0.810029	-6238.50050757		
\mathbf{K}^+	0.000000	0.001416	0.002360	-0.015176	-599.836728198		
P1-INT4	0.908480	0.972020	0.972964	0.807378	-6838.35896245		
P1-TS2	0.905314	0.968572	0.969516	0.805708	-6838.32869441	-322.79	
1	0.279369	0.301201	0.302145	0.226138	-3732.73238517	_	
P2-TS1	0.271846	0.292838	0.293782	0.219498	-1158.60126385	-357.89	
P2-INT2	0.273111	0.294118	0.295062	0.221025	-1158.64373521	_	
P2-INT3	0.907515	0.968705	0.969649	0.810344	-6238.50292927		
P2-INT4	0.908481	0.971834	0.972779	0.808478	-6838.35489822	_	
P2-TS2	0.905866	0.969889	0.970833	0.801750	-6838.31490383	-339.76	
C3	0.279663	0.301211	0.302156	0.227888	-3732.73300239		

Table S6. Energy values for the reported species and imaginary frequencies forthe Pathway3 and Pathway4

Zero-point energy, energy corrections, enthalpy corrections and free energy corrections of the structures calculated at B3LYP-D3(BJ)/6-31G(d) SDD, single point energies at the M06-D3/6-311++G(d,p) SDD//B3LYP-D3(BJ)/6-31G(d) SDD level of theory and imaginary frequencies of the transition states.

atmiaturaa	ZPE	corr. to E	corr. to H	o H corr. to G SP		ш
structures	(Hartree)	(Hartree)	(Hartree)	(Hartree)	(Hartree)	ІГ
S-1	0.093162	0.103061	0.104005	0.055415	-3079.49308622	_
C1	0.625032	0.663816	0.664761	0.552542	-2505.73565155	—
C2	0.626732	0.667741	0.668686	0.548971	-5079.81731114	_
INT1	0.090831	0.099434	0.100378	0.056098	-505.417555359	_
B-4	0.243359	0.258098	0.259042	0.200710	-769.830050544	
P3-TS1	0.335512	0.359282	0.360226	0.281345	-1275.24690321	-282.24
P3-INT2	0.336920	0.360763	0.361707	0.281227	-1275.29508330	_
P3-TS2a	0.335120	0.358832	0.359776	0.279576	-1275.27484331	-635.10
P3-INT2a	0.335408	0.359678	0.360622	0.280838	-1275.29350148	—
P3-INT3	0.969017	1.033914	1.034858	0.864900	-6355.14052127	_
P3-INT4	0.970683	1.037477	1.038421	0.865088	-6954.99962672	—
P3-TS2	0.968336	1.035313	1.036257	0.862165	-6954.97176618	-317.38
\mathbf{K}^+	0.000000	0.001416	0.002360	-0.015176	-599.836728198	—
56a	0.341558	0.366773	0.367717	0.284542	-3849.38359596	—
P4-TS1	0.335035	0.359075	0.360019	0.278439	-1275.24975462	-398.31
P4-INT2	0.337442	0.360319	0.361263	0.283241	-1275.29093225	
P4-INT3	0.970400	1.034472	1.035416	0.872395	-6355.12552484	—
P4-INT4	0.971746	1.037891	1.038835	0.870676	-6954.98527661	
P4-TS2	0.968680	1.035585	1.036529	0.864171	-6954.95741039	-275.11
56b	0.341937	0.366740	0.367684	0.285437	-3849.37262202	—

Figure S1. Calculations for the generation of radical INT1.

Figure S2. Calculations for the direct reductive elimination without K⁺.

Figure S3. The type of interaction between Br and B of **P1-TS2** analyzed by IGM using Multiwfn.

Figure S4. Free-energy profile for the formation of **56a** and **56b**, calculated at the M06-D3/6-311++G(d,p) SDD//B3LYP-D3(BJ)/6-31G(d) SDD level of theory. The SDD basis set was used for Pd. Free energies are given in kcal/mol.

DFT calculations were also carried out for the reaction between S-1 and a substrate containing a cyclopropyl group, **B-4**, to explain the selectivity different from that in Pathway1 and Pathway2 in the model reaction (Figure S4). The intermediates P3-INT2 and P4-INT2 could be formed via similar process to that depicted in Figure 1. For brief, the free radical intermediate P3-INT2 in the main reaction was selected as the zeropoint of the potential energy surface (0.0 kcal/mol). However, P3-INT2 was unstable and quickly underwent a cyclopropyl ring opening and electronic rearrangement via P3-TS2a to form P3-INT2a with a free energy barrier of 11.6 kcal/mol. The following reaction also exhibited similarity to that described in Figure 1. C2 and K⁺ bound to the free radical intermediates P3-INT2a and P4-INT2 successively to form P3-INT4 and P4-INT4, wherein the free energy barrier of the latter (14.4 kcal/mol) was 11.0 kcal/mol higher than the former (3.4 kcal/mol). The transfer of Br to the α -C of the boron atom via the corresponding transient states P3-TS2 and P4-TS2, with a free energy barrier of 15.6 kcal/mol and 13.4 kcal/mol respectively. Finally, the final products 56a and 56b were generated with the dissociation of K^+ and C1. It was observed that each intermediate and transition state of the side reaction exhibited higher energy compared to the corresponding structure of the main reaction, which indicated that Pathway3 was thermodynamic stable thus more favorable, however, pathway4 should be also feasible because of the reasonable free energy barriers, which might result in the possibility of the formation of 56b. Experimentally, the product of Pathway4 (56b) was indeed obtained.

Cartesian coordinates of the calculated structures S-1

J.	Y		
С	-0.72273200	0.70298900	0.38711200
F	-0.59415700	0.62813800	1.72122600
F	-1.49640800	1.74883500	0.08226400
С	0.64598900	0.83140200	-0.30798800
0	0.83808200	1.59956100	-1.21938300
0	1.50751600	-0.01428100	0.23546200
С	2.84314700	-0.03872200	-0.35500500
С	3.64257100	-1.08389800	0.39120900
Br	-1.59894400	-0.94855900	-0.25984100
Н	2.73573700	-0.27272300	-1.41736300
Н	3.27114000	0.96265600	-0.26149200
Н	4.65285500	-1.13247500	-0.02727000
Н	3.71959900	-0.83276400	1.45327700
Н	3.18015200	-2.07077400	0.29524700

C1

Р	-1.88699200	-0.48145900	-0.95118100
С	-1.23519700	-0.87450900	0.74951800
С	-3.42848300	-1.49116100	-1.05252700
С	-2.47302600	1.24912300	-0.81178600
С	-0.19197800	-0.14727700	1.33395000
С	-1.70581100	-2.04968900	1.39713500
С	-3.29203700	-2.78204300	-1.59089800
С	-4.70262900	-1.05491700	-0.66404000
С	-3.17510700	1.73088800	0.30231400
С	-2.16934100	2.12966900	-1.85913300

С	0.31072700	1.13586600	0.74178100	
С	0.37250700	-0.58140000	2.57748900	
С	-1.16040000	-2.48912100	2.57851500	
Н	-2.51258800	-2.61484300	0.94603900	
С	-4.39402200	-3.62832300	-1.70789400	
Н	-2.31009500	-3.11415700	-1.92115200	
С	-5.80993300	-1.89511100	-0.79909200	
Н	-4.83822000	-0.05602900	-0.26582400	
С	-3.58088100	3.06274300	0.35830200	
Н	-3.37387100	1.07157800	1.14148700	
С	-2.56928600	3.46479400	-1.80018800	
Н	-1.59540600	1.76166800	-2.70569300	
С	1.19998400	1.18398400	-0.33170800	
С	-0.17219500	2.36011500	1.32228800	
С	-0.11037200	-1.77405100	3.20245500	
С	1.41804100	0.13625400	3.22264200	
Н	-1.53714000	-3.39232500	3.05197300	
С	-5.65875200	-3.18451200	-1.31276400	
Н	-4.26865500	-4.62580300	-2.11962800	
Н	-6.79234900	-1.54023900	-0.49996400	
С	-3.27706900	3.93208400	-0.69152000	
Н	-4.10663900	3.42935000	1.23436200	
Н	-2.31717400	4.14125500	-2.61198900	
Р	1.83549500	-0.31025600	-1.23117900	
С	1.50390400	2.44532600	-0.92517100	
С	0.16648000	3.61371800	0.72254800	
С	-0.98596700	2.38034300	2.48899700	
С	0.46548700	-2.20538800	4.42626700	
Н	1.79979700	1.03670500	2.75600400	
С	1.94945000	-0.29921700	4.41504600	
Н	-6.52195400	-3.83599300	-1.41436500	
Н	-3.57990700	4.97378900	-0.63781900	
С	3.53487000	0.21818000	-1.73235300	
С	2.22605900	-1.57764300	0.05033700	
С	0.99302200	3.61637700	-0.42912000	
Н	2.15266400	2.47506900	-1.79376200	
С	-0.32338600	4.81868000	1.28865300	
Н	-1.25899300	1.44303800	2.95741600	
С	-1.42745500	3.56689400	3.03125900	
Н	0.09059600	-3.11808100	4.88248500	
С	1.47253000	-1.48390500	5.02530600	
Н	2.74771600	0.26548200	4.88831600	
С	4.35031400	1.08482300	-0.98594500	
С	4.04252700	-0.33046100	-2.91810800	

С	3.23070800	-1.41186400	1.01271500
С	1.48151600	-2.76600300	0.04477300
Н	1.23233700	4.56410500	-0.90470300
Н	-0.06311200	5.75920400	0.80973400
С	-1.10078400	4.80148700	2.42472900
Н	-2.04104400	3.55318700	3.92765300
Н	1.90425600	-1.82037900	5.96353000
С	5.64319300	1.38570300	-1.41371300
Н	3.96902100	1.53907000	-0.07677300
С	5.34018900	-0.03800300	-3.34279600
Н	3.41043300	-0.98904700	-3.50928700
С	3.46818800	-2.40333400	1.96337500
Н	3.82471300	-0.50501900	1.03036000
С	1.71800400	-3.75729400	0.99569000
Н	0.69771400	-2.88700000	-0.69843300
Н	-1.46371300	5.73026900	2.85533000
С	6.14263600	0.82198800	-2.59122800
Н	6.26143300	2.06029400	-0.82786900
Н	5.71926300	-0.47356300	-4.26301400
С	2.71016100	-3.57560500	1.96062300
Н	4.23556800	-2.25292300	2.71698200
Н	1.12124200	-4.66494200	0.98901100
Н	7.14957800	1.05815300	-2.92324400
Н	2.89084800	-4.34171100	2.70909400
Pd	-0.10069900	-0.79964500	-2.32633000

C2

Р	1.50141700	-0.75243900	0.30163900
С	0.02441900	-1.31244400	1.25085000
С	2.93198000	-1.29085100	1.30837500
С	1.53112400	-1.77127600	-1.20938700
С	-1.25640800	-1.26968000	0.69381000
С	0.17935000	-1.61873500	2.63068600
С	3.38206200	-0.42208300	2.31600100

С	3.59330900	-2.51004700	1.10971500
С	1.21634400	-3.13828400	-1.18930500
С	1.86122900	-1.15612400	-2.42457600
С	-1.46060800	-0.97550300	-0.76008700
С	-2.40022900	-1.52955300	1.51395100
С	-0.90935100	-1.85569400	3.43223000
Н	1.17396900	-1.65751000	3.05787100
С	4.45464500	-0.78119700	3.13034100
Н	2.89687500	0.54010100	2.44975300
С	4.67617900	-2.86063000	1.91772000
Н	3.27233500	-3.18246200	0.32238400
С	1.23767200	-3.87894200	-2.36881600
Н	0.92637100	-3.61377400	-0.25760300
С	1.87530100	-1.89960200	-3.60469500
Н	2.09173600	-0.09494800	-2.43834300
С	-1.32009300	0.30990900	-1.27795900
С	-1.76673700	-2.06765500	-1.63984600
С	-2.22365900	-1.80703200	2.90646700
С	-3.72467400	-1.48531500	0.99801600
Н	-0.77246900	-2.08129500	4.48645500
С	5.10457300	-2.00199000	2.93175100
Н	4.79249300	-0.10167400	3.90713500
Н	5.18491400	-3.80596400	1.75251300
С	1.56273800	-3.25978400	-3.57793400
Н	0.97480200	-4.93170700	-2.34808300
Н	2.12081200	-1.41366100	-4.54438600
Р	-0.74263500	1.72116800	-0.25422200
С	-1.38843900	0.51674100	-2.68554000
С	-1.83821500	-1.83808500	-3.05017400
С	-1.97617100	-3.39093000	-1.16394300
С	-3.36330100	-2.01873200	3.72507900
Н	-3.87233200	-1.26806700	-0.05334500
С	-4.81084400	-1.70078700	1.81555300
Н	5.94775000	-2.27770900	3.55833400
Н	1.56374600	-3.83621300	-4.49833000
С	-1.42412900	3.21019800	-1.07980800
С	-1.64779500	1.67461700	1.33692800
С	-1.62942400	-0.52543100	-3.54331600
Н	-1.23449900	1.51289300	-3.08417300
С	-2.10290400	-2.92505400	-3.92264800
Н	-1.91811000	-3.58470900	-0.09988700
С	-2.24606500	-4.42377800	-2.03383100
Н	-3.21291700	-2.22139800	4.78208900
С	-4.63201500	-1.96757900	3.19395600

Н	-5.81429000	-1.65895200	1.40211100
С	-2.70865400	3.25203600	-1.64571900
С	-0.63506200	4.36882400	-1.08896100
С	-3.04815300	1.66339000	1.40173800
С	-0.90410900	1.67672300	2.52411700
Н	-1.66601100	-0.35380600	-4.61565800
Н	-2.14435500	-2.73407200	-4.99164100
С	-2.30648800	-4.19339500	-3.42798800
Н	-2.40545900	-5.42603000	-1.64691900
Н	-5.49791200	-2.13015100	3.82891100
С	-3.19226200	4.43355100	-2.20492800
Н	-3.32388300	2.35836100	-1.66959100
С	-1.12375600	5.55325300	-1.64368500
Н	0.36446100	4.33998300	-0.66296200
С	-3.69212200	1.63557700	2.63618900
Н	-3.63737500	1.65489200	0.49142400
С	-1.55098100	1.64837200	3.75950200
Н	0.18085300	1.68136600	2.47007700
Н	-2.51145000	-5.01825400	-4.10396100
С	-2.40212700	5.58684700	-2.20204100
Н	-4.18524200	4.45409600	-2.64446500
Н	-0.50264300	6.44402900	-1.64467200
С	-2.94506100	1.62354000	3.81662900
Н	-4.77644800	1.60483400	2.67689100
Н	-0.96558600	1.63624400	4.67416000
Н	-2.78140700	6.50579300	-2.63927700
Н	-3.45006600	1.59159400	4.77751300
Pd	1.55357200	1.56209100	-0.12405300
Br	3.95225000	2.25762100	-0.38073300

INT1

	K			
С	1.49077000	-0.11925500	0.18676200	
F	1.85010200	-1.38332500	0.08185000	
F	2.50647600	0.71777200	0.18562000	
С	0.16462200	0.35223800	-0.16398100	
0	-0.10550100	1.54074500	-0.25383600	
0	-0.68764300	-0.67839400	-0.30417200	
С	-2.07549700	-0.32705200	-0.55786500	

С	-2.79873200	0.01245000	0.73417700
Н	-2.48830600	-1.21876700	-1.03195700
Н	-2.10088600	0.50479800	-1.26495600
Н	-3.85643000	0.20228900	0.52177500
Н	-2.37327800	0.90941200	1.19228900
Н	-2.73211900	-0.81684400	1.44512600

B-1

С	-0.42151300	2.15973100	-0.19527600
C	-1.62145000	2.74145000	-0.29741300
В	-0.16208200	0.62366200	-0.43638500
0	1.07619100	0.32942200	-1.20264400
0	-1.31254700	-0.10843400	-0.96808700
С	-1.47278800	-1.32257300	-0.44369900
С	-0.42237700	-1.58092800	0.63581800
0	-2.31780300	-2.11866900	-0.77880000
С	2.09112000	-0.12137700	-0.47093000
С	1.66402000	-0.28386700	0.98960000
0	3.20376600	-0.35176100	-0.88614400
Ν	0.17800400	-0.25072900	0.96425700
С	-0.42283800	0.31302300	2.20292100
Н	0.43216500	2.79601200	0.05371300
Н	-1.77494000	3.80750600	-0.13923800
Н	-2.50625800	2.16427800	-0.55861300
Н	0.34353600	-2.24522100	0.22825300
Н	-0.85570200	-2.05248800	1.51851400
Н	2.03048200	0.57022900	1.56524100
Н	2.05161800	-1.20058300	1.43610000
Н	-1.50473800	0.36596300	2.07452800
Н	-0.03692100	1.31952700	2.35841500
Н	-0.17676000	-0.32563900	3.05448700

P1-TS1

С	-0.53499400	-1.43772700	-1.19855600
С	0.72281900	-1.38536900	-1.72014500
С	2.22648200	-1.65441200	0.00647500
В	-1.31672200	-0.16853300	-0.68493300
0	-2.58143200	0.09167500	-1.41309900
0	-0.49398800	1.04240700	-0.63970600
С	-0.63374600	1.76471000	0.46827700
С	-1.57356300	1.07856000	1.45363800
0	-0.10467300	2.83336300	0.67054700
С	-3.69345100	-0.05021000	-0.70017700
С	-3.36249000	-0.49545400	0.72131600
0	-4.81672200	0.11099800	-1.12030700
Ν	-1.89766000	-0.27704500	0.89884300
F	1.70337100	-2.58409100	0.80294900
F	3.28717700	-2.11925600	-0.65230000
С	-1.27858400	-1.35467300	1.72801100
С	2.29222200	-0.29119700	0.56298500
0	1.57385400	0.07035500	1.48420100
0	3.12318900	0.47145900	-0.14894800
С	2.72147900	2.62171400	-1.17478500
С	3.12355400	1.91014100	0.10186700
Н	-1.01167100	-2.41849800	-1.14744100
Н	1.19022100	-0.42867600	-1.93821100
Н	1.18229500	-2.25229700	-2.19041300
Н	-1.09707000	0.99159600	2.43004400
Н	-2.48116600	1.67574200	1.55974300
Н	-3.57630100	-1.56360100	0.80946300
Н	-3.95235300	0.03639100	1.46861000
Н	-0.21023300	-1.16450000	1.80630200
Н	-1.44911100	-2.31429200	1.24116800
Н	-1.74200000	-1.35240200	2.71774800
Н	2.78236600	3.70418700	-1.01891500
Н	3.38655000	2.35183400	-2.00117900
Н	1.69119700	2.37252500	-1.43916900
Н	2.43464300	2.12370700	0.91788900
Н	4.14473600	2.15183900	0.40633500

