Discovery of Intermolecular Cascade Annulation for

Dihydrobenzo[b][1,8]naphthyridines-Ylidene-Pyrrolidinetriones

Wenjun Luo,^{*a} Xinghua Zheng,^a Hehua Lin,^a Li Fu,^b Lipeng Long,^a Daohong Yu,^a Zhengwang Chen,^a Min Yang,^{*b} Zhong-Xia Wang^{*a}

^{a.} Jiangxi Provincial Key Laboratory of Synthetic Pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China.

^{b.}School of Pharmacy, Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou 341000, China.

Contents

1.	General experimental methods2
2.	General procedures for the synthesis of Aminomaleimides
3.	General procedures for the synthesis of 2, 6a, 6b21
4.	X-ray of 3a
5.	Control experiments
6.	Characterization of 4a40
7.	Characterization of 5a49
8.	General procedure for the synthesis of 3, 7a58
9.	Properties of Fluorescent Dyes of 380
10.	NMR Spectra of Aminomaleimides86
11.	NMR Spectra of ortho-halogenatedquinolin/pyridine chalcones116
12.	NMR Spectra of 3, 7a127

1. General experimental methods

All commercially available starting materials including reagents and solvents were purchased and used without further purification. Detailed information regarding conventional reagents is presented as follows: Potassium carbonate (Energy Chemical, AR, \geq 99.0%), Sodium carbonate (Energy Chemical, AR, \geq 99.8%), Cesium carbonate (Adamas-beta, 99.9%), Triethylamine (Energy Chemical, AR, ≥99.5%), 1.8-Diazabicyclo[5.4.0]undec-7-ene (Energy Chemical, AR, ≥98.0%), Triethylenediamine (Energy Chemical, AR, ≥99.0%), Piperidine (Aladdin, AR, ≥99.5%), Triphenylphosphine (Energy Chemical, AR, ≥98.0%), 2,3-Dichloro-5,6-dicyano-1,4benzoquinone (Energy Chemical, AR, ≥98.0%), Potassium persulfate (Energy Chemical, AR, \geq 99.5%), Benzoyl peroxide (Energy Chemical, \geq 74%), 2-Iodoxybenzoic acid (Energy Chemical, AR, ≥97%), EtOH (Energy Chemical, AR, \geq 99.7), MeOH (Energy Chemical, AR, \geq 99.5), EA (Energy Chemical, AR, \geq 99.5), Toluene (XILONG SCIENTIFIC, AR, ≥99.5), THF (Energy Chemical, AR, ≥99.0), DMSO (Energy Chemical, AR, ≥99.8), CH₃CN (Energy Chemical, AR, ≥99.9), DMF (GENERAL-REAGENT, AR, ≥99.5), anhydrous DMF (Energy Chemical, 99.8%, with molecular sieves, Moisture, 39.5 ppm (by K. F.)). The dry DMF was obtained through treatment with calcium hydride following the procedures outlined in the 'Purification of Laboratory Chemicals' edited by W. L. F. Armarego and D. D. Perrin, 4th Edition. Flash column chromatography was performed using silica gel (60-Å pore size, 32-63µm, standard grade). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin-layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr at 25-35°C. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker spectrometer operating at 400 MHz, 500 MHz, or 600 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants are quoted in Hz. High-resolution mass spectrometry (HRMS) spectra were obtained on a micrOTOF II Instrument. The infrared spectrums were recorded on ThermoFisher Nicolet iS50. The fluorescence spectra were recorded on ThermoFisher Varioskan LUX. The live-cell imaging was recorded on Leica STELLARIS 5. The FTIR spectra were recorded as KBr disks in the range 3500–500 cm⁻¹ using a Nicolet is 50 spectrometer at r.t.

2. General procedures for the synthesis of Aminomaleimides

Scheme S1. Scope of aminomaleimides

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5.0 mmol) and either an aromatic amine or an aliphatic amine B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) or the corresponding amine (15 mmol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with yields ranging from 32% to 72%. **1b**, **1g**, **1ad**, **1af**, **1ag**, **1ai**, which we have synthesized, have been reported in previous literatures^[1-6]. The following are unreported in the literature.

2.1. Characterization of 1a, 1c-1ac, 1ae, (R) or (S) 1ah

3-((4-bromophenyl)amino)-1-ethyl-1H-pyrrole-2,5-dione (1a)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate

A (5 mmol) and *p*-bromoaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 64% yield.

64% yield, yellow solid, m.p.:192-193°C, ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.47 (m, 2H), 7.44 (s, 1H), 7.08 – 6.99 (m, 2H), 5.46 (s, 1H), 3.58 (q, J = 7.2 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 167.9, 142.1, 137.6, 132.7, 120.2, 117.1, 89.6, 32.8, 14.0. IR(KBr):v_{max}: 3307, 3126, 2936, 1689, 1639, 1561, 1541, 1492, 1450, 1402, 819, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁BrN₂O₂ [M+H]⁺ = 295.0076, found = 295.0097.

3-((4-chlorophenyl)amino)-1-ethyl-1*H*-pyrrole-2,5-dione (1c)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and *p*-chloroaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 65% yield.

65% yield, yellow solid, m.p.:196-197°C, 1H NMR (400 MHz, CDCl3) δ 7.44 – 7.32 (m, 3H), 7.14 – 7.06 (m, 2H), 5.46 (s, 1H), 3.59 (q, J = 7.2 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 172.3, 167.9, 142.2, 137.1, 129.8, 129.6, 119.90, 89.5, 32.8, 14.0. IR(KBr): v_{max} : 3308, 3128, 2940, 1690, 1638, 1561, 1542, 1494, 1420, 1406, 821, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁ClN₂O₂ [M+H]⁺ = 251.0581, found = 251.0581.

1-ethyl-3-((4-fluorophenyl)amino)-1*H*-pyrrole-2,5-dione (1d)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and *p*-fluoroaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the

mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 54% yield.

54% yield, brown yellow solid, m.p.:192-193°C, 1H NMR (400 MHz, CDCl3) δ 7.34 (s, 1H), 7.11 (dd, J = 7.1, 5.4 Hz, 4H), 5.41 (s, 1H), 3.58 (dd, J = 13.7, 6.7 Hz, 2H), 1.20 (dd, J = 9.3, 4.3 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 172. 5, 167.9, 160.6, 158.2, 142.8, 134.6, 120.6, 120.516, 116.7, 116.4, 88.4, 32.8, 14.0. IR(KBr): v_{max}: 3303, 3141, 2946, 1691, 1640, 1552, 1511, 1446, 1411, 1331, 826, 699 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁FN₂O₂ [M+H]⁺ = 235.0873, found = 235.0893.

1-ethyl-3-((4-iodophenyl)amino)-1*H*-pyrrole-2,5-dione (1e)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and *p*-fluoroaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 56% yield.

56% yield, yellow solid, m.p.:192-193°C, ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 5.47 (s, 1H), 3.59 (q, J = 7.2 Hz, 2H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.9, 141.9, 138.6, 138.3, 120.5, 89.9, 87.5, 32.8, 140. IR(KBr): v_{max}: 3305, 3119, 2937, 1686, 1639, 1590, 1538, 1487, 1455, 1400, 824, 705 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁IN₂O₂ [M+H]⁺ = 342.9938, found = 342.9956.

1-ethyl-3-(p-tolylamino)-1H-pyrrole-2,5-dione (1f)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and *p*-methylaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced

into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 72% yield.

72% yield, yellow solid, m.p.:154-155°C, ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 1H), 7.19 (d, J = 8.2 Hz, 2H), 7.05 (d, J = 8.4 Hz, 2H), 5.43 (s, 1H), 3.58 (d, J = 7.2 Hz, 2H), 2.33 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 168.1, 142.7, 135.9, 134.2, 130.2, 118.8, 88.2, 32.7, 20.8, 14.0. IR(KBr): v_{max}: 3304, 3127, 2976, 1692, 1642, 1586, 1543, 1513, 1444, 1422, 814, 683 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₄N₂O₂ [M+H]⁺ = 231.1128, found = 231.1141.

1-ethyl-3-((4-(methylthio)phenyl)amino)-1*H*-pyrrole-2,5-dione (1h)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and *p*-thiomethylaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 60% yield.

60% yield, brown solid, m.p.:145-146°C, ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.31 – 7.26 (m, 2H), 7.12 – 7.07 (m, 2H), 5.44 (s, 1H), 3.58 (q, *J* = 7.2 Hz, 2H), 2.48 (s, 3H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 168.0, 142.4, 135.9, 134.3, 128.2, 119.3, 88.8, 32.7, 16.3, 13.9. IR(KBr): v_{max}: 3308, 3118, 2921, 1688, 1636, 1538, 1495, 1448, 1422, 1407, 814, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₄N₂O₂S [M+H]⁺ = 263.0848, found = 263.0856.

1-ethyl-3-((4-(trifluoromethyl)phenyl)amino)-1H-pyrrole-2,5-dione (1i)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and *P*-trifluoromethyl aniline B (5.0 mmol). The resulting mixture was stirred at room

temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 52% yield.

52% yield, orange solid, m.p.:205-206°C, ¹**H NMR** (400 MHz, CDCl₃) δ 7.66 (d, *J* = 8.5 Hz, 2H), 7.44 (s, 1H), 7.23 (d, *J* = 8.5 Hz, 2H), 5.59 (s, 1H), 3.61 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, DMSO) δ 172.5, 167.9, 143.6, 143.2, 126.9, 119.8, 91.6, 32.5, 14.2. IR(KBr):v v_{max}: 3307, 3122, 2949, 1688, 1638, 1552, 1451, 1419, 1337, 1116, 837, 705 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₁F₃N₂O₂ [M+H]⁺ = 285.0845, found = 285.0847.

4-((1-ethyl-2,5-dioxo-2,5-dihydro-1H-pyrrol-3-yl)amino)benzonitrile (1j)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and *p*-cyananiline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 54% yield.