С	-0.50445500	-1.62560100	-0.56226500
С	0.83976600	-1.69684000	-1.21566900
С	1.99309500	-1.76109300	-0.21040600
В	-1.45459300	-0.37963500	-0.58896300
0	-2.77480600	-0.66117900	-1.17148700
0	-0.83640300	0.82893700	-1.18139000
С	-0.52770500	1.78339800	-0.30848100
С	-0.98657700	1.40637900	1.09744200
0	0.07369500	2.80043600	-0.57626000
С	-3.80130200	-0.12257800	-0.51644700
С	-3.31539500	0.62567900	0.72230800
0	-4.95906000	-0.19817100	-0.85548200
Ν	-1.88779200	0.23305300	0.92980200
F	1.77818400	-2.76158800	0.69483100
F	3.16171500	-2.04839900	-0.86355700
С	-1.75154300	-0.75326700	2.03934600
С	2.16419700	-0.44683300	0.57162000
0	1.66364900	-0.25996300	1.66353200
0	2.84418400	0.43743100	-0.14187100
С	3.51229200	2.66944900	-0.67980600
С	3.05603200	1.76106300	0.43992700
Н	-0.82454300	-2.54766400	-0.07917700
Н	1.02373200	-0.83664000	-1.86631500
Н	0.93948200	-2.60815900	-1.82215700
Н	-0.11200700	1.10461000	1.67701200
Н	-1.48047800	2.23659500	1.60345900
Н	-3.92269600	0.38985700	1.59699900
Н	-3.38720300	1.69914300	0.53186400
Н	-0.71104800	-1.07137500	2.09480400
Н	-2.38977300	-1.61218600	1.82626700
Н	-2.05879600	-0.28878700	2.97906700
Н	3.72007400	3.66497500	-0.27443400
Н	4.42372700	2.28910600	-1.15071100
Н	2.72612600	2.76160300	-1.43399200
Н	2.11874600	2.10375800	0.87871700
Н	3.80256800	1.65339300	1.23157100

S.	sol -
Joy of	J.S.
	- No
· Ye	XX
and a	0

	0		
Р	-1.71576900	-1.14924300	1.07619500
С	-2.91303500	0.26329900	1.17755800
С	-1.91781700	-1.92966900	2.72013700
С	-2.47085300	-2.29881000	-0.12914500
С	-3.16526100	1.07544700	0.07319500
С	-3.45375000	0.62563700	2.44165700
С	-1.14090300	-1.44220500	3.78192500
С	-2.83333300	-2.96006900	2.95509500
С	-3.86168200	-2.39870300	-0.27555600
С	-1.63801900	-3.08181100	-0.94066300
С	-2.67861500	0.67842200	-1.28102500
С	-3.89859400	2.29232800	0.22290400
С	-4.17241300	1.78434300	2.60236400
Н	-3.28323200	-0.01333600	3.29775600
С	-1.29450900	-1.96335300	5.06409500
Н	-0.40308900	-0.66741000	3.59831600
С	-2.97543600	-3.49226700	4.23892400
Н	-3.42916500	-3.35479000	2.13942300
С	-4.40846300	-3.25504900	-1.22976000
Н	-4.51553100	-1.78677800	0.33731500
С	-2.18699600	-3.93404100	-1.89740300
Н	-0.56575700	-3.04523900	-0.80335900
С	-1.33576000	0.75617500	-1.62579900
С	-3.62789500	0.13184900	-2.21134900
С	-4.38892000	2.66335900	1.51419000
С	-4.10491600	3.18605800	-0.86338700
Н	-4.56628400	2.04967100	3.57976900
С	-2.21217300	-2.99279600	5.29467000
Н	-0.68697600	-1.57974300	5.87849000
Н	-3.68327300	-4.29803400	4.41074200
С	-3.57251400	-4.01633100	-2.04923500
Н	-5.48598300	-3.30909700	-1.34794900
Н	-1.52586000	-4.53299400	-2.51670000

Р	-0.00483900	1.26645800	-0.46112800
С	-0.89942800	0.21137000	-2.87040600
С	-3.16697200	-0.41638200	-3.44875400
С	-5.02121100	0.08781000	-1.93508300
С	-5.05625600	3.90536600	1.67455100
Н	-3.73063100	2.91743500	-1.84479200
С	-4.74880700	4.38816800	-0.67557600
Н	-2.32452100	-3.40778500	6.29206900
Н	-4.00115900	-4.67288500	-2.80085900
С	1.08642000	2.35654600	-1.45444800
С	-0.61440700	2.51607800	0.73064700
С	-1.78083100	-0.36808600	-3.74437400
Н	0.14997000	0.25286200	-3.13433900
С	-4.09768400	-0.99698500	-4.34754900
Н	-5.38839700	0.49389500	-1.00079500
С	-5.90464300	-0.46654200	-2.83455700
Н	-5.41900400	4.17719200	2.66213500
С	-5.22916000	4.75441200	0.60518300
Н	-4.88746500	5.06379300	-1.51446300
С	0.78339500	2.82740900	-2.74080200
С	2.27147800	2.78117000	-0.83177000
С	-1.07126700	3.76170400	0.27333000
С	-0.52460000	2.27567700	2.10498700
Н	-1.42561500	-0.79002800	-4.68048700
Н	-3.72809300	-1.41876600	-5.27823900
С	-5.44166500	-1.02069300	-4.05030300
Н	-6.96568800	-0.48657000	-2.60426200
Н	-5.73346200	5.70678300	0.73909100
С	1.68412400	3.65660900	-3.41236100
Н	-0.14755000	2.55446000	-3.22293100
С	3.17368200	3.59589800	-1.51163700
Н	2.49891600	2.48111600	0.18305400
С	-1.46282900	4.73916300	1.18312800
Н	-1.12643900	3.96349200	-0.79119800
С	-0.91034400	3.26020500	3.01531200
Н	-0.14924000	1.32095100	2.45608900
Н	-6.14794200	-1.46409600	-4.74572600
С	2.88772100	4.02612500	-2.80916100
Н	1.44147400	4.01195200	-4.40957700
Н	4.09931400	3.87744500	-1.02194400
С	-1.38368900	4.48945400	2.55608100
Н	-1.83649700	5.69184800	0.82136200
Н	-0.84162000	3.06248700	4.08084600
Н	3.59433300	4.65349800	-3.34403000

Н	-1.68828700	5.25390500	3.26479400
Pd	0.63867900	-0.72998000	0.49180400
Br	1.03758000	-2.99596700	1.54912600
С	2.70810000	-0.56359000	-0.02152400
В	3.40567400	-1.47433200	-1.17258600
0	4.73316900	-0.83552200	-1.46026400
0	3.24968300	-2.92916800	-1.00312200
С	2.11521600	-3.29885600	-1.62592400
С	1.56836700	-2.12664300	-2.48888100
0	1.61456700	-4.39669900	-1.57684300
С	4.49513900	0.19199100	-2.29319700
С	3.09316400	0.05212300	-2.95819600
0	5.26324000	1.09978800	-2.51387100
Ν	2.82795200	-1.38235500	-2.71775400
С	3.62962100	-2.15535200	-3.72947500
Н	2.84546000	0.48068400	-0.30856900
Н	1.09370500	-2.47740300	-3.40572400
Н	0.87215800	-1.53273600	-1.89369300
Н	3.12151400	0.31494200	-4.01622400
Н	2.37346200	0.68313200	-2.44379800
Н	3.65809700	-3.21065900	-3.46655900
Н	4.64928600	-1.77764600	-3.76779700
Н	3.14929100	-2.02919200	-4.70242100
С	3.55050600	-0.78915000	1.25598800
С	3.65869300	0.41445900	2.17759500
F	2.47920100	1.11714000	2.25980400
F	3.94303400	-0.00473300	3.45627900
С	4.76026900	1.40704600	1.75484100
0	4.54260400	2.48016500	1.23400900
0	5.95759000	0.88552200	2.01050400
С	7.52776300	1.13312200	0.16354700
С	7.12445000	1.62251400	1.54265300
Н	3.15074000	-1.61048900	1.85148200
Н	4.58493600	-1.06226200	1.00690700
Н	8.44094700	1.65066600	-0.15152100
Н	7.72994600	0.05745500	0.18127700
Н	6.74606100	1.32560800	-0.57629200
Н	6.88621500	2.68729200	1.54830200
Н	7.88981200	1.41518200	2.29226300
\mathbf{K}^{+}			
Κ	0.00000000	0.00000000	0.00000000

P1-INT4

Р	-1.71985600	-0.97496400	1.05534400
С	-2.89477400	0.44137100	1.22927100
С	-1.88315000	-1.82482800	2.66882700
С	-2.51192100	-2.06447700	-0.18362100
С	-3.16713800	1.27256900	0.14461500
С	-3.39284600	0.78449200	2.51503100
С	-1.10202600	-1.34922600	3.73366100
С	-2.74583800	-2.90507800	2.88083500
С	-3.90024200	-2.26159700	-0.21102100
С	-1.71582800	-2.68353100	-1.15759400
С	-2.72707200	0.88593000	-1.22909000
С	-3.88640400	2.49168800	0.33387800
С	-4.09458300	1.94789300	2.71395500
Н	-3.20374900	0.12913700	3.35502600
С	-1.19891500	-1.93130300	4.99477600
Н	-0.40384100	-0.53418300	3.56845000
С	-2.83069500	-3.49812700	4.14341200
Н	-3.34751500	-3.29186400	2.06592900
С	-4.47638700	-3.07289400	-1.18798200
Н	-4.53263300	-1.75707500	0.51247700
С	-2.29219700	-3.49273700	-2.13701400
Н	-0.64494800	-2.52846900	-1.14338700
С	-1.39609700	0.95681000	-1.62327900
С	-3.71417100	0.35301300	-2.12748200
С	-4.33411400	2.84562800	1.64580700
С	-4.12221400	3.40114300	-0.73293400
Н	-4.45778400	2.20167500	3.70604600
С	-2.06295200	-3.01094000	5.20181000
Н	-0.59031500	-1.55354800	5.81087900
Н	-3.50197300	-4.33809300	4.29797800
С	-3.67588200	-3.68744400	-2.15402800
Н	-5.55341700	-3.20328500	-1.21078400
Н	-1.65989400	-3.95465100	-2.89013600
Р	-0.02313800	1.44281900	-0.49720500

С	-1.01304600	0.42630800	-2.89085000
С	-3.30646500	-0.17355100	-3.39304900
С	-5.09375500	0.29818000	-1.79033400
С	-4.98662200	4.08983000	1.84527500
Н	-3.78206400	3.14457600	-1.72989800
С	-4.75266100	4.60369600	-0.50710700
Н	-2.13317000	-3.47100700	6.18296200
Н	-4.13059400	-4.30337700	-2.92387500
С	1.07835600	2.50726400	-1.50565400
С	-0.59129000	2.69316400	0.71114000
С	-1.93309500	-0.12812100	-3.74158200
Н	0.02471400	0.46518000	-3.19600700
С	-4.27507700	-0.73604800	-4.26272700
Н	-5.42097900	0.68526300	-0.83350100
С	-6.01444200	-0.24171300	-2.66095900
Н	-5.31638700	4.34962700	2.84740300
С	-5.18806300	4.95468100	0.79378900
Н	-4.91522000	5.29170700	-1.33135400
С	0.79567000	2.95652300	-2.80450100
С	2.26046200	2.93361400	-0.87677700
С	-1.03772800	3.94362300	0.25578800
С	-0.49481000	2.45103000	2.08469800
Н	-1.61700500	-0.53379800	-4.69870800
Н	-3.94645500	-1.13863800	-5.21685900
С	-5.60473100	-0.76816500	-3.90755300
Н	-7.06407300	-0.26987600	-2.38442100
Н	-5.68134300	5.90807600	0.95717200
С	1.71636700	3.75822400	-3.48285400
Н	-0.13582300	2.69419700	-3.29045700
С	3.18248600	3.71988900	-1.56337700
Н	2.47120700	2.65694400	0.14831700
С	-1.41221100	4.92529100	1.16803800
Н	-1.09919100	4.14567500	-0.80841200
С	-0.86378700	3.44012900	2.99664800
Н	-0.12741800	1.49362000	2.43591500
Н	-6.34038100	-1.19776500	-4.58068400
С	2.91907000	4.12223800	-2.87484000
Н	1.48888000	4.09716500	-4.48910000
Н	4.10418200	4.00284400	-1.06726700
С	-1.32708100	4.67436100	2.54022000
Н	-1.77804600	5.88170700	0.80861300
Н	-0.79090600	3.24202100	4.06169800
Н	3.64064800	4.72737900	-3.41499200
Н	-1.61926500	5.44163600	3.25084600

Pd	0.63141700	-0.56247300	0.44024100
Br	1.06109700	-2.84513200	1.51224500
С	2.70035300	-0.37708200	-0.07608800
В	3.41613600	-1.27957400	-1.22327300
0	4.77623300	-0.70122300	-1.42838400
0	3.16664300	-2.74196900	-1.09823400
С	2.04860800	-3.02019300	-1.76502100
С	1.61979400	-1.82116400	-2.65243000
0	1.44304500	-4.07428000	-1.71595900
С	4.62228100	0.36257900	-2.24300100
С	3.25708000	0.29363000	-2.98824000
0	5.43343800	1.24487700	-2.38954300
Ν	2.92191500	-1.13499900	-2.79147100
С	3.74509400	-1.92236700	-3.77671600
Н	2.83421700	0.66804200	-0.35939800
Н	1.18261200	-2.13977900	-3.59947600
Н	0.91746300	-1.20161300	-2.09278200
Н	3.35835400	0.56893000	-4.03805000
Н	2.52908900	0.94304800	-2.50836300
Н	3.70011400	-2.98495700	-3.54685200
Н	4.78357200	-1.60104500	-3.73787600
Н	3.33604000	-1.74005800	-4.77250500
Κ	0.10321000	-5.52818100	0.10855900
С	3.53344800	-0.59957300	1.20930800
С	3.59961000	0.58636200	2.16028800
F	2.40987300	1.27369000	2.21952800
F	3.84493600	0.13803800	3.43573900
С	4.70136200	1.59887300	1.78936800
0	4.48442300	2.65596800	1.23676400
0	5.89323300	1.11093500	2.12008600
С	7.59092700	1.33979500	0.38787000
С	7.06882600	1.87113700	1.71016300
Н	3.15465500	-1.44235900	1.78749300
Н	4.57679600	-0.83853600	0.96422300
Н	8.50295400	1.88247500	0.11495000
Н	7.83540700	0.27584900	0.46968500
Н	6.85756100	1.46809700	-0.41312300
Н	6.79486500	2.92540300	1.65131700
Н	7.78102000	1.72274200	2.52335800

P1-TS2

Br	2.29883100	-2.25349200	0.96255500
С	3.29229100	-0.14940500	0.45551000
С	4.07418000	0.14611400	1.70392700
С	3.28656900	0.65750400	2.90152900
В	3.98839800	-0.41425500	-0.95375500
0	4.50899000	0.86929900	-1.46138900
0	3.07533100	-1.04589200	-1.91621900
С	3.66344500	-1.93682000	-2.70868200
С	5.16411000	-1.94289400	-2.47556600
0	3.05848000	-2.63739500	-3.49370800
С	5.83973800	0.96393400	-1.52931400
С	6.47644900	-0.35405700	-1.09471100
0	6.44311200	1.95498300	-1.86024900
Ν	5.36446000	-1.35277500	-1.10586900
F	2.57956100	-0.34930300	3.48369800
F	4.19357400	1.09527700	3.84150400
С	5.58818700	-2.44813300	-0.11307100
С	2.31614200	1.83762300	2.67623300
0	1.27942500	1.95599400	3.28921400
0	2.82060200	2.70373400	1.80206600
С	2.99241400	4.92617600	0.91239500
С	2.06807600	3.94254500	1.59441300
Н	2.54471000	0.62217200	0.28792700
Н	4.65212700	-0.70793200	2.06836100
Н	4.78338400	0.94657000	1.44763500
Н	5.59187600	-2.94272900	-2.54397600
Н	5.63440600	-1.30515700	-3.22854300
Н	7.29829200	-0.65506600	-1.74498100
Н	6.85833300	-0.25541700	-0.07576900
Н	4.73559200	-3.12399400	-0.13107400
Н	6.50698400	-2.97828700	-0.37156400
Н	5.68027800	-2.01830900	0.88161200
Н	2.45371500	5.86459000	0.74558800
Н	3.86875500	5.13485800	1.53345100