54% yield, yellow solid, m.p.:262-263°C, ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.8 Hz, 2H), 7.45 (s, 1H), 7.20 (d, J = 8.8 Hz, 2H), 5.62 (s, 1H), 3.61 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.4, 167.9, 144.3, 142.7, 134.0, 119.8, 119.4, 105.4, 92.8, 32.6 14.2. IR(KBr): v_{max}: 3300, 3125, 2997, 2223, 1687, 1639, 1605, 1561, 1541, 1448, 1414, 834, 710 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₁N₃O₂ [M+H]⁺ = 242.0924, found = 242.0935.

3-([1,1'-biphenyl]-4-ylamino)-1-ethyl-1*H*-pyrrole-2,5-dione (1k)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and p-phenylaniline B (5.0 mmol). The resulting mixture was stirred at room

temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 62% yield.

62% yield, yellow solid, m.p.:222-223°C, ¹H NMR (400 MHz, CDCl₃) δ 7.67 – 7.61 (m, 2H), 7.60 – 7.55 (m, 2H), 7.45 (dd, J = 10.3, 4.8 Hz, 2H), 7.39 – 7.32 (m, 2H), 7.25 – 7.19 (m, 2H), 5.54 (s, 1H), 3.61 (q, J = 7.2 Hz, 2H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 168.1, 142.2, 139.9, 137.6, 137.4, 128.9, 128.3, 127.4, 126.8, 119.0, 89.2, 32.8, 14.0. IR(KBr): v_{max}: 3285, 3132, 2952, 1686 1628, 1607, 1534, 1511, 1448, 1405, 760, 696 cm⁻¹. HRMS (ESI) m/z calculated for C₁₈H₁₆N₂O₂ [M+H]⁺ = 293.1284, found = 293.1303.

1-ethyl-3-(m-tolylamino)-1*H*-pyrrole-2,5-dione (11)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and m-methylaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 65% yield.

65% yield, yellow solid, m.p.:126-127°C, ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.27 (dd, J = 11.6, 3.8 Hz, 1H), 7.03 – 6.94 (m, 3H), 5.50 (s, 1H), 3.60 (q, J = 7.2 Hz, 2H), 2.37 (s, 3H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 168.1, 142.5, 139.6, 138.4, 129.4, 125.2, 119.4, 115.8, 88.8, 32.7, 21.4, 13.9. IR(KBr): v_{max}: 3296 3125, 2974, 1695, 1628, 1594, 1552, 1492, 1444, 1418, 797, 694 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₄N₂O₂ [M+H]⁺ = 231.1128, found = 231.1147.

3-((3-bromophenyl)amino)-1-ethyl-1H-pyrrole-2,5-dione (1m)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and m-bromoaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 60% yield.

60% yield, orange yellow solid, m.p.:180-181°C, ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.34 (d, *J* = 1.5 Hz, 1H), 7.28 – 7.24 (m, 2H), 7.13 – 7.05 (m, 1H), 5.53 (s, 1H), 3.60 (q, *J* = 7.2 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.9, 141.9, 139.8, 130.9, 127.3, 123.3, 121.7, 117.1, 90.2, 32.9, 14.0. IR(KBr): v_{max}: 3307, 3136, 2976, 1692, 1637, 1593, 1561, 1544, 1445, 1414, 779, 694 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁BrN₂O₂ [M+H]⁺ = 295.0076, found = 295.0091.

1-ethyl-3-((3-fluorophenyl)amino)-1*H*-pyrrole-2,5-dione (1n)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and m-fluoroaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 55% yield.

55% yield, brown yellow solid, m.p.:130-131°C, ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 1H), 7.33 (dd, J = 14.6, 8.1 Hz, 1H), 7.01 – 6.88 (m, 2H), 6.83 (td, J = 8.3, 2.0 Hz, 1H), 5.53 (s, 1H), 3.59 (q, J = 7.2 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 168.0, 164.5, 162.0, 142.1, 140.2, 140.1, 131.0, 130.9, 114.3, 114.3, 111.2, 111.0, 106.2, 106.0, 90.1, 32.8, 13.9. IR(KBr): v_{max}: 3309, 3115, 2985, 1692, 1640, 1581, 1495, 1448, 1434, 1421, 766, 683 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁FN₂O₂ [M+H]⁺ = 235.0873, found = 235.0893.

3-((3-chlorophenyl)amino)-1-ethyl-1H-pyrrole-2,5-dione (10)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and m-chloroaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 58% yield.

58% yield, yellow green solid, m.p.:178-179°C , ¹H NMR (400 MHz, CDCl₃) δ 7.44 (s, 1H), 7.32 (t, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 1.9 Hz, 1H), 7.11 (dd, *J* = 8.0, 1.0 Hz, 1H), 7.04 (dd, *J* = 8.1, 1.4 Hz, 1H), 5.53 (s, 1H), 3.60 (q, *J* = 7.2 Hz, 2H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 168.0 141.9, 139.7, 135.5, 130.7, 124.4, 118.8, 116.7, 90.2, 32.9, 14.0. IR(KBr): v_{max}: 3305, 3125, 2920, 1697, 1632, 1595, 1439, 14410, 1350, 1331, 776, 689 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁ClN₂O₂ [M+H]⁺ = 251.0581, found = 251.0586.

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and m-methoxyaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 60% yield.

60% yield, brown solid, m.p.:106-107°C, ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.31 – 7.25 (m, 1H), 6.80 – 6.64 (m, 3H), 5.49 (s, 1H), 3.80 (s, 3H), 3.58 (q, *J* = 7.2 Hz, 2H), 1.20 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 168.0, 160.6, 142.3, 139.6, 130.4, 111.1, 109.7, 104.8, 89.3, 55.3, 32.7, 14.0. IR(KBr): v_{max}: 3289, 3162, 2936, 1697, 1628, 1604, 1500, 1461, 1448, 1423, 782, 685 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₄N₂O₃ [M+H]⁺ = 247.1072, found =

247.1096.

1-ethyl-3-((3-nitrophenyl)amino)-1*H*-pyrrole-2,5-dione (1q)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and m-nitroaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 48% yield.

48% yield, Yellow solid, m.p.:230-231°C. ¹H NMR (400 MHz, DMSO) δ 10.03 (s, 1H), 8.21 (d, *J* = 1.4 Hz, 1H), 7.88 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.61 (t, *J* = 8.2 Hz, 1H), 5.80 (d, *J* = 1.7 Hz, 1H), 3.46 (q, *J* = 7.2 Hz, 2H), 1.11 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO) δ 172.4, 167.7, 148.8, 143.4, 141.3, 131.2, 125.3, 118.1, 114.6, 91.3, 32.5, 14.2. IR(KBr): v_{max}: 3298, 3125, 2922, 1674, 1629,1578, 1525, 1442, 1410, 1325, 779, 694 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁N₃O₄ [M+H]⁺ = 262.0822, found = 262.0827.

1-ethyl-3-((2-fluorophenyl)amino)-1*H*-pyrrole-2,5-dione (1r)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and o-fluoroaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 51% yield.

51% yield, orange yellow solid, m.p.:146-147°C, ¹H NMR (400 MHz, CDCl₃) δ 7.40 (s, 1H), 7.28 (dd, J = 12.7, 4.8 Hz, 1H), 7.17 (dt, J = 11.0, 4.2 Hz, 2H), 7.14 – 7.07 (m, 1H), 5.52 (s, 1H), 3.60 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.6, 154.3,

151.9, 141.8, 127.1, 126.9, 124.9, 124.8, 124.8, 124.7, 118.6, 115.9, 115.7, 90.2, 32.8, 13.9. IR(KBr): v_{max} : 3310, 3120, 2945, 1702, 1652, 1618, 1489, 1447, 1423, 1335, 788, 685 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁FN₂O₂ [M+H]⁺ = 235.0873, found = 235.0898.

3-((2-chlorophenyl)amino)-1-ethyl-1*H*-pyrrole-2,5-dione (1s)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and o-chloroaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 55% yield.

55% yield, brown yellow solid, m.p.:111-112°C, ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 1H), 7.43 (dd, J = 8.0, 1.3 Hz, 1H), 7.31 (ddd, J = 14.7, 8.2, 3.8 Hz, 2H), 7.07 (td, J = 8.0, 1.7 Hz, 1H), 5.53 (s, 1H), 3.60 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.2, 167.7, 141.4, 135.2, 130.1, 128. 0, 124.7, 124.0, 118.1, 90.4, 32.8, 14.0. IR(KBr): v_{max}: 3342, 3136, 2980, 1708, 1639, 1592, 1538, 1462, 1443, 1412, 775, 747 cm⁻¹. HRMS (ESI) m/z calculated for C₁₂H₁₁ClN₂O₂ [M+H]⁺ = 251.0581, found = 251.0601.

1-ethyl-3-((2-methoxyphenyl)amino)-1*H*-pyrrole-2,5-dione (1t)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and o-methoxyaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 58% yield.

58% yield, yellow green solid, m.p.:106-107°C, ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.16

(dd, J = 7.8, 1.3 Hz, 1H), 7.06 (td, J = 7.8, 1.4 Hz, 1H), 6.98 (t, J = 7.2 Hz, 1H), 6.92 (dd, J = 8.0, 0.8 Hz, 1H), 5.48 (s, 1H), 3.89 (d, J = 8.2 Hz, 3H), 3.58 (q, J = 7.2 Hz, 2H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 167.9, 149.0, 141.6, 127.9, 124.1, 121.0, 116.6, 110.5, 88.8, 55.7, 32.6, 13.9. IR(KBr): v_{max}: 3360, 3131, 2948, 1707, 1644, 1599, 1533, 1488, 1462, 1413, 775, 745 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₄N₂O₃ [M+H]⁺ = 247.1072, found = 247.1098.

3-((2,5-dimethylphenyl)amino)-1-ethyl-1*H*-pyrrole-2,5-dione (1u)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and 2, 5-dimethylaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 64% yield.

64% yield, yellow solid, m.p.:144-145°C, ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 7.7 Hz, 1H), 7.03 (d, J = 9.5 Hz, 2H), 6.90 (d, J = 7.7 Hz, 1H), 5.37 (s, 1H), 3.59 (q, J = 7.2 Hz, 2H), 2.33 (s, 3H), 2.28 (s, 3H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 168.1, 143.1, 137.1, 136.3, 131.0, 125.6, 125.5, 119.6, 88.3, 32.71, 21.2, 16.9, 14.0. IR(KBr): v_{max}: 3379, 3119, 2974, 1705, 1642, 1583, 1542, 1447, 1415, 1414, 797, 691 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₆N₂O₂ [M+H]⁺ = 245.1284, found = 245.1273.

3-((2,4-dimethylphenyl)amino)-1-ethyl-1*H*-pyrrole-2,5-dione (1v)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and 2, 4-dimethylaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then

recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 62% yield.

62% yield, yellow solid, m.p.:115-116°C, ¹H NMR (400 MHz, CDCl₃) δ 7.14 – 7.09 (m, 1H), 7.05 (d, J = 5.3 Hz, 2H), 7.00 (s, 1H), 5.26 (s, 1H), 3.58 (q, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.28 (d, J = 7.1 Hz, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.6, 168.0, 143.6, 134.8, 133.9, 131.9, 128.8, 127.6, 119.3, 87.7, 32.6, 20.8, 17.3, 14.0. IR(KBr): v_{max}: 3371, 3128, 2940, 1703, 1638, 1614, 1535, 1444, 1413, 1380, 776, 680 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₆N₂O₂ [M+H]⁺ = 245.1284, found = 245.1292.

3-((2,3-dimethylphenyl)amino)-1-ethyl-1*H*-pyrrole-2,5-dione (1w)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and 2, 3-dimethylaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 59% yield.

59% yield, yellow solid, m.p.:84-85°C, ¹H NMR (400 MHz, CDCl₃) δ 7.17 – 7.06 (m, 3H), 7.01 (d, J = 7.2 Hz, 1H), 5.21 (s, 1H), 3.57 (q, J = 7.2 Hz, 2H), 2.31 (s, 3H), 2.20 (s, 3H), 1.21 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 167.9, 144.0, 138.2, 136.2, 128.0, 127.0, 126.2, 117.9, 87.7, 32.5, 20.4, 13.9, 13.2. IR(KBr): v_{max}: 3379, 3976, 2938, 1703, 1641, 1586, 1474, 1448, 1414, 1379, 775, 708 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₆N₂O₂ [M+H]⁺ = 245.1284, found = 245.1274.

1-ethyl-3-(naphthalen-1-ylamino)-1*H*-pyrrole-2,5-dione (1x)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and naphthalen-1-amine B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 55% yield.

55% yield, brown solid, m.p.:101-102°C, ¹H NMR (400 MHz, CDCl₃) δ 7.96 – 7.84 (m, 2H), 7.74 (s, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.58 – 7.51 (m, 2H), 7.46 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 7.4 Hz, 1H), 5.35 (s, 1H), 3.61 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.4, 167.9, 143.9, 134.1, 133.5, 128.7, 126.6, 126.2, 125.6, 125.4, 120.4, 116.8, 109.5, 88.9, 32.6, 14.0. IR(KBr): v_{max}: 3374, 3057, 2977, 1701, 1638, 1577, 1501, 1446, 1414, 1379, 770, 680 cm⁻¹. HRMS (ESI) m/z calculated for C₁₆H₁₄N₂O₂ [M+H]⁺ = 267.1128, found = 267.1142.

3-(benzo[d][1,3]dioxol-5-ylamino)-1-ethyl-1*H*-pyrrole-2,5-dione (1y)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and benzo[d][1,3]dioxol-5-amine B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 52% yield.

52% yield, brown black solid, m.p.:166-167°C, ¹H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 6.81 (d, *J* = 8.3 Hz, 1H), 6.69 (d, *J* = 2.2 Hz, 1H), 6.60 (dd, *J* = 8.3, 2.4 Hz, 1H), 5.99 (s, 2H), 5.35 (s, 1H), 3.58 (q, *J* = 7.2 Hz, 2H), 1.21 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 168.0, 148.5, 144.6, 143.1, 132.8, 112.3, 108.7, 101.6, 101.1, 87.8, 32.7, 13.9. IR(KBr): v_{max}: 3302, 3137, 2940, 1697, 1642, 1621, 1556, 1499, 1447, 1418, 774, 689 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₂N₂O₄ [M+H]⁺ = 261.0869, found = 261.0868.

3-((4-(dimethylamino)phenyl)amino)-1-ethyl-1H-pyrrole-2,5-dione (1z)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and *N*,*N*-dimethylbenzene-1,4-diamine B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 56% yield.

56% yield, orange yellow solid, m.p.:159-160°C, ¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 9.0 Hz, 2H), 6.72 (d, J = 9.0 Hz, 2H), 5.30 (s, 1H), 3.57 (q, J = 7.2 Hz, 2H), 2.95 (s, 6H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 168.1, 147.9, 143.3, 127.8, 120.5, 113.1, 86.1, 40.6, 32.6, 14.0. IR(KBr): v_{max}: 3295, 3101, 2936, 1692, 1633, 1534, 1518, 1444, 1418, 1347, 815, 672 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₇N₃O₂ [M+H]⁺ = 260.1393, found = 260.1410.

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and 4-(9*H*-carbazol-9-yl)aniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 46% yield.

46% yield, yellow solid, m.p.:222-223°C, ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 7.7 Hz, 2H),
7.58 (t, J = 9.3 Hz, 3H), 7.46 - 7.34 (m, 6H), 7.34 - 7.28 (m, 2H), 5.61 (s, 1H), 3.65 (q, J = 7.2 Hz, 2H),
1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 168.0, 142.1, 140.6, 137.5,

133.7, 128.4, 126.0, 123.4, 120.4, 120.1, 119.8, 109.5, 89.69, 32.9, 14.0. IR(KBr): v_{max} : 3308, 3128, 2949, 1700, 1639, 1604, 1535, 1513, 1450, 1411, 749, 624 cm⁻¹. HRMS (ESI) m/z calculated for $C_{24}H_{19}N_3O_2$ [M+H]⁺ = 382.1550, found = 382.1559.

(*R*)-1-ethyl-3-((2-(4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)amino)-1*H*-pyrrole-2,5-dione (1ab)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and (*S*)-2-(4-isopropyl-4,5-dihydrooxazol-2-yl)aniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 51% yield.

51% yield, yellow solid, m.p.:156-157°C, ¹H NMR (400 MHz, CDCl₃) δ 12.34 (s, 1H), 7.91 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.54 – 7.48 (m, 1H), 7.34 (dd, *J* = 8.3, 0.8 Hz, 1H), 7.14 – 7.07 (m, 1H), 5.64 (s, 1H), 4.44 (dd, *J* = 9.6, 8.2 Hz, 1H), 4.32 – 4.19 (m, 1H), 4.08 (t, *J* = 8.3 Hz, 1H), 3.61 (q, *J* = 7.2 Hz, 2H), 1.85 (dq, *J* = 13.5, 6.8 Hz, 1H), 1.22 (t, *J* = 7.2 Hz, 3H), 1.15 (d, *J* = 6.7 Hz, 3H), 1.03 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 168.3, 162.7, 142.3, 140.4, 132.3, 130.1, 122.1, 116.7, 114.8, 91.5, 73.0, 69.6, 33.3, 32.6, 18.9, 18.7, 14.0. IR(KBr): v_{max}: 3300, 3134, 2959, 1702, 1652, 1631, 1541, 1441, 1411, 1354 , 775, 704 cm⁻¹. HRMS (ESI) m/z calculated for C₁₈H₂₁N₃O₃ [M+H]⁺ = 328.1655, found = 328.1675.

3,3'-(naphthalene-1,5-diylbis(azanediyl))bis(1-ethyl-1*H*-pyrrole-2,5-dione) (1ac)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate

A (12 mmol) and naphthalene-1,5-diamine **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (30 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 32% yield.

32% yield, orange yellow solid, m.p.:155-156°C, ¹H NMR (400 MHz, DMSO) δ 9.81 (s, 2H), 7.96 – 7.85 (m, 2H), 7.59 (d, J = 7.8 Hz, 3H), 7.43 – 7.23 (m, 1H), 4.94 (s, 2H), 3.47 (dd, J = 14.1, 7.0 Hz, 4H), 1.13 (dd, J = 9.8, 4.5 Hz, 6H). ¹³C NMR (100 MHz, DMSO) δ 172.4, 167.5, 148.5, 135.7, 129.2, 126.6, 122.4, 122.0, 87.5, 32.4, 14.5. IR(KBr): v_{max}: 3451, 3137, 2922, 1698, 1632, 1558, 1495, 1411, 1345, 1414, 764, 704 cm⁻¹. HRMS (ESI) m/z calculated for C₂₂H₂₀N₄O₄ [M+H]⁺ = 405.1557, found =405.1575.

3-(((3s,5s,7s)-adamantan-1-yl)amino)-1-ethyl-1*H*-pyrrole-2,5-dione (1ae)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and adamantine B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, ethylamine (15 mmol, 30% in ethanol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 48% yield.

48% yield, yellow green solid, m.p.:171-172°C, ¹H NMR (400 MHz, CDCl₃) δ 5.36 (s, 1H), 4.88 (s, 1H), 3.51 (d, *J* = 7.2 Hz, 2H), 2.15 (s, 3H), 1.89 (d, *J* = 2.6 Hz, 6H), 1.73 – 1.61 (m, 7H), 1.16 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 168.2, 145.0, 84.9, 52.5, 40.9, 36.0, 32.4, 29.1, 14.0. IR(KBr): v_{max}: 3317, 3116, 2908, 1696, 1625, 1561, 1520, 1444, 1418, 1343, 788, 684 cm⁻¹. HRMS (ESI) m/z calculated for C₁₆H₂₂N₂O₂ [M+H]⁺ = 275.1754, found =275.1760.