Н	3.32571100	4.54817600	-0.05759900
Н	1.19412400	3.69762500	0.98784200
Н	1.72521000	4.29440500	2.56930700
K	0.59275100	-2.58412900	-2.00634100
Р	-1.54476800	-1.30158600	1.25839100
С	-3.00816300	-0.18259400	1.10496300
С	-1.45632300	-1.68024500	3.05034600
С	-2.06849400	-2.90994500	0.55235800
С	-3.35830900	0.41949900	-0.10752800
С	-3.67253700	0.21958100	2.29732400
С	-0.58538600	-0.91328800	3.83845700
С	-2.21031100	-2.69966400	3.65041900
С	-3.36401600	-3.16955800	0.09337000
С	-1.09397100	-3.92111100	0.44231600
С	-2.76007900	0.00750100	-1.42022900
С	-4.35651000	1.44779200	-0.13335500
С	-4.62832300	1.20414800	2.28843900
Н	-3.40709400	-0.25209500	3.23504200
С	-0.47899100	-1.15414600	5.20840700
Н	0.01513000	-0.13469500	3.38067500
С	-2.09632300	-2.94308800	5.01949300
Н	-2.88622400	-3.29936800	3.04879400
С	-3.67412400	-4.39120400	-0.50847300
Н	-4.13164200	-2.41575400	0.20685300
С	-1.40824100	-5.14844500	-0.14260800
Н	-0.09274200	-3.74560000	0.82816700
С	-1.50913700	0.45140900	-1.84810500
С	-3.55018200	-0.83615200	-2.27990500
С	-4.98493600	1.85759500	1.08477900
С	-4.72417600	2.11426700	-1.33532200
Н	-5.11495600	1.50106700	3.21362300
С	-1.23245400	-2.17012000	5.80070800
Н	0.20169200	-0.55506600	5.80625100
Н	-2.68223700	-3.73531800	5.47674900
С	-2.69835700	-5.38075700	-0.63430200
Н	-4.68062200	-4.56414400	-0.87734000
Н	-0.64961200	-5.92347000	-0.21142100
Р	-0.33749300	1.39589900	-0.77869700
С	-0.99521400	-0.00928700	-3.09998300
С	-3.00795700	-1.29612800	-3.52329400
С	-4.87497700	-1.23438100	-1.94708500
С	-5.93832400	2.90866400	1.06091800
Н	-4.25119100	1.82351700	-2.26584400
С	-5.65370600	3.12929700	-1.32814400

Н	-1.14435800	-2.36372700	6.86588000
Н	-2.94147700	-6.33252000	-1.09737100
С	0.58555700	2.41457700	-2.00805300
С	-1.31206500	2.67304300	0.11521200
С	-1.71316600	-0.85705000	-3.90776100
Н	-0.01549600	0.32683600	-3.42316300
С	-3.77271100	-2.16194500	-4.34826500
Н	-5.32009900	-0.87088000	-1.02911900
С	-5.59902500	-2.06654900	-2.77174400
Н	-6.40110800	3.21076800	1.99660600
С	-6.26815300	3.53441100	-0.11931200
Н	-5.91457300	3.62823900	-2.25689900
С	0.00691700	2.96619100	-3.16474100
С	1.94316600	2.65137700	-1.75986200
С	-1.98342900	3.71584800	-0.54031000
С	-1.34795900	2.61173600	1.51408100
Н	-1.30003900	-1.19100400	-4.85670300
Н	-3.33977300	-2.50294700	-5.28517200
С	-5.04190800	-2.54756200	-3.97977200
Н	-6.60808300	-2.35472200	-2.49270300
Н	-6.99768900	4.33876300	-0.12740700
С	0.77115300	3.73579900	-4.04026900
Н	-1.03628700	2.77594000	-3.39543500
С	2.71418500	3.41282400	-2.64064600
Н	2.41289900	2.23367700	-0.87912700
С	-2.69143700	4.66610600	0.19197800
Н	-1.96559100	3.78510400	-1.62144100
С	-2.05396100	3.56535700	2.24643400
Н	-0.81938500	1.81564400	2.02383000
Н	-5.62172000	-3.20657400	-4.61875700
С	2.12738500	3.96004100	-3.78132200
Н	0.30992700	4.15519500	-4.92980400
Н	3.77275000	3.54987700	-2.44180800
С	-2.73045000	4.59167200	1.58643400
Н	-3.22461800	5.45676000	-0.32697500
Н	-2.07767600	3.49992400	3.33010900
Н	2.72231400	4.55042900	-4.47188600
Н	-3.28794100	5.33098500	2.15404500
Pd	0.52523000	-0.34886600	0.50048400

Br	1.86527600	-2.29501500	-0.04204300
С	0.41546000	-0.93148800	-0.18314600
С	-0.63635200	-1.15404700	0.91751600
С	-1.92965200	-1.72800200	0.36210300
В	1.00592400	0.55029800	-0.34478700
0	-0.11147600	1.48565100	-0.60942800
0	2.03936800	0.62701300	-1.36397200
С	3.05228800	1.43728000	-1.05661300
С	2.83434100	2.06062500	0.31898600
0	3.99905500	1.66831000	-1.76804500
С	-0.33545600	2.38514600	0.34756500
С	0.64899600	2.19215800	1.49871900
0	-1.21233400	3.21630100	0.32693300
Ν	1.71912100	1.29260900	0.97220300
F	-1.68620200	-2.91616300	-0.26008500
F	-2.79888100	-1.96974300	1.39341700
С	2.26221600	0.39148800	2.03310200
С	-2.59670000	-0.78022100	-0.65517600
0	-2.54453500	-0.95133200	-1.85220100
0	-3.14623500	0.25185000	-0.02359600
С	-4.42256500	2.27471500	0.04873000
С	-3.71434900	1.30102700	-0.86655600
Н	-0.01596400	-1.17399500	-1.15635400
Н	-0.27953500	-1.84580900	1.68406200
Н	-0.90502500	-0.21945500	1.41838500
Н	3.73913500	2.02659500	0.92595400
Н	2.54311300	3.10523900	0.18768800
Н	1.05222900	3.13746100	1.86276100
Н	0.13629700	1.69626900	2.32654100
Н	3.00895400	-0.26623600	1.59280500
Н	2.70549900	0.99999600	2.82364000
Н	1.45248200	-0.21197700	2.44000800
Н	-4.86623000	3.07594600	-0.55133400
Н	-5.22199800	1.77802500	0.60741800
Н	-3.71425000	2.72294900	0.74983700

Н	-2.88790600	1.76934100	-1.40526500
Н	-4.38926800	0.83015900	-1.58501900

P2-TS1

С	0.15334700	-0.05398000	0.98908300
С	0.84009000	1.09514700	1.29118000
С	1.45240800	-1.30815700	-0.35902800
В	-1.11713000	-0.01691300	0.03461500
0	-1.53413400	-1.30929000	-0.50300800
0	-1.05381500	1.03117300	-1.00573800
С	-1.77081800	2.12173500	-0.73847600
С	-2.54654400	1.93985300	0.56770800
0	-1.79204600	3.12344500	-1.41467600
С	-2.85671100	-1.47215400	-0.55450000
С	-3.56531100	-0.27148200	0.07163800
0	-3.42090000	-2.42556100	-1.03523800
Ν	-2.51667700	0.47768200	0.83172300
F	1.03153500	-2.55448200	-0.15163900
F	1.21783600	-0.92203700	-1.61385300
С	-2.56870100	0.14253000	2.28068600
С	2.78608500	-1.00049500	0.20970900
0	3.25272200	-1.60210700	1.15935600
0	3.30337300	0.09216100	-0.36163200
С	4.83455600	1.92135100	-0.44694300
С	4.51230700	0.61573500	0.24864400
Н	0.23265100	-0.87045600	1.70855200
Н	1.56739900	1.14081300	2.09808700
Н	-2.01417400	2.45453400	1.37154700
Н	-3.56271600	2.33111400	0.50756700
Н	-4.38656300	-0.57757800	0.72019400
Н	-3.96795800	0.35578300	-0.72727600
Н	-1.72700700	0.62009600	2.78041200
Н	-2.49111500	-0.94010100	2.39381300
Н	-3.51187200	0.49292500	2.70544700
Н	5.74434000	2.35156600	-0.01589100
Н	4.99958200	1.76358400	-1.51709400
Н	4.01780100	2.63892800	-0.32200000

Н	4.32751800	0.74982000	1.31816500
Н	5.30846500	-0.12491900	0.13026900
Н	0.75585800	1.98428200	0.67178600

P2-INT2

the

С	0.25547500	-0.19411500	0.55251000
С	0.69549000	1.12239800	1.10609800
С	1.29598100	-0.71018300	-0.44995300
В	-1.21780200	-0.09932200	-0.12695600
0	-1.72376500	-1.36782000	-0.63907300
0	-1.34849300	0.98845000	-1.11486300
С	-1.99344100	2.06642700	-0.67028800
С	-2.51740300	1.82486700	0.74633300
0	-2.13260500	3.09720400	-1.28538400
С	-3.03064100	-1.54285800	-0.43553500
С	-3.60134700	-0.37848400	0.37143600
0	-3.67769200	-2.47925800	-0.83787900
Ν	-2.42287100	0.35178700	0.94410200
F	0.95693500	-1.95504100	-0.90959700
F	1.36709400	0.11203000	-1.53990700
С	-2.21044300	-0.03545500	2.36641300
С	2.68473400	-0.84534100	0.20677200
0	2.91299200	-1.69889900	1.03696100
0	3.53415800	0.09041200	-0.20642800
С	5.62988500	1.24083600	-0.15459600
С	4.84815900	0.07913000	0.42039200
Η	0.23522700	-0.94766900	1.34758200
Н	0.90183400	1.25837100	2.16162500
Η	-1.85402700	2.32123300	1.45842800
Η	-3.53360100	2.19663200	0.88445300
Н	-4.27619800	-0.71973800	1.15661000
Н	-4.15579300	0.27867700	-0.30250300
Н	-1.31167100	0.45502700	2.73638100
Н	-2.08898600	-1.11803800	2.42402700
Η	-3.07312600	0.27149700	2.96168300
Н	6.62833000	1.26606400	0.29376300
Н	5.73982600	1.13902000	-1.23846900

Н	5.13040800	2.19086600	0.05860200
Н	4.71012200	0.16326900	1.50192600
Н	5.31887600	-0.88491900	0.20963000
Н	0.90617400	1.94688700	0.43370200

P2-INT3

С	-3.42136900	-0.47266500	-0.38150900
С	-2.39203800	-0.41368100	0.75328500
С	-3.14267200	0.52684800	-1.49033100
F	-1.98029800	0.18899400	-2.18638500
F	-4.14035400	0.46016900	-2.43567600
С	-2.97335300	2.01647400	-1.10799400
0	-2.80204400	2.42767700	0.01840600
0	-3.00948800	2.77997300	-2.19838900
С	-2.81489700	4.87665100	-3.32957000
С	-2.85945600	4.20915500	-1.97189100
Н	-3.29408000	-1.43624600	-0.88747500
Н	-2.58801500	-1.19606800	1.48908000
Н	-2.71362700	5.95919600	-3.20021300
Н	-1.95980800	4.51727000	-3.91049000
Н	-3.73018000	4.67913400	-3.89583100
Н	-3.70773300	4.54523700	-1.36901500
Н	-1.94156100	4.37133500	-1.40357900
Н	-2.40724500	0.55053400	1.24401400
Р	1.63239400	-1.57163900	-0.83173700
С	2.60038900	-0.11060500	-1.41512400
С	1.38473500	-2.56867500	-2.34752500
С	2.76948500	-2.51711900	0.23319300
С	3.16700400	0.77812200	-0.50260400
С	2.61864400	0.20072300	-2.80157200
С	0.29573200	-2.23557800	-3.16991800
С	2.21273800	-3.63805600	-2.70730000
С	4.11654300	-2.71784900	-0.09975200
С	2.27412500	-3.02101000	1.44404900

С	3.19655000	0.47502900	0.96339100
С	3.77776200	1.98879100	-0.96528700
С	3.18087000	1.36681500	-3.25993500
Н	2.17846200	-0.49196400	-3.50812200
С	0.05883800	-2.94380400	-4.34615400
Н	-0.37239000	-1.43102000	-2.88157100
С	1.96423400	-4.35510700	-3.87987000
Н	3.04304700	-3.92340200	-2.07156500
С	4.95571400	-3.41640700	0.76581400
Н	4.51524700	-2.30076900	-1.01937000
С	3.11895700	-3.71212000	2.31189000
Н	1.23136500	-2.86028000	1.69848200
С	2.06674400	0.58465600	1.77539000
С	4.44728000	0.05731100	1.53086300
С	3.77135400	2.29087800	-2.36388200
С	4.38324300	2.92157200	-0.07862900
Н	3.18230500	1.59055400	-4.32345400
С	0.89280700	-4.00694300	-4.70329100
Н	-0.78657000	-2.67669300	-4.97339100
Н	2.60932000	-5.18740500	-4.14644500
С	4.45965000	-3.90880300	1.97476300
Н	6.00163200	-3.55199000	0.50952000
Н	2.73207200	-4.08955700	3.25399600
Р	0.39292300	0.95976800	1.07081400
С	2.16893900	0.27075500	3.15859800
С	4.51501300	-0.29196600	2.91593200
С	5.63567500	-0.04826700	0.75564100
С	4.35508200	3.50199200	-2.81927400
Н	4.38780300	2.71174600	0.98422600
С	4.95151700	4.08279500	-0.55081700
Н	0.70133600	-4.56681800	-5.61412000
Н	5.11961200	-4.43848300	2.65546100
С	-0.60736400	1.52418900	2.50307600
С	0.65211700	2.41725900	0.00754200
С	3.34827800	-0.16638700	3.70714600
Н	1.30454000	0.38173300	3.79846400
С	5.74324000	-0.74175600	3.46716200
Н	5.60442500	0.20349700	-0.29694000
С	6.81631800	-0.47452900	1.32010200
Н	4.33553900	3.71915500	-3.88393100
С	4.93615000	4.38084800	-1.93404100
Н	5.40774300	4.78128600	0.14454400
С	-1.07809300	2.83463600	2.63309000
С	-1.04174500	0.55187800	3.42296100

С	1.26967400	3.57692800	0.49801900
С	0.27556000	2.35217600	-1.33918300
Н	3.39916500	-0.41032500	4.76491200
Н	5.77204600	-1.01005900	4.51978400
С	6.87385000	-0.83038800	2.68827800
Н	7.71007400	-0.54791800	0.70749200
Н	5.38303700	5.30343200	-2.29262100
С	-1.94489500	3.17295200	3.67525700
Н	-0.80396500	3.58737700	1.90544100
С	-1.89317400	0.89378000	4.47004700
Н	-0.74179000	-0.48385500	3.29076300
С	1.48839300	4.66332600	-0.34699900
Н	1.59917400	3.62304600	1.53144600
С	0.51479000	3.43261200	-2.18599300
Н	-0.18903200	1.45267500	-1.72221100
Н	7.81021600	-1.17258200	3.11894200
С	-2.34968000	2.20964600	4.59767300
Н	-2.31331800	4.19125500	3.75347500
Н	-2.21487100	0.13106400	5.17325600
С	1.11656300	4.59119900	-1.69111700
Н	1.97523800	5.55410100	0.03693500
Н	0.23781100	3.36381700	-3.23339700
Н	-3.02862100	2.47551000	5.40232700
Н	1.30737800	5.43081100	-2.35242000
Pd	-0.46282500	-0.93869500	0.13723500
Br	-1.36705400	-3.31222500	-0.13014000
В	-5.04223700	-0.35531900	-0.03944000
0	-5.45971900	1.03709900	0.19352600
0	-5.75746800	-1.29906500	-0.92877300
С	-5.63582900	-2.52161300	-0.37053500
С	-5.17849700	-2.40185200	1.11611700
0	-5.86997000	-3.56268200	-0.93350100
С	-5.25552000	1.32550000	1.49922900
С	-5.01336800	0.02561900	2.32000600
0	-5.29284700	2.43406000	1.97040800
Ν	-5.55856200	-0.98955300	1.38311300
С	-7.05684800	-0.94988900	1.53978900
Н	-5.70050600	-3.11473300	1.75529900
Н	-4.09938900	-2.55207600	1.18889500
Н	-5.55349700	0.05284400	3.26689800
Н	-3.95285900	-0.11749000	2.50636500
Н	-7.40903000	0.07864000	1.48411800
Н	-7.29997800	-1.37510800	2.51563300
Н	-7.53873200	-1.52629300	0.75365500

P2-INT4

С	3.33206500	-0.33512600	0.43572000
С	2.25497100	-0.47169200	-0.64756800
С	2.98641300	0.66591900	1.53101200
F	1.76908800	0.32570300	2.12891700
F	3.89071000	0.57792700	2.55309500
С	2.82736500	2.14620200	1.13044100
0	2.66648500	2.50862300	-0.01885600
0	2.86469400	2.94277100	2.18525900
С	2.72568000	5.08587900	3.24035700
С	2.78371300	4.37381600	1.90707500
Н	3.32407300	-1.27358800	1.00684600
Н	2.43521400	-1.37034300	-1.24015300
Н	2.67815900	6.16657800	3.07191400
Н	1.83647800	4.78542100	3.80356700
Н	3.61294400	4.86747800	3.84199200
Н	3.66983500	4.64052500	1.32496000
Н	1.89289500	4.55230700	1.30209300
Н	2.27091900	0.39361400	-1.29940700
Р	-1.81659600	-1.38446900	1.00296100
С	-2.78752300	0.14223600	1.36679000
С	-1.64061000	-2.20038000	2.63300500
С	-2.90782200	-2.44625300	0.00416300
С	-3.31724000	0.91115900	0.33205700
С	-2.84329500	0.62676100	2.70155000
С	-0.60973000	-1.75527600	3.47719200
С	-2.46698800	-3.24756300	3.05613200
С	-4.26627400	-2.61766300	0.30648300
С	-2.36438700	-3.07777600	-1.12330300
С	-3.31579000	0.42507100	-1.08369000
С	-3.92126700	2.17877800	0.61719500
С	-3.40107900	1.84819100	2.98961700
Н	-2.43754100	0.02463800	3.50477700

С	-0.43085300	-2.32841600	4.73429300
Н	0.06058800	-0.97064000	3.14358800
С	-2.27582100	-3.83042400	4.31109600
Н	-3.25261600	-3.61889100	2.40841100
С	-5.06902400	-3.41414900	-0.50740200
Н	-4.70126500	-2.10468300	1.15861200
С	-3.17297300	-3.86692100	-1.94055000
Н	-1.31364800	-2.93570600	-1.35648300
С	-2.16797600	0.42508100	-1.87735200
С	-4.55839300	-0.04777500	-1.62412300
С	-3.94837200	2.65815200	1.96500600
С	-4.48366700	2.99811300	-0.40008200
Н	-3.43178600	2.20515400	4.01557700
С	-1.26408100	-3.36933000	5.15411100
Н	0.36677800	-1.97178600	5.37954100
Н	-2.92065900	-4.64513300	4.62743400
С	-4.52503000	-4.03441000	-1.63419400
Н	-6.12357400	-3.52782800	-0.27786400
Н	-2.74987600	-4.34303400	-2.82023200
Р	-0.51087800	0.85983500	-1.17622500
С	-2.24575800	-0.04249000	-3.21800500
С	-4.60098500	-0.55821600	-2.95928900
С	-5.76204700	-0.05485500	-0.86557800
С	-4.52112100	3.92667800	2.24344400
Н	-4.46330100	2.65314800	-1.42682400
С	-5.04087200	4.21991400	-0.09827500
Н	-1.11962000	-3.82236600	6.13056900
Н	-5.15684600	-4.64072200	-2.27637600
С	0.54791500	1.24456100	-2.62657000
С	-0.76449200	2.43344500	-0.29458700
С	-3.41872300	-0.53021300	-3.73662900
Н	-1.37126500	-0.00764500	-3.85195800
С	-5.82071200	-1.06559400	-3.47805800
Н	-5.75040700	0.32148800	0.14960800
С	-6.93337300	-0.54272500	-1.39878100
Н	-4.52837200	4.27855900	3.27150300
С	-5.05859500	4.69343000	1.23505400
Н	-5.46333700	4.83023300	-0.89098100
С	1.10719400	2.51073900	-2.83008600
С	0.95708200	0.18097900	-3.45277600
С	-1.34003900	3.53700600	-0.94112700
С	-0.42358000	2.52580700	1.06007500
Н	-3.45193200	-0.89097300	-4.76105800
Н	-5.83121900	-1.45558400	-4.49214600

С	-6.96613300	-1.05832000	-2.71598800
Н	-7.83941200	-0.53978900	-0.80018000
Н	-5.49675000	5.66164600	1.45826900
С	2.03460100	2.71671900	-3.85591200
Н	0.84986600	3.33232500	-2.17426900
С	1.86642700	0.39170800	-4.48594500
Н	0.59489600	-0.82397500	-3.25690000
С	-1.55377400	4.72300900	-0.24143600
Н	-1.63883700	3.46360400	-1.98236200
С	-0.65576100	3.70741700	1.76094700
Н	0.00400100	1.66895400	1.56508500
Н	-7.89589400	-1.44606000	-3.12134200
С	2.41117900	1.66427700	-4.68914300
Н	2.46371700	3.70431400	-3.99601600
Н	2.16340000	-0.43930300	-5.11902400
С	-1.21667600	4.80876900	1.11100800
Н	-2.00901600	5.56978400	-0.74478900
Н	-0.40825500	3.76228100	2.81658800
Н	3.13065600	1.82824500	-5.48578000
Н	-1.40361700	5.72689400	1.65921700
Pd	0.31719200	-0.89153400	0.03254600
Br	1.20029300	-3.20245100	0.74935400
В	4.90767900	-0.30106800	-0.09498000
0	5.70809300	0.68918000	0.64108300
0	5.25504200	-1.74588900	-0.31771100
С	4.89732500	-2.07209800	-1.57753100
С	4.74671800	-0.81842700	-2.47101800
0	4.72265700	-3.21623800	-1.94027200
С	5.62882600	1.86731500	-0.02925100
С	5.11898000	1.63721500	-1.47916600
0	5.91690200	2.93634300	0.44669100
Ν	5.39387700	0.19130300	-1.61092400
С	6.88421400	0.03285900	-1.81062600
Н	5.25850000	-0.95227500	-3.42526300
Н	3.70101200	-0.58049200	-2.65165500
Н	5.66554300	2.24876100	-2.19777500
Н	4.05027000	1.84411800	-1.53706100
Н	7.43178000	0.60591800	-1.06671500
Н	7.12138400	0.39862100	-2.81139300
Н	7.16474400	-1.01474700	-1.72144900
Κ	4.24835500	-4.27392800	0.65288200

P2-TS2

С	-4.16114400	-0.10150400	0.46701200
С	-2.72641900	-0.59468700	0.62196400
С	-5.02820400	-1.33140800	0.16648700
F	-6.29866900	-0.92606200	-0.19877000
F	-4.53439200	-2.05050400	-0.87841700
С	-5.20202300	-2.22960500	1.40675500
0	-6.00771800	-1.97307300	2.27351800
0	-4.31498400	-3.21838200	1.41408800
С	-3.00575100	-4.87819400	2.53004900
С	-4.27364000	-4.05457700	2.60868000
Н	-4.51308400	0.27284700	1.43412000
Н	-2.19564100	-0.62565400	-0.31913600
Н	-2.94228700	-5.53294700	3.40500100
Н	-2.99786200	-5.50039600	1.63004500
Н	-2.12248900	-4.23098700	2.51697000
Н	-4.29507700	-3.39959400	3.48305600
Н	-5.17526700	-4.67267100	2.61456400
Н	-2.60935200	-1.52346400	1.16854800
Р	1.94056000	0.78343200	1.61452800
С	3.45301300	-0.06258500	0.98163900
С	2.00347800	0.52460900	3.43083700
С	2.25191500	2.58415700	1.48605200
С	3.68958400	-0.23653200	-0.38513400
С	4.30005800	-0.70928900	1.92583700
С	1.29330300	-0.56014300	3.96863700
С	2.71641700	1.36918400	4.29435400
С	3.45965800	3.14614100	1.05952700
С	1.17306800	3.43847700	1.79128400
С	2.89444500	0.42347200	-1.47941500
С	4.78717600	-1.05857100	-0.81592700
С	5.33217300	-1.51964200	1.52799000
Н	4.11606400	-0.56805400	2.98326700
С	1.31026100	-0.80744400	5.34124300
Н	0.71881300	-1.20124800	3.30527300

С	2.72507000	1.12647000	5.66846300
Н	3.26763900	2.21315400	3.89170000
С	3.58152500	4.52959900	0.90208200
Н	4.30493000	2.50313300	0.85214900
С	1.30024600	4.82025200	1.65061500
Н	0.23793200	3.01339200	2.15090400
С	1.69910500	-0.10853900	-1.98429800
С	3.48776300	1.56652200	-2.12298100
С	5.59929200	-1.72720700	0.15406100
С	5.08621200	-1.26804800	-2.19174100
Н	5.95748700	-2.01265100	2.26751200
С	2.02538300	0.03706600	6.19379900
Н	0.75694000	-1.65034300	5.74524600
Н	3.28002000	1.78676100	6.32867000
С	2.50439300	5.36844500	1.19099800
Н	4.52176700	4.94717700	0.55440400
Н	0.46306300	5.46764900	1.89673300
Р	0.72856600	-1.36571000	-1.03494500
С	1.10150500	0.48526700	-3.13506900
С	2.82227200	2.19475800	-3.22728700
С	4.74122200	2.10427200	-1.71451300
С	6.64872400	-2.58082000	-0.27541400
Н	4.48403100	-0.77716200	-2.94604200
С	6.11582800	-2.09551300	-2.57914600
Н	2.03306600	-0.14919300	7.26373100
Н	2.60195600	6.44329400	1.07097000
С	-0.50171600	-2.07379700	-2.20366800
С	1.89899000	-2.73002600	-0.71245200
С	1.63077400	1.60779500	-3.72662300
Н	0.20913000	0.03943500	-3.55615900
С	3.38637100	3.35444200	-3.82289900
Н	5.28976800	1.61377400	-0.92025400
С	5.27009400	3.22319000	-2.31754200
Н	7.24707400	-3.08551200	0.47835700
С	6.90522500	-2.76460900	-1.61446900
Н	6.31998400	-2.24143600	-3.63579700
С	-0.49159600	-3.42701500	-2.58139000
С	-1.59799800	-1.28124600	-2.60038600
С	2.66702300	-3.31055400	-1.73294800
С	2.04312100	-3.18992000	0.60257800
Н	1.15170500	2.04304300	-4.60014100
Н	2.86247600	3.81786700	-4.65499900
С	4.58206600	3.86712700	-3.37343800
Н	6.22673600	3.61298400	-1.98285000

Н	7.71080400	-3.41898700	-1.93389700
С	-1.52282500	-3.95573700	-3.35852400
Н	0.32167800	-4.07125800	-2.26976500
С	-2.62234400	-1.80754600	-3.38685000
Н	-1.65654600	-0.23929100	-2.29787000
С	3.56219900	-4.33687000	-1.44003100
Н	2.57573600	-2.94720500	-2.75180000
С	2.94595500	-4.21207800	0.89624100
Н	1.46146800	-2.72335000	1.39252800
Н	5.00918500	4.75026700	-3.83868000
С	-2.58505700	-3.14884500	-3.77072700
Н	-1.49185600	-5.00351500	-3.64389200
Н	-3.45688300	-1.17565600	-3.67000100
С	3.70558400	-4.78557800	-0.12491300
Н	4.16597100	-4.76795800	-2.23213300
Н	3.06341100	-4.55131900	1.92121800
Н	-3.38654200	-3.56560000	-4.37335800
Н	4.41582300	-5.57465300	0.10353500
Pd	-0.06356300	-0.14748300	0.76305500
Br	-1.97244700	0.86090900	2.21180200
Κ	-0.37236400	2.73037800	-0.91165000
В	-4.28887200	1.05233300	-0.66359000
0	-4.39697700	0.56490000	-2.03802100
0	-3.17624200	2.01902000	-0.57619500
С	-3.54052600	3.28648600	-0.71567200
С	-5.04533000	3.41165100	-0.86370700
0	-2.75351600	4.21220100	-0.74666400
С	-5.56985700	0.79622200	-2.63284100
С	-6.49601000	1.57022700	-1.69681500
0	-5.85705600	0.42682700	-3.74545800
Ν	-5.62574700	2.05473900	-0.57666400
С	-6.34101900	2.06564800	0.73719500
Н	-5.45072100	4.16311100	-0.18536100
Н	-5.27201300	3.71738400	-1.88727100
Н	-7.00210100	2.39296800	-2.20169500
Н	-7.24426400	0.88579600	-1.29877900
Н	-5.64476500	2.38555300	1.51385100
Н	-7.18126700	2.76051600	0.68293800
Н	-6.69916800	1.06160700	0.95235000

C3

С	-0.55291100	0.77626300	0.46942700
С	-1.28175000	1.72635700	-0.49697100
С	0.77576300	1.37800400	0.90866000
F	0.58027100	2.61364000	1.47744400
F	1.31056100	0.58467500	1.90606200
С	1.80750400	1.57391100	-0.21720500
0	1.54312400	2.23559700	-1.19768700
0	2.95511800	0.96159100	0.03672800
С	5.17727300	0.27418600	-0.51311400
С	3.95854200	1.01178700	-1.02182500
Н	-1.14259300	0.75452000	1.39222000
Н	-1.10401900	1.50621000	-1.54589500
Н	5.95688600	0.28896200	-1.28167100
Н	5.57403500	0.74783200	0.39032200
Н	4.92541600	-0.76642700	-0.29289300
Н	3.52599500	0.53559000	-1.90464900
Н	4.16230500	2.06127900	-1.24818400
Н	-1.06043700	2.77031800	-0.29369400
Br	-3.24581300	1.57643400	-0.25169600
В	-0.41382700	-0.71525500	-0.15251300
0	0.82167100	-0.91652800	-0.94119900
0	-1.59400300	-1.08088600	-0.92491500
С	-1.99088700	-2.34220500	-0.76221700
С	-1.09032900	-3.05360500	0.24253300
0	-2.91627400	-2.85949800	-1.33882900
С	1.69246900	-1.78461200	-0.42095000
С	1.17737500	-2.30728200	0.91683100
0	2.75017200	-2.08446900	-0.92147800
Ν	-0.28065500	-1.98835800	0.92617800
С	-0.80962000	-1.73565700	2.29803500
Η	-1.66738800	-3.63126000	0.96466100
Н	-0.43080000	-3.73564300	-0.29885900
Η	1.36577300	-3.37211100	1.05285000
Н	1.67005400	-1.74870400	1.71384700
Н	-1.86264900	-1.45987600	2.22257600
Н	-0.70607400	-2.64247300	2.89696500
Н	-0.24584100	-0.92280200	2.74935100

С	0.93380500	-0.98577400	0.00441200
С	2.10389400	-0.35703400	-0.19266900
С	3.43757100	-0.88515600	0.14567800
С	4.61906200	-0.56576900	-0.75857700
С	4.53120100	0.07424100	0.59326800
В	-0.46197100	-0.37575300	-0.37331600
0	-1.40982600	-1.32977300	-0.96478600
0	-0.39795300	0.88581700	-1.15304900
С	-0.61971000	1.98679200	-0.44003100
С	-0.99458600	1.62306900	0.99825000
0	-0.52216100	3.11855200	-0.85636300
С	-2.66868500	-1.16403800	-0.56222400
С	-2.75318000	-0.05748500	0.48979400
0	-3.61929000	-1.78776400	-0.97319800
Ν	-1.35250100	0.18264300	0.94977500
С	-1.07380600	-0.53483200	2.22128800
Н	0.96670500	-1.98330600	0.45057800
Н	2.10090000	0.63232100	-0.65529400
Н	3.44291600	-1.86879800	0.61012600
Н	5.35186700	-1.35165800	-0.91638900
Н	4.42437500	0.05000300	-1.63238500
Н	4.27747800	1.12972600	0.64531500
Н	5.20405200	-0.26540600	1.37533500
Н	-0.11555400	1.74768300	1.63582600
Н	-1.80478300	2.24168100	1.38709200
Н	-3.40616600	-0.33358600	1.31852800
Н	-3.15254200	0.84395300	0.01825900
Н	-0.01345400	-0.43707600	2.45123900
Н	-1.31654800	-1.59048500	2.08847100
Н	-1.68144000	-0.11353600	3.02547800

P3-TS1

С	-0.08846400	0.47125000	-0.76499800
С	0.63930700	1.52314500	-0.26295100
В	-1.65623500	0.29701800	-0.51954300
0	-2.23307200	-0.85537600	-1.24485700
0	-2.38011100	1.53975400	-0.83812800
С	-3.43930300	1.76708100	-0.06505000
С	-3.55920400	0.68066200	0.99888400
0	-4.20791300	2.69192500	-0.18854800
С	-2.62327800	-1.86656800	-0.47166800
С	-2.42036600	-1.51460600	1.00217600
0	-3.06653500	-2.91767200	-0.87091700
Ν	-2.24162400	-0.03541900	1.02049400
С	-1.41551700	0.43868100	2.16565500
С	1.92898300	1.98425200	-0.78138800
С	2.20426600	3.48914100	-0.81239400
С	2.93878800	2.62982600	0.16236300
С	0.90693200	-1.48543400	-0.06083900
F	0.74947500	-1.68908000	1.26685900
F	0.20927900	-2.40386800	-0.74358600
С	2.30190400	-1.31034500	-0.52318100
0	2.62616200	-1.43591600	-1.69049500
0	3.09284800	-0.88959200	0.47173600
С	5.18315800	-0.15083000	1.35924200
С	4.46680300	-0.59793900	0.10283700
Н	0.25255900	0.07895100	-1.72526700
Н	0.25813200	2.08422600	0.59038500
Н	-3.80241900	1.09259100	1.97852400
Н	-4.35350400	-0.00968400	0.70533400
Н	-1.50818100	-1.98990200	1.36355500
Н	-3.25812300	-1.83190000	1.62380800
Н	-1.35471400	1.52681700	2.12782700
Н	-0.42016000	0.01012700	2.08913600
Н	-1.88907100	0.13321200	3.10163600
Н	2.33499900	1.40860400	-1.60907900
Н	2.73699700	3.86933200	-1.67868800
Н	1.41941600	4.14169300	-0.44107300

Н	2.66704500	2.68648000	1.21269900
Н	3.98880700	2.42330500	-0.01976800
Н	6.22628400	0.08195400	1.12226500
Н	4.71499200	0.74504200	1.77798700
Н	5.16864600	-0.93930400	2.11786000
Н	4.90795800	-1.50228400	-0.32524200
Н	4.45901400	0.17523600	-0.66955500

P3-INT2

С	0.19691900	-0.14172200	-0.64618800
С	0.73589200	1.09820200	0.00464400
В	-1.40926300	-0.32245400	-0.45461700
0	-1.92922400	-1.63543400	-0.81332500
0	-2.09892900	0.75950100	-1.20311400
С	-2.60604000	1.72882000	-0.44288600
С	-2.43869800	1.38032600	1.03341900
0	-3.10849200	2.74736100	-0.85702900
С	-2.99678100	-1.99828400	-0.10040800
С	-3.31321800	-0.93894700	0.95189900
0	-3.63454200	-3.00948100	-0.26932100
Ν	-2.09396600	-0.06881200	1.05287900
С	-1.29673100	-0.44365300	2.25502900
С	0.57221100	2.42513900	-0.58016700
С	0.31143300	3.64911200	0.30718000
С	1.63602000	3.50322600	-0.37193300
С	1.08240500	-1.33968400	-0.33592100
F	1.00650600	-1.68764600	0.99455500
F	0.69882700	-2.43955900	-1.05055200
С	2.55122700	-1.05078300	-0.70871800
0	2.91944800	-1.02407800	-1.86249100
0	3.30446100	-0.79313400	0.35878500
С	5.31580000	-0.04332900	1.41137000
С	4.67724200	-0.39403200	0.08454800
Н	0.28609000	-0.02041900	-1.73686300
Н	1.26366600	1.01206600	0.95072400
Н	-1.59806300	1.94949000	1.43412100