(R)-3-([1,1'-biphenyl]-4-ylamino)-1-(2-hydroxypropyl)-1H-pyrrole-2,5-dione ((R)-1ah)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate A (5 mmol) and *p*-methylaniline B (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, (R)-1-aminopropan-2-ol (30 mmol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 46% yield.

46% yield, yellow solid, m.p.:173-174°C, ¹**H NMR** (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.07 (d, J = 8.2 Hz, 2H), 6.80 (d, J = 8.3 Hz, 2H), 5.33 (s, 1H), 3.71 (d, J = 16.6 Hz, 6H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 168.6, 142.9, 135.6, 134.6, 130.3, 119.0, 88.1, 66.8, 45.5, 20.8. IR(KBr): v_{max}: 3483, 3312, 3131, 2964, 1685, 1639, 1561, 1544, 1447, 1412, 1325, 769, 694 cm⁻¹. HRMS (ESI) m/z calculated for C₁₉H₁₈N₂O₃ [M+H]⁺ = 261.1233, found = 261.1241.

(S)-1-(2-hydroxypropyl)-3-(p-tolylamino)-1H-pyrrole-2,5-dione ((S)-1ah)

In a 50-mL flame-dried flask, 10 mL ethanol was added to the mixture of dimethyl but-2-ynedioate **A** (5 mmol) and *p*-methylaniline **B** (5.0 mmol). The resulting mixture was stirred at room temperature for 30 minutes. Subsequently, (*S*)-1-aminopropan-2-ol (30 mmol) was introduced into the mixture. After 4 hrs, the solvent was removed under reduced pressure. The residue was then recrystallized using a mixture of petroleum ether (15 mL) and ethanol (5 mL). The resulting mixture was filtered, washed, and precipitated with cold ethanol. The products were obtained without further purification, with 45% yield.

45% yield, yellow solid, m.p.:173-174°C, ¹**H NMR** (400 MHz, CDCl₃) δ 9.62 (s, 1H), 7.07 (d, J = 8.2 Hz, 2H), 6.80 (d, J = 8.3 Hz, 2H), 5.33 (s, 1H), 3.73 (s, 3H), 3.69 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.4, 168.6, 142.9, 135.7, 134.6, 130.2, 118.9, 88.1, 66.7, 45.5, 20.8. IR(KBr):

 v_{max} : 3492, 3315, 3133, 2971, 1686, 1636, 1557, 1509, 1439, 1412, 1376, 768, 700 cm⁻¹. HRMS (ESI) m/z calculated for C₁₉H₁₈N₂O₃ [M+H]⁺ = 261.1233, found = 261.1233.

References

- H. Imoto, K. Nohmi, K. Kizaki, S. Watase, K. Matsukawa, S. Yamamoto, M. Mitsuishic and K. Naka, *RSC Adv.*, 2015, 5, 94344-94350.
- 2. B., Jan; J., Tomasz; K., Eva and P., Benjamin, Perkin 1 2000, 2615-2621.
- Z. Wang, S. Huang, L. Yin, J. Wan, C. Liu, T. Liu and C. Huang, J. Org. Chem., 2024, 89, 5498-5510.
- Y.-L. An, H.-H. Zhang, Z.-H. Yang, L. Lin and S.-Y. Zhao, *Eur. J. Org. Chem.*, 2016, 2016, 5405-5414.
- 5. W.-K., Wang, F.-Y.; Bao, Z.-W.; Shang, J. Zheng and S.-Y Zhao, Org. Lett., 2024, **26** 4297-4301.
- J. M. M. Mashaly, S. R. El-Gogary and T. R. Kosbar, J. Heterocyil. Chem., 2014, 51, 1078-1085.

3. General procedures for the synthesis of 2, 6a, 6b.

In a 50-mL flame-dried flask, 20 mL dichloromethane to the mixture of 2-(triphenylphosphoranylidene)acetophenone **D** (6.0 mmol, 1.2 equiv.) and corresponding substituted 2-chloro-3-quinoline formaldehyde (5 mmol, 1.0 equiv.) was stirred at room temperature for 24 h. After the starting material was consumed, the mixture was concentrated and simply purified by flash column (PE:EA = 20:1) to give the corresponding product (**2a-2f**).

Scheme S3. Scope of 2g-2i

In a 50-mL flame-dried flask, 20 mL dichloromethane to the mixture of corresponding Wittig reagent **E** (6 mmol, 1.2 equiv.) and 2-chloro-3-quinoline formaldehyde (5 mmol, 1.0 equiv.) was stirred at room temperature for 24 h. After the starting material was consumed, the mixture was concentrated and simply purified by flash column (PE:EA = 10:1) to give the product (**2g-2i**).

Scheme S4. Scope of 6a and 6b

In a 50-mL flame-dried flask, 20 mL dichloromethane to the mixture of 2-(triphenylphosphoranylidene)acetophenone (6 mmol, 1.2 equiv.) with 2-chloronicotinaldehyde or 2-fluoronicotinaldehyde formaldehyde (5 mmol, 1.0 equiv.) was stirred at room temperature for 24

h. After the starting material was consumed, the mixture was concentrated and simply purified by flash column (PE:EA = 20:1) to give the corresponding product (**6a** and **6b**).

Characterization of ortho-halogenated quinolin/pyridine chalcones

(E)-3-(2-chloroquinolin-3-yl)-1-phenylprop-2-en-1-one (2a)

62% yield, yellowish solid, m.p.:139-140°C, ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.16 (d, J = 15.7 Hz, 1H), 8.01 (dd, J = 20.6, 8.1 Hz, 3H), 7.86 (d, J = 8.1 Hz, 1H), 7.74 (t, J = 7.7 Hz, 1H), 7.64 – 7.55 (m, 3H), 7.51 (t, J = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 150.3, 147.8, 139.21, 137.5, 136.1, 133.2, 131.6, 128.7, 128.6, 128.3, 128.0, 127.9, 127.7, 126.9, 126.2. IR(KBr): v_{max} : 3060, 2924, 1663, 1604, 1486, 1446, 1403, 1373, 1049, 1013, 782, 708 cm⁻¹. HRMS (ESI) m/z calculated for C₁₈H₁₂CINO [M+H]⁺ = 294.0680, found =294.0680.

(E)-3-(2-chloro-7-fluoroquinolin-3-yl)-1-phenylprop-2-en-1-one (2b)

45% yield, yellowish solid, m.p.:150-151°C, ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 8.16 (d, J = 15.7 Hz, 1H), 8.07 – 8.02 (m, 2H), 7.89 (dd, J = 9.0, 5.9 Hz, 1H), 7.67 – 7.57 (m, 3H), 7.53 (t, J = 7.6 Hz, 2H), 7.39 (td, J = 8.7, 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 165.5, 163.0, 151.7, 139.0, 137.5, 135.9, 133.2, 128.8, 128.6, 126.3, 118.5, 118.2, 112.7, 112.5. IR(KBr): v_{max}: 3039, 2921, 1653, 1639, 1561, 1493, 1438, 1368, 1049, 1013, 782, 708 cm⁻¹. HRMS (ESI) m/z calculated for C₁₈H₁₁ClFNO [M+H]⁺ = 312.0586, found =312.0586.

(E)-3-(2-chloro-6-methylquinolin-3-yl)-1-phenylprop-2-en-1-one (2c)

60% yield, yellowish solid, m.p.:145-146°C, ¹H NMR (400 MHz, CDCl₃) δ 8.34 (s, 1H), 8.14 (d, J = 15.8 Hz, 1H), 8.06 – 8.01 (m, 2H), 7.86 (d, J = 8.6 Hz, 1H), 7.58 (ddd, J = 7.2, 4.2, 2.0 Hz, 3H), 7.55 – 7.49 (m, 3H), 2.52 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 149.4, 146.4, 139.4, 137. 8, 137.5, 135.5, 133.9, 133.1, 128.7, 128.6, 127.9, 127.7, 126.9, 126.8, 126.0, 21.55. IR(KBr): v_{max}:

3059, 2922, 1654, 1639, 1561, 1494, 1446, 1400, 1055, 1013, 822, 706 cm⁻¹. HRMS (ESI) m/z calculated for $C_{19}H_{14}CINO [M+H]^+ = 308.0836$, found =308.0857.

(E)-3-(2-chlorobenzo[h]quinolin-3-yl)-1-phenylprop-2-en-1-one (2d)

40% yield, yellowish solid, m.p.:195-196°C, ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 8.22 (d, J = 15.8 Hz, 1H), 8.10 – 8.04 (m, 2H), 7.88 (dt, J = 6.3, 2.6 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.74 – 7.70 (m, 2H), 7.65 (tt, J = 7.3, 3.5 Hz, 3H), 7.55 (dd, J = 15.7, 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.8, 149.7, 146.9, 139.4, 137.6, 135.6, 134.1, 133.1, 130.1, 129.3, 128.9, 128.74, 128.66, 128.0, 127.9, 127.6, 125.9, 125.2, 124.9, 124.4. IR(KBr): v_{max}: 3053, 2923, 1664, 1640, 1578, 1561, 1437, 1401, 1055, 1015, 817, 693 cm⁻¹. HRMS (ESI) m/z calculated for C₂₂H₁₄CINO [M+H]⁺ = 344.0836, found = 344.0836.

54% yield, yellowish solid, m.p.:198-199°C, ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 8.20 (d, J = 15.7 Hz, 1H), 8.10 – 8.00 (m, 2H), 7.64 – 7.50 (m, 5H), 7.40 (d, J = 8.3 Hz, 1H), 2.69 (s, 3H), 2.50 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.9, 149.2, 147.1, 140.0, 139.8, 137.7, 136.3, 134.1, 133.1, 130.5, 128.7, 128.6, 126.3, 125.5, 125.3, 124.9, 20.9, 13.3. IR(KBr): v_{max}: 3012, 2922, 1662, 1639, 1576 1561, 1438, 1401, 1076, 1039, 809, 706 cm⁻¹. HRMS (ESI) m/z calculated for C₂₀H₁₆CINO [M+H]⁺ = 322.0993, found = 322.1011.