Н	-3.33296600	1.59750500	1.61926600
Н	-3.56446000	-1.38246500	1.91525600
Н	-4.16526300	-0.34774400	0.60788700
Н	-0.37600500	0.13460200	2.26182800
Н	-1.05714800	-1.50403000	2.20511500
Н	-1.88428600	-0.23007500	3.15065500
Н	0.07456400	2.44761000	-1.54580500
Н	-0.39473900	4.38664700	-0.06281400
Н	0.27329500	3.48201300	1.38082400
Н	2.49527000	3.23231000	0.23556800
Н	1.86334000	4.14553900	-1.21778200
Н	6.35445000	0.26129500	1.24761900
Н	4.78487700	0.78414300	1.89245100
Н	5.31029600	-0.90342500	2.08785400
Н	5.18221500	-1.22560600	-0.41433400
Н	4.65308700	0.45510700	-0.60390600

P3-TS2a

С	0.21279900	-0.13860700	-0.62670700	
С	0.76884800	1.12040600	-0.00602300	
В	-1.38645500	-0.34502800	-0.44348000	
0	-1.87819000	-1.66261100	-0.83169600	
0	-2.08846100	0.73276200	-1.18619400	
С	-2.63234800	1.67503000	-0.41969300	
С	-2.47390200	1.30812700	1.05352800	
0	-3.16707900	2.68148200	-0.82362800	
С	-2.94607400	-2.05957500	-0.13971700	
С	-3.29496900	-1.02845500	0.92995900	
0	-3.56285800	-3.07923200	-0.33568200	
Ν	-2.09718500	-0.13228400	1.05742000	
С	-1.30598600	-0.50624200	2.26350900	
С	0.79545000	2.34035400	-0.66690900	
С	-0.05061200	3.87942800	0.10929800	
С	1.38529600	3.60578900	-0.12955700	
С	1.12105200	-1.31683400	-0.30350800	
F	1.06670900	-1.63796700	1.03524900	
F	0.74861100	-2.43935200	-0.98893200	
---	-------------	-------------	-------------	--
С	2.58054400	-1.01317600	-0.70036200	
0	2.93040800	-0.99070900	-1.86011000	
0	3.34804400	-0.74135200	0.35291600	
С	5.37432600	0.01946500	1.36822000	
С	4.71221300	-0.33219700	0.05324600	
Н	0.29981700	-0.03462800	-1.71797100	
Н	1.17156900	1.05740200	1.00275100	
Н	-1.64849900	1.88572500	1.47073900	
Н	-3.37743200	1.49912300	1.63405900	
Н	-3.54135600	-1.49675700	1.88278100	
Н	-4.15887400	-0.45117800	0.59192400	
Н	-0.40008900	0.09401300	2.29478100	
Н	-1.03800900	-1.55910300	2.19949800	
Н	-1.91037900	-0.32264700	3.15470600	
Н	0.47860200	2.36681300	-1.70606300	
Н	-0.66536600	4.37563200	-0.63055800	
Н	-0.47688000	3.68821100	1.08590900	
Н	1.99363200	3.47620700	0.76704800	
Н	1.88850400	4.23334600	-0.86644600	
Н	6.40698600	0.33315900	1.18477700	
Н	4.84623900	0.84081000	1.86259000	
Н	5.38945300	-0.84295100	2.04162800	
Н	5.21339200	-1.15862000	-0.45789300	
Н	4.66866300	0.51863900	-0.63220200	

P3-INT2a

С	0.57663700	-0.92494000	-0.60954000
В	0.23295500	0.65989700	-0.56683100
0	-1.11930000	0.98423200	-1.01715500
0	1.24969300	1.40259000	-1.34214900
С	2.15355100	2.03336700	-0.59268200
С	1.74877000	1.97842400	0.87984300
0	3.15289000	2.56960100	-1.01017700
С	-1.64473000	2.03947300	-0.39241400
С	-0.64591400	2.59942400	0.61614800

0	-2.74624400	2.48949300	-0.60126300	
Ν	0.33823400	1.49509100	0.87219000	
С	1.93659100	-1.21087800	-0.01819600	
С	-0.03230700	0.77115500	2.12162600	
С	-0.45693900	-1.91600200	-0.09072600	
С	3.08879900	-1.05786000	-0.67619900	
С	4.47005200	-1.20050700	-0.08371500	
С	4.53397900	-1.73449000	1.30632000	
F	-0.12417100	-3.18199600	-0.50762400	
F	-0.45082800	-1.96672700	1.28648400	
С	-1.89111100	-1.65028900	-0.58515800	
0	-2.24738300	-1.94461800	-1.70295400	
0	-2.63253200	-1.05338700	0.34726100	
С	-4.60658900	0.06514300	1.10330100	
С	-3.96811700	-0.64471000	-0.07050900	
Н	0.61090600	-1.11369000	-1.69141300	
Н	2.37211600	1.24201300	1.39122200	
Н	1.84932200	2.94427200	1.37721500	
Н	-1.12870500	2.92315200	1.53807700	
Н	-0.13648000	3.45526900	0.16664200	
Н	1.95952700	-1.49377400	1.03167700	
Н	0.65563100	-0.05596200	2.27347200	
Н	-1.04456000	0.38193200	2.01643900	
Н	0.02268000	1.46455100	2.96335100	
Н	3.06309700	-0.77236300	-1.72757100	
Н	5.06151600	-1.84425600	-0.76384500	
Н	4.97078600	-0.22187400	-0.13752700	
Н	5.31784700	-1.41591500	1.98486000	
Н	3.94249200	-2.60006300	1.58880600	
Н	-5.62585900	0.36226100	0.83627000	
Н	-4.65503000	-0.58805100	1.98010400	
Н	-4.04579300	0.96858700	1.35991900	
Н	-3.86081800	0.01061900	-0.93734900	
Н	-4.51913000	-1.54046500	-0.36837300	

P3-INT3

Р	-2.72518300	1.74692900	-0.03074700
С	-3.63198200	0.76781700	1.24968700
С	-3.83544900	1.79902900	-1.47549200
С	-2.70580800	3.43814700	0.67306800
С	-4.05118500	-0.53453100	0.98430200
С	-3.75281200	1.28645300	2.56758700
С	-3.27733900	1.58399500	-2.74345600
С	-5.21739100	2.00318100	-1.35407800
С	-3.63052800	4.42757600	0.32235400
С	-1.70000600	3.74094500	1.60556500
С	-3.96102100	-1.11209500	-0.39300200
С	-4.61051600	-1.33681700	2.03080400
С	-4.25610800	0.52018600	3.58966500
С	-4.09368600	1.56996800	-3.87396700
С	-6.02888000	1.99645600	-2.48661200
С	-3.56015100	5.69504600	0.90586500
С	-1.64012100	5.00011500	2.19752500
С	-2.75129500	-1.52392100	-0.95351200
С	-5.17669900	-1.23052800	-1.14756900
С	-4.69052400	-0.80728500	3.35727800
С	-5.06939600	-2.66446300	1.80777200
С	-5.46894200	1.77435800	-3.74658100
С	-2.57149300	5.98196800	1.84729200
Р	-1.12289900	-1.24783100	-0.10807300
С	-2.73704200	-2.03703800	-2.28021600
С	-5.13206700	-1.72149300	-2.48972800
С	-6.44066800	-0.85187900	-0.61534400
С	-5.20198300	-1.61890500	4.40344600
С	-5.57077800	-3.42430700	2.84022500
С	-1.35443800	-1.79282100	1.61734600
С	-0.01116100	-2.49357900	-0.87770800
С	-3.88484000	-2.12024200	-3.02706500
С	-6.32987500	-1.80567900	-3.24651400
С	-7.58828900	-0.95715900	-1.36781100
С	-5.63425100	-2.90134500	4.15372400
С	-1.92133600	-3.03727400	1.93179700
С	-0.96594100	-0.93312100	2.65320200
С	0.50193800	-2.21660000	-2.15758100
С	0.35990500	-3.68844800	-0.24770000
С	-7.53608400	-1.43444200	-2.69864600
С	-2.07472400	-3.42264600	3.26161900
С	-1.13297300	-1.31554000	3.98341900
С	1.33749600	-3.12559500	-2.80194400
С	1.19708100	-4.59904000	-0.89697000

С	-1.68269400	-2.56205200	4.28886600
С	1.68571000	-4.32295400	-2.17355400
Pd	-0.49078500	0.92584800	-0.41810700
Br	0.16321200	3.17633300	-1.38008800
Н	-3.43646500	2.30146800	2.77151200
Н	-2.20788200	1.42157200	-2.83352900
Н	-5.66116500	2.13549400	-0.37211500
Н	-4.39882400	4.21957700	-0.41333500
Н	-0.95552700	2.98987700	1.85329100
Н	-4.33135500	0.93023800	4.59335600
Н	-3.65644200	1.39109100	-4.85188400
Н	-7.10008400	2.13737200	-2.38277300
Н	-4.27952100	6.45724800	0.62052100
Н	-0.85719600	5.22096600	2.91711300
Н	-5.01353500	-3.08087700	0.80919300
Н	-6.10563800	1.75343800	-4.62614200
Н	-2.51875300	6.96818000	2.29929600
Н	-1.80583200	-2.37273000	-2.71540500
Н	-6.49499500	-0.46774900	0.39551800
Н	-5.24768100	-1.20422400	5.40692700
Н	-5.91411300	-4.43649600	2.64743000
Н	-3.84645300	-2.50571300	-4.04228700
Н	-6.27380200	-2.17400600	-4.26732300
Н	-8.54162800	-0.66153700	-0.93970400
Н	-6.02577200	-3.51385400	4.96053100
Н	-2.26842500	-3.69188300	1.13885900
Н	-0.55429100	0.04079300	2.40842800
Н	0.25093900	-1.27939000	-2.64476800
Н	0.00739600	-3.91429000	0.75070500
Н	-8.44821800	-1.50498500	-3.28377700
Н	-2.52880200	-4.38013500	3.49488900
Н	-0.84447900	-0.63563900	4.77953400
Н	1.73038900	-2.89014200	-3.78585300
Н	1.46982500	-5.52359300	-0.39612900
Н	-1.81901300	-2.85741700	5.32482500
Н	2.34806200	-5.02539700	-2.66923900
С	1.53234900	0.38918700	-0.47496400
С	2.03512900	-0.22608400	0.82490100
Н	1.71925300	-0.27543600	-1.32050200
С	3.53325900	-0.39861800	0.90509300
Н	1.57432600	-1.20792300	1.00379800
Н	1.72793900	0.39229500	1.68250600
С	4.41196100	-0.06833900	-0.04610900
Н	3.90884600	-0.81520000	1.84384400

С	5.90910800	-0.21755700	0.07966000
Н	4.05509400	0.34008600	-0.98719300
С	6.36937500	-1.25179300	-0.94911900
Н	6.12171100	-0.69252600	1.04389400
F	6.40784300	-0.70578700	-2.20087700
F	7.63382700	-1.71098300	-0.66045700
С	5.42927500	-2.47281800	-1.00174200
0	4.70925100	-2.73184300	-1.93807600
0	5.50554000	-3.14322500	0.15091600
С	4.53138000	-4.20497800	0.34833900
С	4.94065700	-5.48539500	-0.35778600
Н	4.50256200	-4.33321000	1.43184800
Н	3.56250200	-3.84468200	-0.00118800
Н	4.22511800	-6.27921800	-0.11589700
Н	4.94838400	-5.34427300	-1.44124300
Н	5.93480800	-5.80869400	-0.03335300
Н	2.03598700	1.33763100	-0.66404600
В	6.72839000	1.21486100	-0.12282000
0	8.11753400	0.97806900	-0.54072100
0	5.84284700	2.22674900	-0.71245400
С	5.07188400	2.71519700	0.28899500
С	5.67168200	2.33056900	1.67831400
0	4.08038000	3.38147200	0.13250400
С	8.82796000	0.66175900	0.56250500
С	8.03712400	1.04821400	1.85266000
0	9.93328700	0.18206600	0.55763500
Ν	7.06297300	2.00847700	1.28316800
С	7.78819400	3.31095100	1.07071500
Н	5.60697200	3.15784200	2.38582900
Н	5.15904700	1.45531000	2.07656400
Н	8.69281100	1.49828100	2.59857600
Н	7.53825100	0.18099600	2.28453900
Н	7.18465900	3.97977700	0.46070500
Н	8.73486200	3.13483100	0.56388900
Н	7.96663900	3.75824900	2.05066800

P3-INT4

Р	-2.72969600	1.66776000	-0.10658700
С	-3.69319900	0.83889400	1.22669200
С	-3.92356300	1.91217100	-1.45550700
С	-2.31582700	3.31218900	0.58288400
С	-4.18740100	-0.44493200	1.00933000
С	-3.83188500	1.44042500	2.50586700
С	-3.56888200	1.48941500	-2.74362600
С	-5.20892900	2.41914800	-1.21681100
С	-2.79147600	4.50596500	0.03278800
С	-1.37874800	3.36576300	1.63155400
С	-4.12616700	-1.08739600	-0.34176700
С	-4.81648700	-1.16033300	2.07747500
С	-4.40729700	0.75752200	3.54924700
С	-4.49617700	1.56652200	-3.78189200
С	-6.12847000	2.50440000	-2.26001500
С	-2.33897500	5.73543200	0.52083800
С	-0.94011700	4.59238100	2.12827300
С	-2.95806900	-1.64939000	-0.86044900
С	-5.34032800	-1.13029900	-1.10663400
С	-4.89738000	-0.55929200	3.37368800
С	-5.34162000	-2.47086000	1.90711400
С	-5.77513000	2.07172900	-3.54069900
С	-1.41605500	5.78366100	1.56593800
Р	-1.31361500	-1.42944200	-0.03632200
С	-2.98782500	-2.26457400	-2.14269300
С	-5.34119700	-1.73660900	-2.40239300
С	-6.55868600	-0.57468200	-0.62605900
С	-5.47072100	-1.29068400	4.44658500
С	-5.89855700	-3.15259500	2.96523400
С	-1.56283000	-1.80250500	1.72898600
С	-0.25729500	-2.78290700	-0.68630700
С	-4.13846900	-2.30203200	-2.88976300
С	-6.53969200	-1.76843300	-3.16183800
С	-7.70709100	-0.62504700	-1.38251600
С	-5.95972200	-2.56193200	4.25010000
С	-2.20186100	-2.98133600	2.14274000
С	-1.11882100	-0.88564100	2.69004400
С	0.23033700	-2.67672600	-2.00199500
С	0.11909100	-3.88956300	0.08610900
С	-7.70168000	-1.22637500	-2.66331200
С	-2.37962400	-3.24196000	3.49949600
С	-1.30971800	-1.14255100	4.04676400
С	1.03909800	-3.67285700	-2.54295300
С	0.93356400	-4.88551400	-0.45854900

С	-1.93746800	-2.32207500	4.45234700
С	1.38895000	-4.78442800	-1.77282000
Pd	-0.60924700	0.66461500	-0.59818900
Br	0.00543700	2.73196100	-1.98581100
Н	-3.47721500	2.45066700	2.66389500
Н	-2.57643200	1.08845000	-2.92005900
Н	-5.49512900	2.72415500	-0.21434700
Н	-3.50281800	4.47965700	-0.78521800
Н	-0.99398600	2.44286400	2.05834400
Н	-4.49645000	1.22665600	4.52542400
Н	-4.22358600	1.22233600	-4.77501700
Н	-7.12633800	2.88784900	-2.07027700
Н	-2.71170100	6.65587000	0.08151200
Н	-0.23284600	4.62153000	2.95316900
Н	-5.29103800	-2.93716700	0.93043500
Н	-6.50012700	2.12099900	-4.34757500
Н	-1.07169900	6.74054400	1.94685700
Н	-2.09281700	-2.72457500	-2.53827500
Н	-6.57560900	-0.09819900	0.34613900
Н	-5.51865300	-0.82404200	5.42669200
Н	-6.29051100	-4.15412800	2.81520600
Н	-4.13679200	-2.77903800	-3.86599500
Н	-6.51966200	-2.23150200	-4.14457000
Н	-8.62473100	-0.19091400	-0.99697200
Н	-6.39731200	-3.11338500	5.07684100
Н	-2.58130700	-3.68158400	1.40569300
Н	-0.64371500	0.03450700	2.36612700
Н	-0.01242900	-1.80242800	-2.59846400
Н	-0.21435900	-3.98123300	1.11216200
Н	-8.61512600	-1.25601700	-3.24971900
Н	-2.88950300	-4.14767100	3.81039800
Н	-0.97987900	-0.41779100	4.78511100
Н	1.41029200	-3.57179700	-3.55761900
Н	1.21368000	-5.73905200	0.15203000
Н	-2.09344900	-2.51910500	5.50852900
Н	2.02781500	-5.55621400	-2.19050600
С	1.38959000	0.05871600	-0.64035900
С	1.90851400	-0.28571900	0.75260400
Н	1.54478900	-0.77909800	-1.32091200
С	3.40415300	-0.47643000	0.85225400
Н	1.42847000	-1.20390500	1.11582000
Н	1.61739200	0.48659800	1.48469700
С	4.29552600	-0.15252300	-0.08768700
Н	3.75935100	-0.91636600	1.78731500

С	5.78520400	-0.36734700	0.02758200
Н	3.95769800	0.28085400	-1.02526000
С	6.18971100	-1.33641700	-1.08056700
Н	5.96484200	-0.93304400	0.94864300
F	6.12980500	-0.73743200	-2.30205300
F	7.48454500	-1.77577700	-0.89615500
С	5.26724100	-2.57356400	-1.11988200
0	4.48607400	-2.80166600	-2.01405600
0	5.42839000	-3.28615400	-0.00316700
С	4.49507900	-4.38449600	0.20656700
С	4.89806700	-5.62209300	-0.57455000
Н	4.53423900	-4.55519600	1.28369700
Н	3.49813400	-4.03899800	-0.07176600
Н	4.22006200	-6.44546400	-0.32403900
Н	4.83737100	-5.43838900	-1.65001200
Н	5.91806300	-5.92785600	-0.32177100
Н	1.91437600	0.91748200	-1.06575900
В	6.62781600	1.06831800	0.01184400
0	7.78808600	1.05754800	-0.87013100
0	5.65450200	2.19215900	0.09222200
С	5.25525000	2.26977900	1.36770400
С	6.22188600	1.49264400	2.30834900
0	4.27988100	2.88515500	1.74817600
С	8.81412600	0.47661200	-0.19892100
С	8.45769100	0.33411200	1.31391200
0	9.86151500	0.15560500	-0.69381000
Ν	7.40844700	1.38059100	1.42440400
С	8.11058200	2.71502300	1.44552100
Н	6.42040100	2.04600400	3.22661700
Н	5.80664500	0.51518700	2.55475900
Н	9.32083900	0.52611900	1.95076500
Н	8.05898600	-0.65922200	1.51930300
Н	7.39358600	3.51913500	1.29227100
Н	8.85706200	2.75929700	0.65530200
Н	8.59171500	2.82436600	2.41914400
Κ	2.05567900	3.47664300	0.31319900

P3-TS2

Р	2.10944600	-1.81997100	-0.20960100
С	2.83642500	-1.07330600	1.31204400
С	3.49405400	-2.09942800	-1.38201200
С	1.65780700	-3.52828800	0.30943900
С	3.74721800	-0.01685300	1.27688300
С	2.25756700	-1.44960600	2.56101200
С	3.42551300	-1.46881400	-2.63239300
С	4.59919300	-2.90733900	-1.08318200
С	2.40966300	-4.32726500	1.18717600
С	0.47696400	-4.05162000	-0.24265600
С	4.33110700	0.50967000	0.00001800
С	4.16327300	0.61008100	2.50227200
С	2.59919200	-0.82132400	3.73135600
С	4.45519800	-1.62360700	-3.55966700
С	5.62714400	-3.06295000	-2.01095900
С	1.98960100	-5.61949800	1.50041800
С	0.05745000	-5.34696200	0.07125200
С	3.62573600	1.38939100	-0.82594000
С	5.67620700	0.14472400	-0.33066700
С	3.56986000	0.21214600	3.74177600
С	5.14966100	1.63383000	2.53496900
С	5.56010100	-2.41749600	-3.24767800
С	0.81341100	-6.13222800	0.94326100
Р	1.82569500	1.70458200	-0.54909700
С	4.25558700	1.91563900	-1.98600300
С	6.27845100	0.65945400	-1.52192100
С	6.43985800	-0.73897600	0.48083600
С	3.96535000	0.84761900	4.94653900
С	5.52853900	2.21997500	3.72232100
С	1.75007800	2.40875300	1.13835600
С	1.38974200	3.11013700	-1.64649300
С	5.53673200	1.55767700	-2.32710100
С	7.59929400	0.26697000	-1.86241600
С	7.72251800	-1.09418400	0.13034600

С	4.92934400	1.83049800	4.94208300
С	2.65287800	3.38430900	1.58453400
С	0.76983600	1.93532700	2.01926800
С	1.23281700	2.83776700	-3.01970500
С	1.04483600	4.38395500	-1.17184600
С	8.31016300	-0.59106500	-1.05476300
С	2.57433500	3.87044600	2.88822300
С	0.69133900	2.41765300	3.32482700
С	0.77999700	3.82208200	-3.89665600
С	0.57129400	5.36222000	-2.04872400
С	1.59828100	3.38491300	3.76167400
С	0.44209500	5.08860800	-3.41152700
Pd	0.57371800	-0.19932200	-0.96560800
Br	-1.76529600	-1.20233800	-1.75770400
Н	1.54244500	-2.26494100	2.58594500
Н	2.56932800	-0.83772000	-2.85659100
Н	4.66962300	-3.40170300	-0.12060400
Н	3.31418300	-3.93459400	1.64073300
Н	-0.11562700	-3.43565000	-0.91444200
Н	2.14214500	-1.12485000	4.67008500
Н	4.39966400	-1.11638200	-4.51850600
Н	6.48994200	-3.67280500	-1.76125500
Н	2.58036000	-6.22829200	2.17889000
Н	-0.86173200	-5.73431000	-0.35796900
Н	5.60724600	1.95539000	1.60770200
Н	6.36908400	-2.53081000	-3.96326500
Н	0.48903700	-7.13880100	1.19042900
Н	3.71552800	2.61297000	-2.61460500
Н	5.99360900	-1.14160900	1.38251400
Н	3.49770000	0.53450000	5.87641500
Н	6.28834500	2.99605400	3.72027800
Н	5.99872100	1.96773600	-3.22135800
Н	8.03921100	0.66169700	-2.77442800
Н	8.28667700	-1.77258200	0.76372900
Н	5.23132700	2.30648300	5.87026100
Н	3.43073900	3.74423800	0.91817700
Н	0.08585900	1.16966700	1.66793000
Н	1.46751300	1.84492400	-3.39793500
Н	1.14220100	4.61430100	-0.11706300
Н	9.32107300	-0.88381200	-1.32265500
Н	3.29037000	4.61059500	3.23092600
Н	-0.06266000	2.02979900	4.00432100
Н	0.67788600	3.59593000	-4.95404700
Н	0.30788700	6.34326300	-1.66363100

Н	1.55171200	3.75384900	4.78175200
Н	0.07548600	5.85280600	-4.09020700
С	-1.66124100	1.14178400	-2.06116000
С	-1.99689400	1.94894300	-0.83995600
Н	-0.72960300	1.40173200	-2.54783400
С	-3.18482000	1.52836300	-0.01446300
Н	-2.19159100	2.96798000	-1.22971300
Н	-1.11922400	2.04362200	-0.19948700
С	-4.22990600	0.82091700	-0.45153600
Н	-3.17382400	1.86889000	1.02095700
С	-5.40121900	0.42723500	0.41248100
Н	-4.26232500	0.50988200	-1.49086100
С	-6.65357500	1.18066700	-0.02549100
Н	-5.20630300	0.79804700	1.42782100
F	-7.09955700	0.73474400	-1.25126000
F	-7.68556000	0.97371200	0.85130800
С	-6.42203900	2.70025000	-0.16420200
0	-6.47812700	3.29075700	-1.21762300
0	-6.13328000	3.22048900	1.02770300
С	-5.82973100	4.64675400	1.06130600
С	-4.37924000	4.90273300	0.69091800
Н	-6.51636000	5.15884700	0.38491700
Н	-6.04633000	4.93664300	2.08999700
Н	-4.16901700	5.97461000	0.77020200
Н	-3.70308900	4.36838800	1.36537400
Н	-4.17863200	4.58712700	-0.33651500
Н	-2.46912300	1.02119800	-2.77331700
Κ	-1.57941200	-1.42369800	1.65491000
В	-5.57421800	-1.16772800	0.63818100
0	-6.63235300	-1.50576900	1.59950600
0	-4.28109000	-1.74893400	1.05693000
С	-4.10756600	-3.00118100	0.63475700
С	-5.29103800	-3.44714100	-0.20514300
0	-3.12879300	-3.66694400	0.90128500
С	-7.71789700	-2.06139100	1.04872200
С	-7.47944000	-2.29591500	-0.44309400
0	-8.73350700	-2.32919000	1.64122600
Ν	-5.99941300	-2.18381900	-0.60842600
С	-5.58947400	-1.80862600	-1.99564600
Н	-4.98074500	-4.02452200	-1.07592900
Н	-5.94595200	-4.06738500	0.41181600
Н	-7.86057400	-3.25861700	-0.78537100
Н	-7.95452300	-1.49426100	-1.01163000
Н	-4.50191500	-1.72615000	-2.02974900

Н	-5.92410700	-2.58501000	-2.68671500
Н	-6.04515100	-0.85720300	-2.25167400

56a

С	-0.36244700	-0.47198200	-0.83418500
В	-1.02048500	0.98226400	-0.54716400
0	-2.48769100	1.00380000	-0.75363900
0	-0.35257000	1.98983600	-1.36685900
С	-0.21457400	3.17275800	-0.76836700
С	-0.78894900	3.11659100	0.64344200
0	0.27487300	4.15431400	-1.27280300
С	-3.20973200	1.24309200	0.34274600
С	-2.29085000	1.36675600	1.55295300
0	-4.41577300	1.31747900	0.37339700
Ν	-0.94577300	1.66075400	0.98011400
С	1.11954300	-0.55335700	-0.54467200
С	0.16650800	1.22243600	1.87240600
С	-1.09098800	-1.64642300	-0.21187200
С	2.06393300	-0.02668200	-1.32768600
С	3.54936100	-0.03886600	-1.07078700
С	3.94523800	-0.72981800	0.22247200
Br	5.91290200	-0.67871900	0.46796700
F	-0.43694900	-2.82278200	-0.48876800
F	-1.08798400	-1.54113100	1.17065500
С	-2.53357800	-1.83224900	-0.72049800
0	-2.76187500	-2.06266300	-1.88652100
0	-3.43093500	-1.71894400	0.25323100
С	-5.66339000	-1.72543700	1.10871200
С	-4.82962600	-1.83763300	-0.14847900
Н	-0.51720900	-0.58593500	-1.91560300
Н	-0.14685100	3.62092600	1.36531400
Н	-1.76500100	3.60817600	0.64447900
Н	-2.25624700	0.39787500	2.05532200
Н	-2.61552000	2.13299800	2.25720400
Н	1.39912500	-1.06148100	0.37503500
Н	1.11412400	1.42196300	1.37260400

0.06685600	0.15692100	2.05873700
0.11136900	1.77791200	2.81118300
1.76607500	0.47662800	-2.24636100
4.05927700	-0.52613900	-1.91227300
3.92218900	0.99397400	-1.05869400
3.53780800	-0.23878200	1.10554800
3.68367000	-1.78708300	0.23308200
-6.72311100	-1.81938400	0.85017200
-5.40991300	-2.51770500	1.82004900
-5.50798500	-0.75244900	1.58218600
-5.03875200	-1.03239000	-0.85565300
-4.95516700	-2.79792600	-0.65469500
	0.06685600 0.11136900 1.76607500 4.05927700 3.92218900 3.53780800 3.68367000 -6.72311100 -5.40991300 -5.50798500 -5.03875200 -4.95516700	0.066856000.156921000.111369001.777912001.766075000.476628004.05927700-0.526139003.922189000.993974003.53780800-0.238782003.68367000-1.78708300-6.72311100-1.81938400-5.40991300-2.51770500-5.03875200-1.03239000-4.95516700-2.79792600

P4-TS1

С	0.49891300	0.82891400	-0.30024800
С	-0.60445200	0.64670900	0.50054100
В	1.79481500	-0.05451200	-0.22153700
0	2.29354700	-0.52512700	-1.51890500
0	1.74743900	-1.14165500	0.78210800
С	2.40735900	-0.88532400	1.90916900
С	3.12718600	0.46106800	1.80954100
0	2.42447700	-1.59932500	2.88487300
С	3.62158400	-0.50772800	-1.62830800
С	4.25393600	0.09796600	-0.37464300
0	4.24722300	-0.91940100	-2.57675000
Ν	3.14630900	0.78102800	0.35925000
С	3.14012500	2.24126000	0.08053600
С	-1.74286400	1.60477000	0.61476500
С	-1.50108900	3.10371000	0.53863600
С	-2.21960500	2.40352900	-0.57663600
С	-1.59710500	-0.98211600	-0.66192400
F	-1.73248200	-0.50576400	-1.90098100
F	-0.70101500	-1.96721400	-0.62265800
С	-2.83065900	-1.22711600	0.11330100
0	-2.83859100	-1.87718100	1.14469100
0	-3.86819500	-0.54408000	-0.39188200
С	-6.06953900	0.36944800	-0.26961100

-5.07855900	-0.55388800	0.40741600
0.43947400	1.59311700	-1.07735900
-0.51013600	-0.05132200	1.33195700
2.53546900	1.21793200	2.33113100
4.12763300	0.43223100	2.24318300
5.05847800	0.79154400	-0.62137300
4.66610200	-0.70919600	0.23590700
2.25747100	2.68237500	0.54290900
3.09597100	2.39399100	-0.99918400
4.04810000	2.69733200	0.48165800
-2.51434800	1.29250900	1.31296000
-2.07102400	3.74270700	1.20711600
-0.47780500	3.42586100	0.36524600
-1.69518800	2.25056900	-1.51518700
-3.29010300	2.54931500	-0.68300600
-7.00380800	0.38693700	0.30077600
-5.67711200	1.38989600	-0.32262000
-6.29043300	0.02765500	-1.28537400
-5.44624500	-1.58220800	0.46922900
-4.82785000	-0.22214100	1.41944000
	-5.07855900 0.43947400 -0.51013600 2.53546900 4.12763300 5.05847800 4.66610200 2.25747100 3.09597100 4.04810000 -2.51434800 -2.07102400 -0.47780500 -1.69518800 -3.29010300 -5.67711200 -6.29043300 -5.44624500 -4.82785000	-5.07855900 -0.55388800 0.43947400 1.59311700 -0.51013600 -0.05132200 2.53546900 1.21793200 4.12763300 0.43223100 5.05847800 0.79154400 4.66610200 -0.70919600 2.25747100 2.68237500 3.09597100 2.39399100 4.04810000 2.69733200 -2.51434800 1.29250900 -2.07102400 3.74270700 -0.47780500 3.42586100 -1.69518800 2.25056900 -3.29010300 2.54931500 -7.00380800 0.38693700 -5.67711200 1.38989600 -6.29043300 0.02765500 -5.44624500 -1.58220800 -4.82785000 -0.22214100

С	1.99354000	2.51675100	0.75596300
С	1.60545400	-0.72909900	0.41741800
F	1.86503000	-0.43577000	1.72682000
F	0.90481100	-1.90774400	0.40333300
С	2.91715200	-0.97153800	-0.34789100
0	2.92693900	-1.48374800	-1.44658100
0	3.97447600	-0.49665900	0.30400400
С	6.28465500	0.09208300	0.47365100
С	5.24894000	-0.59202500	-0.39273700
Н	-0.41681500	1.12423900	1.48413400
Н	0.51314100	-0.00855400	-1.22522800
Н	-2.46772700	1.64361100	-1.96059700
Н	-4.08366400	0.91490800	-2.09367200
Н	-5.09080900	0.62366200	0.75074700
Н	-4.70579600	-0.64985800	-0.42081200
Н	-2.21850900	2.65265900	0.11954700
Н	-3.08431800	2.02836900	1.54176000
Н	-4.00635000	2.69664800	0.16439700
Н	2.37702900	1.52211900	-1.17418100
Н	1.38424200	3.78329300	-0.99255900
Н	-0.00716300	3.12434700	-0.01289300
Н	1.59201700	2.26632600	1.73296300
Н	3.00408300	2.91350400	0.78084900
Н	7.26189400	0.04313100	-0.01735800
Н	6.02754100	1.14440600	0.62943900
Н	6.36264800	-0.39699800	1.44933400
Н	5.47202300	-1.65028400	-0.55342400
Н	5.14019100	-0.11334200	-1.36990000

P4-INT3

С	0.60288800	-1.06435400	-3.87962900
С	2.35844600	-2.67813100	-3.48283800
С	3.81796200	-2.58340900	-0.45737400
С	1.71636700	-3.32640500	0.48047400
С	2.87684800	0.26942800	1.17509800
С	3.91941600	2.10985800	-0.21179100
С	3.78759400	2.00857900	-2.65519100
Н	2.73894100	0.35712900	-3.48262900
С	0.58643700	-1.41042900	-5.22892000
Н	-0.09699000	-0.32704700	-3.50717600
С	2.33244400	-3.03184900	-4.83384200
Н	3.04398100	-3.18241100	-2.81164400
С	4.48625200	-3.57967500	0.25096900
Н	4.38099400	-1.89439500	-1.07863400
С	2.38759800	-4.31870700	1.19418600
Н	0.63911100	-3.24253700	0.54038100
С	1.58860000	0.26286900	1.69009900
С	3.92542000	-0.43747800	1.85777400
С	4.20909200	2.68870300	-1.48740500
С	4.33044500	2.80463600	0.95843600
Н	4.02633500	2.43364000	-3.62639900
С	1.45180400	-2.39686300	-5.71001000
Н	-0.11361800	-0.92201800	-5.90051600
Н	3.00106200	-3.80667500	-5.19783600
С	3.77341000	-4.44361700	1.08489800
Н	5.56521400	-3.66457400	0.17045500
Н	1.82634600	-4.99203900	1.83562900
Р	0.13984300	1.05221000	0.87114300
С	1.28999700	-0.54435400	2.82819800
С	3.60947400	-1.22317200	3.00980500
С	5.27387400	-0.41043300	1.41138000
С	4.88843700	3.93311200	-1.54758400
Н	4.10799800	2.37687000	1.92963600
С	4.98306400	4.01327900	0.86842200
Н	1.43230500	-2.67417000	-6.75996700
Н	4.29770100	-5.21055100	1.64740200
С	-0.66318300	1.96849700	2.25060800
С	0.65266700	2.50017400	-0.13223200
С	2.26452500	-1.27118200	3.45886400
Н	0.27456700	-0.58813700	3.20311400
С	4.63693900	-1.94760300	3.66530800
Н	5.52922600	0.17011300	0.53361800
С	6.25453400	-1.11192900	2.07764000
Н	5.09773600	4.36473500	-2.52259400