(E)-3-(2-chloro-5,8-dimethylquinolin-3-yl)-1-phenylprop-2-en-1-one (2f)

56% yield, yellowish solid, m.p.:192-193°C, ¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.18 (d, J = 15.8 Hz, 1H), 8.07 – 8.02 (m, 2H), 7.65 – 7.51 (m, 4H), 7.46 (d, J = 7.2 Hz, 1H), 7.30 – 7.27 (m, 1H), 2.70 (s, 3H), 2.68 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 190.2, 148.8, 147.5, 140.1, 137.6,

134.5, 133.15, 133.07, 132.8, 131.5, 128.70, 128.66, 127.8, 126.8, 126.4, 126.1, 18.6, 17.7. IR(KBr): v_{max} : 3056, 2922, 1654, 1602, 1494 1464, 1446, 1385, 1092, 1014, 828, 710 cm⁻¹. HRMS (ESI) m/z calculated for C₂₀H₁₆CINO [M+H]⁺ = 322.0993, found =322.1013.

(E)-4-(2-chloroquinolin-3-yl)but-3-en-2-one (2g)

48% yield, yellowish solid, m.p.:134-135°C, ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.94 (dd, J = 22.7, 12.3 Hz, 2H), 7.85 – 7.71 (m, 2H), 7.57 (t, J = 7.1 Hz, 1H), 6.76 (d, J = 16.3 Hz, 1H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 150.0, 147.8, 137.9, 136.0, 131.6, 130.9, 128.3, 128.0, 127.7, 127.3, 126.9, 27.4. IR(KBr): v_{max}: 3053, 2922, 1673, 1642, 1615 1583, 1485, 1397, 1132, 1047, 777, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₁₃H₁₀ClNO [M+H]⁺ = 232.0523, found =232.0541.

Ethyl (E)-3-(2-chloroquinolin-3-yl)acrylate (2h)

47% yield, yellowish solid, m.p.:155-156°C, ¹H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 8.21 – 7.96 (m, 2H), 7.81 (d, J = 29.1 Hz, 2H), 7.60 (s, 1H), 6.82 – 6.34 (m, 1H), 4.33 (d, J = 6.6 Hz, 2H), 1.37 (d, J = 5.9 Hz, 3H). ¹³C NMR (100 MHz, CDCl3) δ 165.9, 150.0, 147.8, 139.2, 136.1, 131.5, 128.4, 128.0, 127.6, 127.5, 127.0, 122.7, 60.9, 14.3. IR(KBr): v_{max}: 2987, 2922, 1711, 1653, 1616 1579, 1561, 1448, 1393, 1039, 816, 746 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₂ClNO₂ [M+H]⁺ = 261.0556, found = 261.0551.

Benzyl (E)-3-(2-chloroquinolin-3-yl)acrylate (2i)

44% yield, yellowish solid, m.p.:185-186°C, ¹H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 8.14 (d, J = 15.9 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.80 (d, J = 8.1 Hz, 1H), 7.73 (t, J = 7.7 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.46 – 7.32 (m, 5H), 6.59 (d, J = 15.9 Hz, 1H), 5.29 (s, 2H). ¹³C NMR (100 MHz, CDCl3) δ 165.6, 149.9, 147.8, 139.7, 136.0, 135.7, 131.5, 128.6, 128.3, 128.2, 127.9, 127.6, 127.2,

126.8, 122.2, 66.6. IR(KBr): v_{max} : 3057, 2920, 1710, 1654, 1614, 1584, 1561, 1452, 1378, 1043, 774, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₁₉H₁₄ClNO₂ [M+H]⁺ = 323.0713, found = 323.0721. **(E)-3-(2-chloropyridin-3-yl)-1-phenylprop-2-en-1-one (6a)**

38% yield, yellowish solid, m.p.:115-116°C, ¹H NMR (400 MHz, CDCl₃) δ 8.38 (dd, J = 4.7, 1.8 Hz, 1H), 8.01 (ddd, J = 13.9, 8.4, 1.7 Hz, 4H), 7.58 (dd, J = 10.5, 4.2 Hz, 1H), 7.52 – 7.45 (m, 3H), 7.30 (dd, J = 7.7, 4.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.6, 151.6, 150.4, 138.7, 137.3, 136.1, 133.2, 123.0, 128.7, 128.5, 126.4, 122.8. IR(KBr): v_{max}: 3060, 2923, 1656, 1605, 1577, 1560, 1495, 1447, 1064, 1013, 807, 691 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₀ClNO [M+H]⁺ = 244.0523, found =244.0540.

(E)-3-(2-fluoropyridin-3-yl)-1-phenylprop-2-en-1-one (6b)

35% yield, yellowish solid, m.p.:87-88°C, ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 4.7 Hz, 1H), 8.02 (ddd, J = 8.8, 5.5, 1.6 Hz, 3H), 7.73 (q, J = 15.9 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.49 (dd, J = 10.4, 4.6 Hz, 2H), 7.28 – 7.23 (dd, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 162.6, 160.2, 148.5, 148.4, 140.2, 140.2, 137.5, 135.7, 135.6, 133.2, 128.7, 128.5, 126.3, 126.3, 121.9, 121.9, 118.2, 118.0. IR(KBr): v_{max}: 3059, 2922, 1665, 1606, 1576 1495, 1448, 1426, 1099, 1013, 806, 685 cm⁻¹. HRMS (ESI) m/z calculated for C₁₄H₁₀FNO [M+H]⁺ = 228.0819, found =228.0834.

4. X-ray of 3a

Scheme S5. X-ray of 3a

Table S1. Crystal data and structure refinement for 3a.

Empirical formula	$C_{30}H_{20}BrN_3O_3$
Formula weight	550.40
Temperature/K	170.00
Crystal system	Monoclinic
Space group	$P2_{1}/c$
a/Å	15.7313(6)
b/Å	13.6060(5)
c/Å	24.1199(10)
α/°	90
β/°	108.5050(10)
$\gamma/^{\circ}$	90
Volume/Å ³	4895.7(3)
Z	8
$ ho_{calc}g/cm^3$	1.493
μ/mm^{-1}	1.712
F(000)	2240.0
Crystal size/mm ³	$0.09\times0.06\times0.04$
Radiation	$GaK\alpha \ (\lambda = 1.34139)$
2Θ range for data collection/°	6.576 to 121.278
Index ranges	$-20 \le h \le 20, -16 \le k \le 17, -31 \le l \le 31$
Reflections collected	62961
Independent reflections	11216 [$R_{\text{int}} = 0.0362, R_{\text{sigma}} = 0.0289$]
Data/restraints/parameters	11216/0/669
Goodness-of-fit on F ²	1.069
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0366, wR_2 = 0.0896$
Final R indexes [all data]	$R_1 = 0.0445, wR_2 = 0.0943$
Largest diff. peak/hole / e Å ⁻³	0.43/-1.01

Atom	x	у	z	U(eq)
Br1	-1714.2(2)	10404.4(2)	2104.1(2)	70.52(11)
01	4737.2(7)	6573.0(9)	4769.8(5)	27.1(2)
N1	2064.6(9)	8184.1(10)	3072.1(6)	23.3(3)
C1	4079.6(11)	7027.5(14)	2875.9(7)	31.0(4)
02	5413.7(8)	5515.6(10)	5855.0(6)	36.0(3)
N2	1235.1(8)	7847.7(10)	3676.2(6)	21.9(3)
C2	4083.2(13)	7484.3(14)	2375.0(8)	33.7(4)
O3	2383.1(8)	5318.3(10)	5386.7(6)	36.9(3)
N3	3914.1(9)	5252.3(10)	5719.3(6)	26.1(3)
C3	3433.7(13)	8207.4(14)	2114.1(7)	31.1(4)
C4	2783.6(12)	8452.8(13)	2352.8(7)	27.5(3)
C5	2754.3(10)	7978.4(11)	2871.3(7)	22.6(3)
C6	3419.2(10)	7270.0(12)	3144.6(7)	23.5(3)
C7	3387.0(10)	6828.0(12)	3662.4(7)	22.8(3)
C8	2704.6(10)	7062.4(11)	3891.2(6)	19.9(3)
С9	2030.6(10)	7716.4(11)	3544.3(7)	20.5(3)
C10	1073.1(10)	7307.7(11)	4109.6(7)	21.8(3)
C11	1725.9(10)	6706.7(12)	4461.9(7)	23.2(3)
C12	2591.4(10)	6608.4(11)	4409.8(6)	19.9(3)
C13	546.9(10)	8459.2(12)	3284.7(7)	23.3(3)
C14	-168.5(12)	8017.7(13)	2874.2(8)	30.0(4)
C15	-845.3(13)	8598.9(15)	2513.1(8)	38.8(4)
C16	-773.7(14)	9605.6(15)	2576.6(8)	38.4(4)
C17	-49.3(14)	10052.1(14)	2977.2(8)	37.1(4)
C18	624.1(12)	9469.0(13)	3337.8(8)	30.1(4)
C19	190.4(10)	7370.8(12)	4210.8(7)	24.1(3)
C20	-235.6(12)	6493.9(14)	4264.1(8)	30.9(4)
C21	-1041.7(12)	6507.8(16)	4386.6(8)	37.2(4)
C22	-1415.0(12)	7393.8(16)	4467.0(8)	37.1(4)
C23	-989.0(11)	8265.0(15)	4427.8(8)	33.2(4)
C24	-192.9(11)	8262.6(13)	4293.8(7)	28.0(3)
C25	3272.6(10)	6102.6(11)	4842.5(7)	20.9(3)
C26	4237.3(10)	6162.3(11)	4993.5(7)	21.6(3)
C27	4627.5(11)	5608.9(12)	5576.4(7)	25.0(3)
C28	3091.0(11)	5543.4(12)	5314.4(7)	25.0(3)
C29	3963.9(13)	4638.9(13)	6222.2(7)	31.2(4)
C30	3843.6(13)	3559.9(13)	6058.7(8)	34.6(4)

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 3a. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Br1A	10226.2(2)	6269.0(2)	6151.0(2)	58.20(9)
OlA	2954.7(8)	9674.3(8)	4349.8(5)	27.1(2)
N1A	6525.4(9)	8640.4(10)	4609.1(6)	22.1(3)
C1A	4747.5(12)	9636.3(13)	3321.4(7)	27.5(3)
O2A	1515.3(8)	9541.4(9)	4824.2(6)	33.3(3)
N2A	6545.6(8)	8177.4(10)	5529.8(5)	21.0(3)
C2A	5250.4(12)	9862.5(14)	2971.7(7)	31.3(4)
O3A	3686.5(8)	7582.5(9)	5996.1(5)	29.1(3)
N3A	2463.2(9)	8498.2(10)	5492.1(6)	25.3(3)
C3A	6179.1(13)	9665.5(14)	3160.3(8)	33.0(4)
C4A	6594.6(12)	9245.1(13)	3693.5(7)	29.4(4)
C5A	6091.6(11)	9019.4(11)	4073.5(7)	21.9(3)
C6A	5160.0(11)	9219.6(11)	3884.2(6)	21.6(3)
C7A	4683.4(10)	9039.2(11)	4274.2(7)	21.8(3)
C8A	5119.8(10)	8716.8(10)	4838.6(6)	18.7(3)
C9A	6059.8(10)	8518.0(11)	4973.7(6)	19.5(3)
C10A	6159.5(10)	8170.5(11)	5961.6(6)	21.3(3)
C11A	5257.1(10)	8325.9(12)	5838.9(7)	22.0(3)
C12A	4679.6(10)	8556.5(11)	5277.4(6)	19.1(3)
C13A	7426.7(10)	7738.1(12)	5643.9(6)	21.6(3)
C14A	8178.1(11)	8313.1(12)	5709.0(7)	24.8(3)
C15A	9013.2(11)	7871.1(13)	5861.9(7)	28.2(3)
C16A	9073.5(11)	6862.0(13)	5938.2(8)	31.5(4)
C17A	8325.7(12)	6281.3(13)	5856.8(9)	33.8(4)
C18A	7488.3(12)	6728.3(12)	5710.1(8)	28.5(3)
C19A	6733.4(11)	8100.1(12)	6581.5(7)	24.5(3)
C20A	7407.6(11)	8796.3(13)	6804.0(7)	28.0(3)
C21A	7871.3(13)	8824.3(15)	7398.3(8)	36.5(4)
C22A	7669.5(15)	8164.4(19)	7770.3(8)	48.2(5)
C23A	7003.1(16)	7478(2)	7554.1(9)	53.1(6)
C24A	6529.7(13)	7438.4(16)	6958.5(8)	38.2(4)
C25A	3746.6(10)	8658.2(11)	5198.9(6)	20.4(3)
C26A	3035.7(10)	9197.2(11)	4798.5(7)	21.3(3)
C27A	2227.0(11)	9124.8(12)	5026.8(7)	24.5(3)
C28A	3359.8(10)	8186.0(12)	5615.0(7)	22.4(3)
C29A	1845.8(11)	8097.3(14)	5779.6(8)	29.5(4)
C30A	1815.4(15)	8700.4(16)	6298.4(10)	43.1(5)

uispiace	ment factor ex	ponent takes t	ne 101 m2 <i>n</i> [n		b U 12 · •••]•	
Atom	U11	U22	U33	U23	U ₁₃	U12
Br1	80.9(2)	59.32(17)	49.12(15)	6.61(12)	-10.82(13)	45.30(15)
01	22.9(5)	28.1(6)	30.1(6)	-1.5(5)	8.0(5)	-4.0(5)
N1	24.9(6)	21.9(6)	23.8(6)	1.7(5)	8.5(5)	0.5(5)
C1	26.8(8)	40.7(10)	26.3(8)	-1.9(7)	9.6(7)	6.2(7)
02	24.6(6)	37.0(7)	37.5(7)	3.0(6)	-2.8(5)	4.5(5)
N2	19.5(6)	21.5(6)	24.0(6)	4.0(5)	6.0(5)	2.0(5)
C2	34.9(9)	42.7(10)	27.9(8)	-4.2(8)	16.4(7)	2.1(8)
03	27.7(6)	42.8(7)	41.1(7)	19.1(6)	12.1(5)	2.6(5)
N3	27.2(7)	24.5(7)	23.2(7)	4.5(5)	3.2(5)	2.9(5)
C3	41.4(10)	32.8(9)	22.0(8)	-2.5(7)	14.3(7)	-3.7(7)
C4	33.8(9)	25.3(8)	23.7(8)	-0.1(6)	9.4(7)	-0.6(7)
C5	24.3(7)	22.0(7)	21.4(7)	-2.8(6)	7.1(6)	-3.1(6)
C6	21.9(7)	26.5(8)	21.2(7)	-4.8(6)	5.6(6)	-1.1(6)
C7	20.8(7)	24.1(8)	21.3(7)	-2.6(6)	3.7(6)	1.2(6)
C8	19.7(7)	17.7(7)	20.3(7)	-1.5(6)	3.6(6)	-1.5(5)
C9	19.5(7)	19.3(7)	22.0(7)	-2.0(6)	5.7(6)	-0.8(6)
C10	21.1(7)	20.9(7)	23.4(7)	0.8(6)	7.1(6)	-1.2(6)
C11	21.9(7)	24.1(8)	23.4(7)	3.4(6)	6.9(6)	0.2(6)
C12	21.0(7)	17.0(7)	20.5(7)	-1.8(6)	5.1(6)	-1.0(5)
C13	22.8(7)	23.8(8)	24.0(7)	6.2(6)	8.5(6)	5.6(6)
C14	29.7(8)	25.9(8)	30.3(8)	2.6(7)	3.9(7)	4.1(7)
C15	32.7(9)	40.9(11)	33.6(9)	3.4(8)	-2.4(8)	7.9(8)
C16	43.5(11)	37.7(10)	30.1(9)	9.6(8)	6.1(8)	20.3(8)
C17	52.3(11)	24.1(9)	34.5(9)	5.3(7)	13.1(9)	11.3(8)
C18	33.8(9)	25.3(8)	30.5(9)	3.2(7)	9.0(7)	1.6(7)
C19	18.7(7)	30.6(8)	22.0(7)	3.7(6)	5.2(6)	-0.5(6)
C20	29.2(8)	32.1(9)	32.1(9)	2.2(7)	10.8(7)	-3.7(7)
C21	30.7(9)	48.8(11)	33.6(9)	1.1(8)	12.4(8)	-14.8(8)
C22	21.9(8)	61.7(13)	30.1(9)	-4.4(9)	11.6(7)	-6.8(8)
C23	22.7(8)	46.6(11)	30.5(9)	-2.5(8)	8.8(7)	4.4(7)
C24	22.0(8)	32.1(9)	29.5(8)	1.9(7)	7.6(6)	1.2(6)
C25	20.9(7)	19.1(7)	21.9(7)	0.5(6)	5.5(6)	0.6(6)
C26	21.9(7)	18.0(7)	22.7(7)	-2.9(6)	3.9(6)	1.0(6)
C27	26.0(8)	19.6(7)	25.6(8)	-1.6(6)	2.7(6)	2.4(6)
C28	25.2(8)	23.5(8)	25.2(8)	3.8(6)	6.3(6)	2.2(6)
C29	39.9(10)	29.2(9)	22.9(8)	6.7(7)	7.8(7)	7.3(7)
C30	33.9(9)	31.1(9)	36.4(9)	6.8(8)	7.7(8)	-2.9(7)

Table S3. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 3a. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	Un	U ₂₂	U33	U ₂₃	U13	U12
Br1A	29.18(11)	39.54(13)	98.8(2)	4.99(12)	10.22(12)	12.03(9)
O1A	29.7(6)	26.5(6)	25.7(6)	6.0(5)	9.7(5)	3.8(5)
N1A	24.7(6)	23.2(7)	19.7(6)	-0.2(5)	8.6(5)	-0.2(5)
C1A	30.8(8)	29.8(8)	19.6(7)	-0.3(6)	4.9(6)	-1.9(7)
O2A	22.8(6)	34.1(7)	42.4(7)	6.2(6)	9.5(5)	1.7(5)
N2A	21.9(6)	22.7(6)	18.7(6)	1.0(5)	7.0(5)	0.6(5)
C2A	39.9(10)	34.7(9)	18.3(7)	1.6(7)	8.0(7)	-4.1(8)
O3A	29.7(6)	33.0(6)	26.0(6)	8.1(5)	10.8(5)	0.3(5)
N3A	22.1(6)	29.8(7)	25.8(7)	2.5(6)	9.8(5)	-2.3(5)
C3A	41.6(10)	38.3(10)	23.9(8)	1.2(7)	17.1(7)	-6.4(8)
C4A	30.0(8)	34.9(9)	26.1(8)	-0.4(7)	13.2(7)	-2.2(7)
C5A	28.3(8)	19.8(7)	19.1(7)	-2.0(6)	9.5(6)	-2.1(6)
C6A	26.9(8)	19.6(7)	17.6(7)	-3.6(6)	6.1(6)	-3.5(6)
C7A	23.6(7)	21.6(7)	19.4(7)	-3.7(6)	5.8(6)	-2.6(6)
C8A	22.0(7)	15.8(7)	18.8(7)	-2.8(5)	6.9(6)	-1.9(5)
C9A	22.8(7)	17.2(7)	18.2(7)	-2.1(6)	5.9(6)	-1.2(6)
C10A	25.3(7)	20.0(7)	18.7(7)	0.7(6)	7.1(6)	-1.3(6)
C11A	24.9(7)	23.9(8)	18.2(7)	-1.0(6)	8.2(6)	-2.0(6)
C12A	23.5(7)	15.9(7)	18.7(7)	-2.8(5)	7.6(6)	-2.2(5)
C13A	22.1(7)	23.7(8)	18.9(7)	1.0(6)	6.3(6)	2.8(6)
C14A	26.1(8)	21.8(8)	27.4(8)	0.1(6)	9.4(6)	0.5(6)
C15A	24.8(8)	27.9(8)	31.5(8)	-1.2(7)	8.4(7)	-1.3(6)
C16A	25.4(8)	31.1(9)	36.2(9)	1.1(7)	7.3(7)	7.4(7)
C17A	32.8(9)	22.8(8)	44.7(10)	3.3(7)	10.7(8)	3.7(7)
C18A	28.3(8)	23.4(8)	33.2(9)	1.4(7)	8.7(7)	-0.9(6)
C19A	24.3(7)	29.6(8)	19.1(7)	1.6(6)	6.0(6)	2.4(6)
C20A	28.9(8)	30.0(9)	24.1(8)	-0.5(7)	7.3(7)	0.5(7)
C21A	33.3(9)	44.8(11)	26.6(9)	-7.0(8)	2.7(7)	1.2(8)
C22A	47.3(12)	71.3(15)	19.4(8)	3.5(9)	0.9(8)	2.8(11)
C23A	58.4(14)	70.0(16)	27.2(10)	18.4(10)	8.5(9)	-8.1(12)
C24A	38.3(10)	46.2(11)	28.0(9)	8.8(8)	7.3(8)	-8.5(8)
C25A	24.5(7)	19.7(7)	17.7(7)	-1.3(6)	7.8(6)	-2.5(6)
C26A	22.7(7)	18.9(7)	22.0(7)	-3.1(6)	7.0(6)	-3.3(6)
C27A	22.9(7)	23.9(8)	26.5(8)	-1.8(6)	7.5(6)	-3.2(6)
C28A	23.4(7)	24.5(8)	19.9(7)	-2.6(6)	7.6(6)	-2.6(6)
C29A	24.6(8)	35.8(9)	31.4(9)	2.8(7)	13.3(7)	-4.9(7)
C30A	47.5(12)	45.3(11)	47.6(12)	-3.9(9)	31.0(10)	-6.5(9)