С	5.26468500	4.58589400	-0.39573100
Н	5.28142400	4.53535400	1.77276200
С	-0.04220600	2.18540100	3.49054300
С	-1.90788200	2.56687800	2.00015500
С	1.21258300	3.63076500	0.48394800
С	0.37849900	2.52926000	-1.50308500
Н	2.01696300	-1.88996300	4.31683700
Н	4.37791500	-2.54652100	4.53418400
С	5.93635100	-1.89138400	3.21333100
Н	7.27996400	-1.07289600	1.72228500
Н	5.77773900	5.54135900	-0.45171500
С	-0.67188100	2.95771000	4.46769100
Н	0.93311000	1.76213600	3.69735700
С	-2.53524000	3.33088200	2.98137100
Н	-2.37932000	2.44620700	1.03333200
С	1.51417500	4.76168200	-0.26939200
Н	1.41320200	3.62645800	1.54965000
С	0.67342800	3.66771900	-2.25444700
Н	-0.07585000	1.66823000	-1.97522200
Н	6.71749300	-2.44663800	3.72382300
С	-1.92236400	3.52489400	4.21984700
Н	-0.17909900	3.11682400	5.42233100
Н	-3.50919000	3.76540800	2.78080200
С	1.24346600	4.78308400	-1.64051800
Н	1.96478100	5.62351000	0.21236200
Н	0.45738800	3.67804900	-3.31868100
Н	-2.41564400	4.11555800	4.98564200
Н	1.47482600	5.66806700	-2.22575800
Pd	-0.74102700	-0.70573500	-0.32852300
Br	-1.34051800	-2.85157600	-1.54386800
С	-2.79393000	-0.41031500	0.26811000
С	-3.69038300	-0.43316800	-1.00878700
В	-3.50666800	-1.40362200	1.36701100
0	-4.53940800	-0.61165500	2.11174500
0	-3.79258300	-2.75389900	0.85364500
С	-2.76855300	-3.57681100	1.16719100
С	-1.75698000	-2.83885800	2.09575000
0	-2.70712400	-4.74285700	0.86515000
С	-3.92596200	0.03257500	3.11263100
С	-2.50389600	-0.56143200	3.34240900
0	-4.41609700	0.92507400	3.76486400
Ν	-2.69402600	-1.89441500	2.74071400
С	-3.52227900	-2.69711200	3.71006000
С	-5.17933500	-0.25100900	-0.66493900

С	-5.80371900	1.04655900	-0.23111600
С	-6.23927000	0.39904900	-1.52640900
С	-3.28471700	0.44552000	-2.20474900
F	-1.91817200	0.38597800	-2.45886500
F	-3.86851000	-0.09158100	-3.31822300
С	-3.57262100	1.96733700	-2.28311500
0	-4.23094300	2.44917600	-3.17738700
0	-2.93536100	2.67455200	-1.34409600
С	-2.37128600	4.84163000	-0.38881800
С	-2.96824000	4.12145700	-1.57519500
Н	-2.83157600	0.60097700	0.67215400
Н	-3.59940500	-1.43523400	-1.43631200
Н	-1.27483200	-3.52178600	2.79607800
Н	-1.02044200	-2.29389600	1.50154900
Н	-2.23625300	-0.58394200	4.39977700
Н	-1.77346500	0.01236800	2.78154600
Н	-3.89192000	-3.60436300	3.23723500
Н	-4.37175900	-2.11553500	4.06042900
Н	-2.87941100	-2.95825500	4.55412800
Н	-5.54811700	-1.11746000	-0.12588600
Н	-6.46846700	1.02457400	0.62694500
Н	-5.20412200	1.95075400	-0.29002800
Н	-5.96287400	0.87304000	-2.46013500
Н	-7.21024400	-0.08849300	-1.55283100
Н	-2.32453300	5.91014100	-0.62563000
Н	-2.98786700	4.72144700	0.50497500
Н	-1.35916100	4.49482600	-0.17393500
Н	-2.39658800	4.30735600	-2.48819300
Н	-4.00573700	4.41060600	-1.75134000

P4-INT4

С	-3.21334000	1.01809800	0.19726300
С	-3.14853800	0.74644300	2.61107400
С	-0.67171900	-1.19617100	3.78590600
С	-2.30444600	-2.87518700	3.18362200
С	-3.74585700	-2.53011400	0.16300200
С	-1.59724800	-3.06110300	-0.80780000
С	-2.88259800	0.52969300	-1.17359100
С	-3.98571500	2.20807000	0.35767700
С	-3.89512600	1.88584100	2.78454400
Н	-2.82816100	0.18570000	3.47917500
С	-0.64217200	-1.68836400	5.08841000
Н	-0.02372700	-0.37248200	3.50971400
С	-2.26340100	-3.37605600	4.48742900
Н	-2.95191000	-3.34410100	2.45138600
С	-4.34844200	-3.48522500	-0.65513500
Н	-4.35479600	-1.93702300	0.83742200
С	-2.20012900	-4.01439500	-1.62873100
Н	-0.52756400	-2.90404600	-0.85066000
С	-1.59700100	0.62752500	-1.68839800
С	-3.90742500	-0.14018000	-1.92573000
С	-4.30957500	2.66163400	1.67524700
С	-4.39346200	2.99724500	-0.75223700
Н	-4.16047000	2.21503400	3.78536600
С	-1.43699500	-2.78260400	5.44232800
Н	0.01209600	-1.22754100	5.82244700
Н	-2.88300200	-4.22732000	4.75490800
С	-3.57953000	-4.22503100	-1.55627300
Н	-5.42245600	-3.63187500	-0.60691000
Н	-1.59282900	-4.57626500	-2.33311700
Р	-0.16700800	1.33273800	-0.76681000
С	-1.28371300	-0.01707000	-2.92210300
С	-3.57161200	-0.78012400	-3.15957600
С	-5.25090500	-0.22011000	-1.47019600
С	-5.01682300	3.88125200	1.83604600
Н	-4.14856700	2.66420500	-1.75453100
С	-5.07277700	4.17960900	-0.56424300
Н	-1.40854600	-3.17122800	6.45600500
Н	-4.05506100	-4.95468200	-2.20463100
С	0.67875200	2.37963800	-2.01818000
С	-0.70429600	2.65532000	0.38073400
С	-2.23451500	-0.70685700	-3.62693200
Н	-0.27733600	0.04337500	-3.31758500
С	-4.57310800	-1.47781600	-3.88122300
Н	-5.52215900	0.25376900	-0.53501600

С	-6.20641200	-0.89279100	-2.19959400
Н	-5.25268000	4.21768600	2.84189900
С	-5.38710500	4.62887600	0.74133700
Н	-5.36823600	4.77555300	-1.42256100
С	0.10498700	2.72263000	-3.25270800
С	1.93342300	2.91233700	-1.67989600
С	-1.28928300	3.82789700	-0.12351600
С	-0.42888600	2.55418000	1.74783400
Н	-1.97342100	-1.19904600	-4.55965700
Н	-4.29935900	-1.96460300	-4.81320500
С	-5.86708200	-1.53256200	-3.41388600
Н	-7.22837700	-0.93799100	-1.83554300
Н	-5.92160200	5.56464300	0.87415200
С	0.80103000	3.53418000	-4.14973400
Н	-0.88009500	2.36134800	-3.52140200
С	2.62933500	3.71158000	-2.58394200
Н	2.36170100	2.70607800	-0.70817200
С	-1.61840500	4.87058000	0.73773800
Н	-1.48869500	3.92494500	-1.18505700
С	-0.75099700	3.60541700	2.60723000
Н	0.04991000	1.66337400	2.13301200
Н	-6.62877300	-2.06572800	-3.97460100
С	2.07038000	4.01561700	-3.82635200
Н	0.34713600	3.78804000	-5.10291100
Н	3.61147000	4.08957600	-2.31952000
С	-1.34888600	4.76145400	2.10499200
Н	-2.08892900	5.76517400	0.34297100
Н	-0.53340200	3.51694900	3.66736100
Н	2.61728600	4.63081500	-4.53393100
Н	-1.60171300	5.57808300	2.77440100
Pd	0.72166800	-0.52133600	0.27728100
Br	1.38413000	-2.70469100	1.46162200
С	2.75648300	-0.20088900	-0.36072600
С	3.68940600	-0.31723500	0.88911200
В	3.36780700	-1.14745400	-1.55979400
0	4.54859700	-0.46457100	-2.15628900
0	3.37186500	-2.60020500	-1.22886200
С	2.23186300	-3.14300800	-1.65816500
С	1.43931600	-2.14296900	-2.54040600
0	1.87268500	-4.28458200	-1.44214100
С	4.09539600	0.43150500	-3.05005600
С	2.62783000	0.09945800	-3.44865700
0	4.74017500	1.34996800	-3.49535400
Ν	2.56008700	-1.31004300	-3.01407800

С	3.29951300	-2.11907800	-4.04970600
С	5.16857200	-0.08395000	0.53728400
С	5.76185600	1.25268000	0.18684500
С	6.23580900	0.51977400	1.42244900
С	3.30181600	0.45025200	2.17133200
F	1.94226900	0.35940300	2.45396400
F	3.91592200	-0.18593700	3.21346500
С	3.58382600	1.96060400	2.39080400
0	4.27217500	2.35452200	3.30453500
0	2.90239700	2.75257800	1.55718100
С	2.27102900	5.00517500	0.86689300
С	2.92310600	4.16857300	1.94298400
Н	2.80997500	0.83221600	-0.70225400
Н	3.62353700	-1.35129300	1.23643800
Н	0.88980000	-2.64493800	-3.33754000
Н	0.76623000	-1.55464600	-1.91040700
Н	2.45692700	0.23535900	-4.51716800
Н	1.93868100	0.71814700	-2.88270900
Н	3.48184600	-3.12957000	-3.68991200
Н	4.25501000	-1.65510100	-4.28154900
Н	2.67532800	-2.15306000	-4.94531400
Н	5.54327200	-0.89832200	-0.07242900
Н	6.40578100	1.30683200	-0.68556300
Н	5.15090400	2.14038300	0.32894300
Н	5.97815600	0.92237400	2.39394500
Н	7.21335300	0.04606600	1.39005900
Н	2.21309600	6.03757400	1.22828400
Н	2.85602700	5.00400100	-0.05548900
Н	1.25800200	4.66397100	0.64757400
Н	2.38386100	4.24118100	2.89097600
Н	3.96237800	4.45438300	2.11263800
Κ	0.73271500	-5.67044600	0.54491700

P4-TS2

С	-1.40177800	-2.12527100	2.70209500
С	-3.15032100	-2.60530500	0.47103100
С	-3.41999900	0.79879000	0.35290200
С	-3.15455500	0.49979800	2.75236200
С	-0.66522000	-1.33456500	3.60235700
С	-1.56844900	-3.48811500	2.99227800
С	-4.25806100	-2.94073500	1.26646300
С	-3.07160200	-3.11903400	-0.82635100
С	-3.28901400	0.34418900	-1.07132700
С	-4.14712800	2.00824300	0.59801000
С	-3.82607600	1.67130700	3.00355500
Н	-2.79759600	-0.09514800	3.58338900
С	-0.15149800	-1.87837600	4.77644100
Н	-0.48258600	-0.29053800	3.37877500
С	-1.03920500	-4.03581300	4.16361600
Н	-2.11712200	-4.12612800	2.30865300
С	-5.24855500	-3.78817500	0.77516300
Н	-4.34252600	-2.53514500	2.27018100
С	-4.06764700	-3.95837900	-1.32690700
Н	-2.24849300	-2.81877400	-1.46540300
С	-2.14319100	0.57308600	-1.83294200
С	-4.42227100	-0.30886000	-1.66589300
С	-4.32507200	2.46510000	1.94225200
С	-4.67925600	2.79908400	-0.45729200
Н	-3.98677900	1.99969300	4.02711200
С	-0.33690300	-3.23407700	5.06335800
Н	0.40417900	-1.24469700	5.46184900
Н	-1.18373500	-5.09221600	4.37199200
С	-5.15518300	-4.29832100	-0.52311800
Н	-6.10107600	-4.04052100	1.39908400
Н	-4.00383400	-4.32783900	-2.34590700
Р	-0.56953400	1.15001000	-1.06743700
С	-2.10135900	0.12771000	-3.18853200
С	-4.36191700	-0.74092800	-3.02924600
С	-5.61197200	-0.56945000	-0.93314000
С	-5.00141100	3.69007900	2.17946300
Н	-4.55102900	2.46641600	-1.48068400
С	-5.33744200	3.97952800	-0.19602200
Н	0.06873600	-3.66056000	5.97605500
Н	-5.93599500	-4.94608600	-0.91020600
С	0.35082700	1.91300400	-2.47187700
С	-0.99098300	2.60232900	-0.01885500
С	-3.17309200	-0.50702700	-3.76691900
Н	-1.20948000	0.30956900	-3.77900500

С	-5.47885600	-1.39658200	-3.60801300
Н	-5.66708500	-0.26784000	0.10546300
С	-6.67705000	-1.21562800	-1.51848000
Н	-5.12086200	4.02703000	3.20576500
С	-5.49786800	4.43504500	1.13421000
Н	-5.73251200	4.57030000	-1.01738600
С	-0.23101700	2.73750700	-3.44997700
С	1.73436600	1.69228400	-2.51824900
С	-1.56442800	3.77588800	-0.52629300
С	-0.68844800	2.52907500	1.34728300
Н	-3.12416000	-0.82776500	-4.80464800
Н	-5.41686900	-1.71180300	-4.64644800
С	-6.61623100	-1.63096600	-2.86940300
Н	-7.57100200	-1.41515500	-0.93535900
Н	-6.01449100	5.37086200	1.32587700
С	0.55966700	3.33511700	-4.43114700
Н	-1.30422800	2.89700200	-3.46208000
С	2.53066500	2.29540800	-3.49315200
Н	2.19299900	1.04926400	-1.78141800
С	-1.82995500	4.85225600	0.31864200
Н	-1.81806600	3.85314200	-1.57670900
С	-0.95211300	3.60522900	2.19252900
Н	-0.24427200	1.62283200	1.73993000
Н	-7.46599800	-2.13706100	-3.31773000
С	1.94229900	3.12257500	-4.45087100
Н	0.09638400	3.96872700	-5.18185000
Н	3.60079500	2.11131200	-3.49512400
С	-1.52431800	4.77038800	1.67876500
Н	-2.29043100	5.74966700	-0.08301500
Н	-0.71394100	3.53074900	3.24934200
Н	2.55345800	3.59600700	-5.21356100
Н	-1.73686100	5.60912300	2.33490400
Pd	0.25779200	-0.63791200	0.11753700
Br	1.93644800	-2.46208100	0.95227500
С	3.19762300	-0.42739600	0.34937600
С	3.78067700	-0.04404000	1.70454000
С	5.24056600	0.44351100	1.62214400
С	5.71447700	1.66452300	0.86875800
С	5.79640600	1.63936400	2.36850000
С	2.87521500	0.91961300	2.49220400
F	1.59050400	0.41286000	2.52944000
F	3.29721700	0.94557200	3.78489800
С	2.71997500	2.39442500	2.03324500
0	2.81503300	3.32150000	2.80344600

0	2.43569000	2.47501300	0.73546700
С	3.45466500	4.44531000	-0.31235300
С	2.17430000	3.81351900	0.19402100
Н	2.46045800	0.30063600	0.02011800
Н	3.80269200	-0.92965300	2.35049900
Н	5.92974500	-0.39432800	1.61549100
Н	6.63237100	1.59350000	0.29441800
Н	4.96118700	2.28860200	0.40562700
Н	5.13035100	2.27539300	2.93709000
Н	6.77125300	1.50602300	2.82800500
Н	3.91111800	3.82784100	-1.09207800
Н	3.21986400	5.42279200	-0.74715800
Н	4.17358200	4.59567400	0.49820400
Н	1.46634700	3.63268100	-0.61024300
Н	1.69494400	4.40233000	0.97533800
Κ	0.34878500	-2.50015000	-2.44438800
В	3.95635900	-0.95071900	-0.96133700
0	4.61605200	0.17240800	-1.65071200
0	3.00952900	-1.59493800	-1.89378000
С	3.48487300	-2.66885600	-2.50617100
С	4.92844700	-2.91951400	-2.12550300
0	2.83465400	-3.35051200	-3.27447000
С	5.93613700	0.05507900	-1.80947500
С	6.43121400	-1.22194300	-1.13824200
0	6.63624800	0.86036400	-2.37357900
Ν	5.21126000	-2.06160900	-0.92144500
С	5.32831700	-2.92738600	0.29294500
Н	5.10891600	-3.97222500	-1.90835500
Н	5.56663900	-2.62569900	-2.96229500
Н	7.18323900	-1.74230000	-1.73094400
Н	6.86896300	-0.96621300	-0.17299200
Н	6.19699100	-3.57907500	0.18137100
Н	5.44653200	-2.30106800	1.17314400
Н	4.41513400	-3.50919100	0.39615200

В	1.65861100	0.55096600	0.02190500
0	2.06430800	0.38392600	1.42371900
0	1.39714400	1.94168600	-0.34789500
С	2.47548600	2.60483100	-0.76912700
С	3.68203700	1.67457300	-0.80080300
0	2.49653200	3.77509500	-1.06494500
С	3.20375900	-0.29107800	1.59744900
С	3.88413700	-0.55711500	0.25394000
0	3.63755300	-0.64597800	2.66670600
Ν	3.13702700	0.27912500	-0.72965900
С	3.07715800	-0.31772400	-2.09588700
С	-1.20737300	1.22345500	0.66819200
С	-2.18057500	1.50184500	1.79594600
С	-0.70830400	1.75086400	1.98544500
С	-2.04962800	-0.69538700	-0.65660100
F	-2.07739800	0.07948000	-1.78827400
F	-1.84611000	-1.98350000	-1.07878300
С	-3.42014500	-0.67630400	0.04398800
0	-3.67647600	-1.44942700	0.94186300
0	-4.22047700	0.26964300	-0.43136400
С	-6.21651000	1.58426100	-0.40263100
С	-5.51180400	0.40309300	0.22878800
Br	1.03001100	-2.31168600	-0.11233000
Н	0.31293400	-0.36299000	-1.52162500
Н	-0.94522600	-0.83728700	1.15740300
Н	4.28801100	1.81886000	-1.69540200
Н	4.30084000	1.87683700	0.07653300
Н	3.76109100	-1.60926500	-0.00168700
Н	4.94638100	-0.31002300	0.27590200
Н	2.49065000	0.34091500	-2.73880800
Н	2.60039500	-1.29387500	-2.03155900
Н	4.08880400	-0.41527100	-2.49462500
Н	-1.21982300	1.92866200	-0.15611300
Н	-2.84657200	2.35199500	1.68284900
Н	-2.61945500	0.65516300	2.31572200
Н	-0.15402700	1.06893000	2.62202500
Н	-0.34764000	2.77428000	2.00665700
Н	-7.19581100	1.71862500	0.06774900
Н	-5.63704200	2.50221000	-0.26425400
Н	-6.36660600	1.42291100	-1.47441400
Н	-6.06162300	-0.53248600	0.09544900
Н	-5.33272600	0.54717800	1.29764400