Table S3. Anisotropic Displacement Parameters $(Å^2 \times 10^3)$ for 3a. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S4. Bond Lengths for 3a.

Atom Atom		Length/Å	Atom Atom	Length/Å
Br1	C16	1.8971(18)	Br1A C16A	1.9004(17)
01	C26	1.2211(19)	O1A C26A	1.2335(19)
N1	C5	1.351(2)	N1A C5A	1.357(2)
N1	C9	1.320(2)	N1A C9A	1.322(2)
C1	C2	1.360(3)	C1A C2A	1.362(2)
C1	C6	1.427(2)	C1A C6A	1.423(2)
02	C27	1.212(2)	O2A C27A	1.211(2)
N2	C9	1.3972(19)	N2A C9A	1.3954(19)
N2	C10	1.366(2)	N2A C10A	1.3620(19)
N2	C13	1.4516(19)	N2A C13A	1.4534(19)
C2	C3	1.414(3)	C2A C3A	1.411(3)
O3	C28	1.220(2)	O3A C28A	1.218(2)
N3	C27	1.364(2)	N3A C27A	1.364(2)
N3	C28	1.409(2)	N3A C28A	1.412(2)
N3	C29	1.454(2)	N3A C29A	1.466(2)
C3	C4	1.365(2)	C3A C4A	1.369(3)
C4	C5	1.421(2)	C4A C5A	1.422(2)
C5	C6	1.421(2)	C5A C6A	1.416(2)
C6	C7	1.402(2)	C6A C7A	1.398(2)
C7	C8	1.391(2)	C7A C8A	1.387(2)
C8	С9	1.433(2)	C8A C9A	1.435(2)
C8	C12	1.456(2)	C8A C12A	1.453(2)
C10	C11	1.375(2)	C10A C11A	1.371(2)
C10	C19	1.487(2)	C10A C19A	1.484(2)
C11	C12	1.413(2)	C11A C12A	1.406(2)
C12	C25	1.415(2)	C12A C25A	1.426(2)
C13	C14	1.379(2)	C13AC14A	1.384(2)
C13	C18	1.382(2)	C13AC18A	1.383(2)
C14	C15	1.389(2)	C14AC15A	1.384(2)
C15	C16	1.379(3)	C15AC16A	1.385(3)
C16	C17	1.379(3)	C16AC17A	1.378(3)
C17	C18	1.387(3)	C17AC18A	1.391(2)
C19	C20	1.394(2)	C19A C20A	1.396(2)
C19	C24	1.397(2)	C19A C24A	1.387(2)
C20	C21	1.391(2)	C20A C21A	1.387(2)
C21	C22	1.381(3)	C21AC22A	1.376(3)
C22	C23	1.380(3)	C22A C23A	1.377(3)

Table S4. Bond Lengths for 3a.

Aton	n Atom	Length/Å	Atom Atom	Length/Å
C23	C24	1.389(2)	C23A C24A	1.394(3)
C25	C26	1.446(2)	C25A C26A	1.427(2)
C25	C28	1.470(2)	C25A C28A	1.476(2)
C26	C27	1.540(2)	C26A C27A	1.541(2)
C29	C30	1.516(3)	C29A C30A	1.510(3)

Table S5. Bond Angles for 3a.

Atom Atom Atom			Angle/°	Atom Atom Atom	Angle/°
С9	N1	C5	117.80(14)	C9A N1A C5A	117.64(13)
C2	C1	C6	120.44(16)	C2A C1A C6A	120.12(16)
С9	N2	C13	117.53(12)	C9A N2A C13A	121.13(12)
C10	N2	C9	120.24(13)	C10AN2A C9A	119.75(13)
C10	N2	C13	121.62(13)	C10AN2A C13A	118.84(12)
C1	C2	C3	120.46(16)	C1A C2A C3A	120.19(16)
C27	N3	C28	111.95(13)	C27AN3A C28A	110.73(13)
C27	N3	C29	125.76(14)	C27AN3A C29A	125.00(14)
C28	N3	C29	122.28(14)	C28AN3A C29A	123.82(14)
C4	C3	C2	120.99(16)	C4A C3A C2A	121.27(16)
C3	C4	C5	119.87(16)	C3A C4A C5A	119.89(16)
N1	C5	C4	118.40(15)	N1A C5A C4A	118.77(15)
N1	C5	C6	122.08(14)	N1A C5A C6A	122.43(14)
C4	C5	C6	119.44(14)	C6A C5A C4A	118.78(14)
C5	C6	C1	118.75(15)	C5A C6A C1A	119.73(14)
C7	C6	C1	122.89(15)	C7A C6A C1A	122.14(15)
C7	C6	C5	118.35(14)	C7A C6A C5A	118.06(14)
C8	C7	C6	120.39(14)	C8A C7A C6A	120.79(14)
C7	C8	C9	115.59(14)	C7A C8A C9A	115.83(13)
C7	C8	C12	124.33(14)	C7A C8A C12A	124.08(14)
C9	C8	C12	119.71(13)	C9A C8A C12A	120.08(13)
N1	C9	N2	114.78(13)	N1A C9A N2A	115.55(13)
N1	C9	C8	125.31(14)	N1A C9A C8A	125.02(14)
N2	C9	C8	119.78(13)	N2A C9A C8A	119.42(13)
N2	C10	C11	120.56(14)	N2A C10AC11A	121.08(14)
N2	C10	C19	120.35(13)	N2A C10AC19A	119.63(14)
C11	C10	C19	119.08(14)	C11A C10A C19A	118.97(14)
C10	C11	C12	123.57(14)	C10A C11A C12A	123.39(14)
C11	C12	C8	114.86(13)	C11A C12A C8A	115.04(13)

Table S5. Bond Angles for 3a.

Aton	1 Aton	n Atom	Angle/°	Atom Atom Atom	Angle/°
C11	C12	C25	120.41(14)	C11A C12A C25A	118.21(13)
C25	C12	C8	124.72(14)	C25A C12A C8A	126.66(13)
C14	C13	N2	119.19(14)	C14A C13A N2A	121.19(14)
C14	C13	C18	121.84(15)	C18A C13A N2A	117.26(14)
C18	C13	N2	118.96(15)	C18A C13A C14A	121.49(15)
C13	C14	C15	119.39(17)	C15AC14AC13A	119.27(15)
C16	C15	C14	118.47(18)	C14A C15A C16A	119.03(16)
C15	C16	Br1	118.80(15)	C15AC16ABr1A	118.43(13)
C15	C16	C17	122.38(17)	C17A C16A Br1A	119.55(13)
C17	C16	Br1	118.81(14)	C17A C16A C15A	122.02(16)
C16	C17	C18	118.96(17)	C16A C17A C18A	118.83(16)
C13	C18	C17	118.92(17)	C13A C18A C17A	119.32(16)
C20	C19	C10	117.84(15)	C20A C19A C10A	119.24(14)
C20	C19	C24	119.21(15)	C24A C19A C10A	120.59(15)
C24	C19	C10	122.80(15)	C24A C19A C20A	119.58(15)
C21	C20	C19	120.36(17)	C21A C20A C19A	120.14(17)
C22	C21	C20	119.91(18)	C22A C21A C20A	120.09(19)
C23	C22	C21	120.19(16)	C21A C22A C23A	120.08(18)
C22	C23	C24	120.48(18)	C22A C23A C24A	120.68(19)
C23	C24	C19	119.82(17)	C19A C24A C23A	119.43(19)
C12	C25	C26	130.33(14)	C12A C25A C26A	133.82(14)
C12	C25	C28	122.34(14)	C12A C25A C28A	119.79(13)
C26	C25	C28	106.27(13)	C26A C25A C28A	106.28(13)
01	C26	C25	133.30(15)	O1A C26AC25A	134.82(15)
01	C26	C27	120.07(14)	O1A C26AC27A	118.68(14)
C25	C26	C27	106.54(13)	C25A C26A C27A	106.49(13)
02	C27	N3	126.82(16)	O2A C27AN3A	126.88(15)
02	C27	C26	126.73(16)	O2A C27A C26A	126.03(15)
N3	C27	C26	106.45(13)	N3A C27A C26A	107.08(13)
03	C28	N3	120.68(15)	O3A C28AN3A	121.03(14)
03	C28	C25	130.62(15)	O3A C28AC25A	129.82(15)
N3	C28	C25	108.69(13)	N3A C28A C25A	109.06(13)
N3	C29	C30	111.68(14)	N3A C29AC30A	112.94(15)

Table S6. Torsion Angles for 3a.