9. References

- 1. P. J. Xia, Z. P. Ye, D. Song, J. W. Ren, H. W. Wu, J. A. Xiao, H. Y. Xiang, X. Q. Chen and H. Yang, *Chem. Commun. (Camb).*, 2019, **55**, 2712.
- S. Li, P. Peng, J. Wei, Y. Z. Hu, J. B. Hu and R. S, *Adv. Synth. Catal.*, 2015, 357, 3429.
- J. Zhu, W. Zhang, L. Zhang, J. Liu, J. Zheng and J. Hu, J. Org. Chem., 2010, 75, 5505.
- 4. C. Yu, F. Ke, J. Su, X. Ma, X. Li and Q. Song, Org. Lett., 2022, 24, 7861.
- 5. M. Mamone, R. S. B. Goncalves, F. Blanchard, G. Bernadat, S. Ongeri, T. Milcent and B. Crousse, *Chem. Commun. (Camb).*, 2017, **53**, 5024.
- 6. R. Szpera, P. G. Isenegger, M. Ghosez, N. J. W. Straathof, R. Cookson, D. C. Blakemore, P. Richardson and V. Gouverneur, *Org. Lett.*, 2020, **22**, 6573.
- 7. X. Geng, Z. Xu, Y. Cai and L. Wang, Org. Lett., 2021, 23, 8343.
- 8. Y. M. Ivon, Y. O. Kuchkovska, Z. V. Voitenko and O. O. Grygorenko, *European*. *Journal. of Organic. Chemistry.*, 2020, **2020**, 3367.
- M. Zhou, H. Y. Zhao, S. Zhang, Y. Zhang and X. Zhang, J. Am. Chem. Soc., 2020, 14, 18191.
- 10. Y. Liu, Z. H. Chen, Y. Li, J. Qian, Q. Li and H. Wang, J. Am. Chem. Soc., 2022, 144, 14380.
- 11. M. Ueda, Y. Kato, N. Taniguchi and T. Morisaki, Org. Lett., 2020, 22, 6234.
- 12. A. F. Williams, A. J. P. White, A. C. Spivey and C. J. Cordier, *Chem. Sci.*, 2020, **11**, 3301.
- 13. H. Wang, C. Grohmann, C. Nimphius and F. Glorius, *J. Am. Chem. Soc.*, 2012, **134**, 19592.
- 14. W. X. Lv, Y. Li, Y. H. Cai, D. H. Tan, Z. Li, J. L. Li, Q. Li and H. Wang, *Chem. Sci.*, 2022, **13**, 2981.
- X. Zhang, G. Dong, H. Li, W. Chen, J. Li, C. Feng, Z. Gu, F. Zhu, R. Zhang, M. Li, W. Tang, H. Liu and Y. Xu, *J. Med. Chem.*, 2019, **62**, 5579.
- 16. P. de Tullio, A. Felikidis, B. Pirotte, J.-F. Liegeois, M. Stachow and J. Delarge, *HELV. CHIM. ACTA.*, 1998, **81**, 539.
- 17. T. Fang, J. Qiu, K. Yang and Q. Song, Organic. Chemistry. Frontiers., 2021, 8, 1991.
- 18. L. Zhao, Y. Huang, Z. Wang, E. Zhu, T. Mao, J. Jia, J. Gu, X. F. Li and C. Y. He, Org. Lett., 2019, 21, 6705.
- M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson and H. Nakatsuji, Gaussian 16, Gaussian. Inc., *Wallingford CT.*, 2016.
- 20. (a) A. D. Beck, J. Chem. Phys., 1993, 98, 5648. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B., 1988, 37, 785.
- (a) J. D. Dill and J. A. Pople, J. Chem. Phys., 1975, 62, 2921. (b) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724. (c) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, J. Chem. Phys., 1982, 77, 3654. (d) M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, J. Am. Chem. Soc., 1982, 104, 2797. (e) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta., 1973, 28, 213. (f) W. J. Hehre, R. Ditchfield and J.

A. Pople, *J. Chem. Phys.*, 1972, **56**, 2257. (g) V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and L. A. Curtiss, *J. Comput. Chem.*, 2001, **22**, 976. (h) D. Andrae, U. Haeussermann, M. Dolg, H. Stoll and H. Preuss, *Theor. Chim. Acta.*, 1990, **77**, 123.

- 22. G. Scalmani and M. J. Frisch, J. Chem. Phys., 2010, 132, 2027.
- 23. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- 24. (a) J.-P. Blaudeau, M. P. McGrath, L. A. Curtiss and L. Radom, *J. Chem. Phys.*, 1997, **107**, 5016. (b) L. A. Curtiss, M. P. McGrath, J. P. Blaudeau, N. E. Davis, R. C. Binning and L. Radom, *J. Chem. Phys.*, 1995, **103**, 6104. (c) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650.
- 25. C. Legault, CYLview, 1.0 b. Université de Sherbrooke Canada: 2009.
- 26. (a) C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García and E. Hénon, *Phys. Chem. Chem. Phys.*, 2017, **19**, 17928. (b) T. Lu and Q. Chen, *J. Comput. Chem.*, 2022, **43**, 539.
- 27. T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580.
- 28. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33.

10. NMR spectrum of starting materials and products 2-bromo-*N*-(2,4-difluorobenzyl)-2,2-difluoroacetamide (S-7)

2-bromo-2,2-difluoro-N-(4-isopropylbenzyl)acetamide (S-8)

2-bromo-N-(2-chlorobenzyl)-2,2-difluoroacetamide (S-9)

2-bromo-2,2-difluoro-N-(naphthalen-1-ylmethyl)acetamide (S-10)

2-bromo-2,2-difluoro-N-(3-(trifluoromethyl)phenethyl)acetamide (S-11)

N-(2-(benzo[*d*][1,3]dioxol-5-yl)ethyl)-2-bromo-2,2-difluoroacetamide (S-12)

N-(2-(benzofuran-5-yl)ethyl)-2-bromo-2,2-difluoroacetamide (S-13)

2-bromo-2,2-difluoro-N-(2-(thiophen-2-yl)ethyl)acetamide (S-14)

N-(tert-butyl)-2,2-difluoro-2-iodoacetamide (S-24)

N-(2,4-difluorobenzyl)-2,2-difluoro-2-iodoacetamide (S-30)

2,2-difluoro-2-iodo-N-(4-isopropylbenzyl)acetamide (S-31)

N-(2-chlorobenzyl)-2,2-difluoro-2-iodoacetamide (S-32)

2,2-difluoro-2-iodo-N-(3-(trifluoromethyl)phenethyl)acetamide (S-33)

N-(2-(benzo[d][1,3]dioxol-5-yl)ethyl)-2,2-difluoro-2-iodoacetamide (S-34)

(R)-2-bromo-2,2-difluoro-N	-(octan-2-yl)acetamide (S-38)
----------------------------	--------------------------	---------------

2-bromo-N-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,2-difluoroacetamide (S-40)

dimethyl (2-bromo-2,2-difluoroacetyl)-L-glutamate (S-42)

methyl (2-bromo-2,2-difluoroacetyl)-D-phenylalaninate (S-43)

((3aR,5R,5aS,8aS,8bR)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5b:4',5'-d]pyran-5-yl)methyl 2-bromo-2,2-difluoroacetate (S-45)

(8*R*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-dimethyl-3-oxo-2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 2-bromo-2,2-difluoroacetate (S-47)

Octadecyl (2*S*,4a*S*,6a*S*,6b*R*,8a*R*,10*S*,12a*S*,12b*R*,14b*R*)-10-(2-bromo-2,2difluoroacetoxy)-2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2carboxylate (S-49)

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,2-difluoro-2-iodoacetamide (S-50)

methyl (2,2-difluoro-2-iodoacetyl)-L-alaninate (S-51)

dimethyl (2,2-difluoro-2-iodoacetyl)-L-glutamate (S-52)

fl (ppm)

90 80 70 60 50

20 10

methyl (2,2-difluoro-2-iodoacetyl)-D-phenylalaninate (S-53)

((3a*R*,5*R*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5-(*E*)-6-methyl-2-(oct-1-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (B-2)

(E)-2-(5-chloropent-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (B-3)

(E)-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)allyl benzoate (B-5)

(*E*)-2-(4-(1,3-dioxoisoindolin-2-yl)but-1-en-1-yl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (B-6)

Ethyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (1)

70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 f1 (ppm)

Methyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (2)

4-bromo-*N*-(*tert*-butyl)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (3)

4-bromo-*N*-cyclohexyl-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (4)

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-phenylbutanamide (5)

N-benzyl-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (6)

4-bromo-*N*-(2,4-difluorobenzyl)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (7)

4-bromo-2,2-difluoro-*N*-(4-isopropylbenzyl)-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (8)

4-bromo-*N*-(2-chlorobenzyl)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (9)

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(naphthalen-1-ylmethyl)butanamide (10)

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(3-(trifluoromethyl)phenethyl)butanamide (11)

N-(2-(benzo[*d*][1,3]dioxol-5-yl)ethyl)-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (12)

N-(2-(benzofuran-5-yl)ethyl)-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (13)

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(2-(thiophen-2-yl)ethyl)butanamide (14)

2-(1-bromo-3,3-difluoro-3-(phenylsulfonyl)propyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (15)

Diethyl (3-bromo-1,1-difluoro-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)propyl)phosphonate (16)

2-(3-(benzo[*d*]oxazol-2-yl)-1-bromo-3,3-difluoropropyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (17)

2-(1-bromo-3,3-difluoro-3-phenylpropyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8dione (18)

2-(1-bromo-3-(4-bromophenyl)-3,3-difluoropropyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (19)

2-(1-bromo-3-(4-chlorophenyl)-3,3-difluoropropyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (20)

2-(1-bromo-3,3-difluoro-3-(3-fluorophenyl)propyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (21)

2-(1-bromo-3-(4-(difluoromethyl)phenyl)-3,3-difluoropropyl)-6-methyl-1,3,6,2-dioxazaborocane-4,8-dione (22)

Ethyl 2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (23)

*N-(tert-*butyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (24)

2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-phenylbutanamide (26)

2,2-difluoro-*N*-(4-fluorophenyl)-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (27)

2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(4-(trifluoromethoxy)phenyl)butanamide (28)

N-benzyl-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (29)

N-(2,4-difluorobenzyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (30)

2,2-difluoro-4-iodo-*N*-(4-isopropylbenzyl)-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (31)

N-(2-chlorobenzyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (32)

2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-(3-(trifluoromethyl)phenethyl)butanamide (33)

N-(2-(benzo[*d*][1,3]dioxol-5-yl)ethyl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (34)

110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 f1 (ppm)

2-(3,3-difluoro-1-iodo-3-(phenylsulfonyl)propyl)-6-methyl-1,3,6,2dioxazaborocane-4,8-dione (36)

6-methyl-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-iodohexyl)-1,3,6,2-dioxazaborocane-4,8-dione (37)

4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-((*R*)-octan-2-yl)butanamide (38)

N-(1-((3*r*,5*r*,7*r*)-adamantan-1-yl)ethyl)-4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (39)

4-bromo-*N*-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (40)

Methyl (4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*L*-alaninate (41)

Dimethyl (4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*L*-glutamate (42)

Methyl (4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*D*-phenylalaninate (43)

(1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (44)

110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 f1 (ppm)

((3a*R*,5*R*,5a*S*,8a*S*,8b*R*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis([1,3]dioxolo)[4,5b:4',5'-*d*]pyran-5-yl)methyl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2dioxazaborocan-2-yl)butanoate (45)

(3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-oxo-

-100

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoate (46)

(8R,9S,10R,13S,14S,17S)-10,13-dimethyl-3-oxo-

2,3,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoate (47)

(3S, 8S, 9S, 10R, 13R, 14S, 17R) - 10, 13 - dimethyl - 17 - ((R) - 6 - methyl heptan - 2 - yl) - 10, 13 - dimethyl - 17 - ((R) - 6 - methyl - 1

2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl 4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2yl)butanoate (48)

Octadecyl (2*S*,4a*S*,6a*S*,6b*R*,8a*R*,10*S*,12a*S*,12b*R*,14b*R*)-10-((4-bromo-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)oxy)-

2,4a,6a,6b,9,9,12a-heptamethyl-13-oxo-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-2carboxylate (49)

283

110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 f1 (ppm)

N-(1-(2,6-dimethylphenoxy)propan-2-yl)-2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (50)

 20
20
18 MeO₂C 51 ¹H NMR (500 MHz, DMSO-d6) 2241 6 33340 -0,0,0,4 00000 ni ni 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5 fl (ppm) 119, 43 119, 32 117, 41 115, 30 115, 30 285124186 $<^{16.28}_{16.24}$ -6. 98 172. 168. 168. 168. 163. 163. MeO₂C ¹³C NMR (126 MHz, DMSO-*d6*) 230 210 190 170 150 130 110 $90 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \quad 10 \quad 0$ fl (ppm)

Methyl (2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*L*-alaninate (51)

Dimethyl (2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*L*-glutamate (52)

MeO₂C Β̈́n 53 ¹H NMR (500 MHz, DMSO-d6) 8 18,19 4 4 0 0.0 ç. 12.0 7.0 10.5 9.0 8.0 6. 0 5.0 4.0 3. 0 2.0 1.0 0.0 fl (ppm) 「151」 1511日 -7.16 171. 171. 168. 168. 168. 163. 163. 163. $\begin{array}{c} 137.\\ 127.\\ 128.\\ 128.\\ 127.\\ 127.\\ 127.\\ 117.\\ 115.\\$ MeO₂C Ēn 53 ¹³C NMR (126 MHz, DMSO-d6) 230 210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 fl (ppm)

Methyl (2,2-difluoro-4-iodo-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoyl)-*D*-phenylalaninate (53)

Ethyl (3*S*)-3-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-2,2difluorononanoate (54)

Ethyl (3*S*)-3-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-6-chloro-2,2-difluorohexanoate (55)

Ethyl (*S*,*E*)-7-bromo-2,2-difluoro-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-4-enoate (56a)

110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 f1 (ppm)

(2*S*)-2-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-4-ethoxy-3,3-difluoro-4-oxobutyl benzoate (57)

Ethyl (3*S*)-3-(bromo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-5-(1,3-dioxoisoindolin-2-yl)-2,2-difluoropentanoate (58)

Ethyl (*S*,*E*)-2,2-difluoro-7-iodo-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)hept-4-enoate (59a)

(2*S*)-4-ethoxy-3,3-difluoro-2-(iodo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)-4-oxobutyl benzoate (60)

Ethyl (3*S*)-5-(1,3-dioxoisoindolin-2-yl)-2,2-difluoro-3-(iodo(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)methyl)pentanoate (61)

Ethyl 2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-4-(phenylthio)butanoate (62)

Ethyl 4-(benzo[*d*]thiazol-2-ylthio)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (63)

4444444444 884444444 882888 110888800000 -2.87 EtOOO ¹H NMR (600 MHz, DMSO-d6) 500 500 500 4 314184 2.11 ⊭ 8 ø N 1.5 6. 5 2.5 10.5 9.5 8.5 7.5 5.5 4.5 3.5 1.5 0.5 -0.5 fl (ppm) $\frac{118,89}{117,25}$ 49281 <02.77 61.85 46.60 20.000 —13.76 —6.78 168.9 163.9 163.7 EtOOC 64 ¹³C NMR (151 MHz, DMSO-*d6*) 110 f1 (ppm) 230 170 210 190 150 130 90 80 70 60 50 40 30 20 10 0

Ethyl 2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanoate (64)

Ethyl 2,2-difluoro-4-iodo-4-(trifluoro-λ4-boraneyl)butanoate, potassium salt (65)

Ethyl (*E*)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)but-3-enoate (66)

110 90 80 70 60 50 40 30 20 10 0 -20 -40 -60 -80 -100 f1 (ppm)

3,3-difluoro-1-phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrrolidin-2-one (67)

4-azido-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-*N*-phenylbutanamide (68)

(E)-2,2-difluoro-N,4-diphenylbut-3-enamide (69)

(E)-4-(4-acetylphenyl)-2,2-difluoro-N-phenylbut-3-enamide (70)

0.000 0.0000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 9. 25 9. 24 9. 23 7. 34 7. 33 7. 31 7. 25 7. 25 7. 25 4 4 4 35 4 4 23 4 23 4 23 4 01 01 01 -2.84 71 ¹H NMR (500 MHz, DMSO-d6) - 98 . 706 264 984 808 80 80 -i~iыd d 0 4 2.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 1.5 0.5 -0.5 fl (ppm) 82833 60 335 98 98 98 98 -61.87 -45.60 -42.11 $\stackrel{29.49}{\underbrace{}^{29.29}_{29.10}}$ -7.06 -138. 0 128. 0 128. 0 127. 1 120. 0 110. 0 168 164 163 163 71 ¹³C NMR (126 MHz, DMSO-d6)

N-benzyl-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (71)

f1 (ppm)

 $90 \hspace{0.1in} 80 \hspace{0.1in} 70 \hspace{0.1in} 60 \hspace{0.1in} 50 \hspace{0.1in} 40 \hspace{0.1in} 30 \hspace{0.1in} 20 \hspace{0.1in} 10 \hspace{0.1in} 0$

-20

110

30

210

190

170

150

130

4-(benzylamino)-3,3-difluoro-1-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-4-oxobutyl benzoate (73)

N-benzyl-4-(benzylthio)-2,2-difluoro-4-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)butanamide (74)

(*S*)-1,1-difluoro-3-(6-methyl-4,8-dioxo-1,3,6,2-dioxazaborocan-2-yl)-2,3,5,6-tetrahydro-1*H*-[1,3]dioxolo[4,5-*g*]pyrrolo[2,1-*a*]isoquinolin-4-ium (75)

Ethyl 2,2-difluoro-7-iodo-4-phenylhept-4-enoate (77)

2-(1-bromo-3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)-6-methyl-1,3,6,2-

dioxazaborocane-4,8-dione (37-2)