A B C	D Angle/°	А	В	С	D	Angle/°
Br1 C16C17	C18 177.72(14)	Br1A	C16A	C17A	C18A	179.01(14)
O1 C26C27	O2 -0.8(3)	O1A	C26A	C27A	O2A	-4.3(2)
O1 C26C271	N3 178.70(14)	O1A	C26A	C27A	N3A	175.01(14)
N1 C5 C6 (C1 174.26(15)	N1A	C5A	C6A	C1A	178.71(15)
N1 C5 C6 (C7 -4.7(2)	N1A	C5A	C6A	C7A	1.6(2)
C1 C2 C3 (C4 -0.9(3)	C1A	C2A	C3A	C4A	0.1(3)
C1 C6 C7 (C8 -177.20(15)	C1A	C6A	C7A	C8A	-174.07(15)
N2 C10C11	C12 0.6(2)	N2A	C10A	C11A	C12A	-3.8(2)
N2 C10C19	C20 131.61(16)	N2A	C10A	C19A	C20A	56.3(2)
N2 C10C19	C24 -52.9(2)	N2A	C10A	C19A	C24A	-132.53(18)
N2 C13C14	C15 177.64(16)	N2A	C13A	C14A	C15A	175.04(14)
N2 C13C18	C17 -177.79(15)	N2A	C13A	C18A	C17A	-175.92(15)
C2 C1 C6 (C5 1.5(3)	C2A	C1A	C6A	C5A	-1.5(2)
C2 C1 C6 (C7 -179.57(17)	C2A	C1A	C6A	C7A	175.44(16)
C2 C3 C4 (C5 0.0(3)	C2A	C3A	C4A	C5A	-1.4(3)
C3 C4 C5 1	N1 -175.14(16)	C3A	C4A	C5A	N1A	-177.33(16)
C3 C4 C5 (C6 1.7(2)	C3A	C4A	C5A	C6A	1.2(2)
C4 C5 C6 (C1 -2.4(2)	C4A	C5A	C6A	C1A	0.2(2)
C4 C5 C6 (C7 178.64(15)	C4A	C5A	C6A	C7A	-176.87(15)
C5 N1 C9 1	N2 -170.62(13)	C5A	N1A	C9A	N2A	-176.61(13)
C5 N1 C9 0	C8 5.3(2)	C5A	N1A	C9A	C8A	2.8(2)
C5 C6 C7 (C8 1.7(2)	C5A	C6A	C7A	C8A	2.9(2)
C6 C1 C2 (C3 0.1(3)	C6A	C1A	C2A	C3A	1.4(3)
C6 C7 C8 (C9 4.0(2)	C6A	C7A	C8A	C9A	-4.4(2)
C6 C7 C8 (C12 176.96(14)	C6A	C7A	C8A	C12A	177.05(14)
C7 C8 C9 1	N1 -7.9(2)	C7A	C8A	C9A	N1A	1.6(2)
C7 C8 C9 1	N2 167.77(14)	C7A	C8A	C9A	N2A	-179.10(13)
C7 C8 C12	C11 -160.62(15)	C7A	C8A	C12A	C11A	-173.80(14)
C7 C8 C12	C25 19.6(2)	C7A	C8A	C12A	C25A	2.9(2)
C8 C12 C25	C26 22.0(3)	C8A	C12A	C25A	C26A	-23.4(3)
C8 C12C25	C28 -171.44(14)	C8A	C12A	C25A	C28A	161.06(14)
C9 N1 C5 (C4 178.00(14)	C9A	N1A	C5A	C4A	174.14(15)
C9 N1 C5 (C6 1.3(2)	C9A	N1A	C5A	C6A	-4.4(2)
C9 N2 C10	C11 6.9(2)	C9A	N2A	C10A	C11A	11.6(2)
C9 N2 C10	C19 -173.75(14)	C9A	N2A	C10A	C19A	-161.79(14)
C9 N2 C13	C14 100.51(18)	C9A	N2A	C13A	C14A	77.47(19)
C9 N2 C13	C18 -80.04(19)	C9A	N2A	C13A	C18A	-105.32(17)
C9 C8 C12	C11 12.1(2)	C9A	C8A	C12A	C11A	7.7(2)

Table S6. Torsion Angles for 3a.

A	B	С	D	An	gle/°	Α	В	С	D	Angle/°
C9 (C8	C12	C25	-16	7.72(14)	C9A	C8A	C12A	C25A	-175.66(14)
C101	N2	C9	N1	17	1.84(14)	C10A	N2A	C9A	N1A	170.05(14)
C101	N2	C9	C8		-4.3(2)	C10A	N2A	C9A	C8A	-9.3(2)
C101	N2	C13	C14		-70.5(2)	C10A	N2A	C13A	C14A	-108.62(17)
C101	N2	C13	C18	10	8.98(18)	C10A	N2A	C13A	C18A	68.59(19)
C100	C11	C12	C8		-9.9(2)	C10A	C11A	C12A	C8A	-5.8(2)
C100	C11	C12	C25	16	9.90(15)	C10A	C11A	C12A	C25A	177.23(15)
C100	C19	C20	C21	17	6.95(16)	C10A	C19A	C20A	C21A	171.38(16)
C100	C19	C24	C23	-17	5.40(15)	C10A	C19A	C24A	C23A	-171.28(19)
C11 0	C10	C19	C20		-49.1(2)	C11A	C10A	C19A	C20A	-117.28(18)
C11 0	C10	C19	C24	12	6.41(17)	C11A	C10A	C19A	C24A	53.9(2)
C11 0	C12	C25	C26	-15	7.76(16)	C11A	C12A	C25A	C26A	153.18(17)
C11 0	C12	C25	C28		8.8(2)	C11A	C12A	C25A	C28A	-22.4(2)
C120	C8	C9	N1	17	8.77(14)	C12A	C8A	C9A	N1A	-179.80(14)
C120	C8	C9	N2		-5.5(2)	C12A	C8A	C9A	N2A	-0.5(2)
C120	C25	C26	01		-8.2(3)	C12A	C25A	C26A	.01A	9.1(3)
C120	C25	C26	C27	16	8.45(15)	C12A	C25A	C26A	C27A	-170.04(16)
C120	C25	C28	03		9.3(3)	C12A	C25A	C28A	.03A	-11.2(3)
C120	C25	C28	N3	-17	1.32(14)	C12A	C25A	C28A	N3A	172.26(13)
C131	N2	C9	N1		0.7(2)	C13A	N2A	C9A	N1A	-16.1(2)
C131	N2	C9	C8	-17	5.40(14)	C13A	N2A	C9A	C8A	164.50(13)
C131	N2	C10	C11	17	7.68(15)	C13A	N2A	C10A	C11A	-162.36(15)
C131	N2	C10	C19		-3.0(2)	C13A	N2A	C10A	C19A	24.2(2)
C130	C14	C15	C16		0.4(3)	C13A	C14A	C15A	C16A	0.8(2)
C140	C13	C18	C17		1.6(3)	C14A	C13A	C18A	C17A	1.3(3)
C140	C15	C16	Br1	-17	7.87(15)	C14A	C15A	C16A	Br1A	-179.76(13)
C140	C15	C16	C17		1.2(3)	C14A	C15A	C16A	C17A	1.1(3)
C150	C16	6C17	C18		-1.3(3)	C15A	C16A	C17A	C18A	-1.9(3)
C160	C17	C18	C13		-0.1(3)	C16A	C17A	C18A	C13A	0.7(3)
C180	C13	C14	C15		-1.8(3)	C18A	C13A	C14A	C15A	-2.0(2)
C190	C10	C11	C12	-17	8.76(15)	C19A	C10A	C11A	C12A	169.67(15)
C190	C20	C21	C22		-1.2(3)	C19A	C20A	C21A	C22A	0.1(3)
C200	C19	C24	C23		0.0(2)	C20A	C19A	C24A	C23A	-0.1(3)
C200	C21	C22	C23		-0.2(3)	C20A	C21A	C22A	C23A	-0.4(3)
C210	C22	C23	C24		1.5(3)	C21A	C22A	C23A	C24A	0.4(4)
C22 (C23	C24	C19		-1.4(3)	C22A	C23A	C24A	C19A	-0.1(4)
C24	C19	C20	C21		1.3(3)	C24A	.C19A	C20A	C21A	0.1(3)
C250	C26	5C27	02	-17	7.94(16)	C25A	C26A	C27A	.02A	174.99(16)

Table S6. Torsion Angles for 3a.

Α	B	С	D	Angle/°	А	B	С	D	Angle/°
C25	C26	6C27	N3	1.55(17)	C25A	C26A	C27A	N3A	-5.68(17)
C26	C25	C28	03	178.62(18)	C26A	C25A	C28A	O3A	172.09(16)
C26	C25	C28	N3	-1.98(17)	C26A	C25A	C28A	N3A	-4.40(17)
C27	N3	C28	03	-177.37(16)	C27A	N3A	C28A	O3A	-176.11(15)
C27	N3	C28	C25	3.15(19)	C27A	N3A	C28A	C25A	0.74(18)
C27	N3	C29	C30	-98.2(2)	C27A	N3A	C29A	C30A	-93.6(2)
C28	N3	C27	02	176.60(16)	C28A	N3A	C27A	O2A	-177.71(16)
C28	N3	C27	C26	-2.88(18)	C28A	N3A	C27A	C26A	2.97(17)
C28	N3	C29	C30	81.5(2)	C28A	N3A	C29A	C30A	94.9(2)
C28	C25	C26	01	-176.34(17)	C28A	C25A	C26A	O1A	-174.92(17)
C28	C25	C26	C27	0.28(16)	C28A	C25A	C26A	C27A	5.94(16)
C29	N3	C27	02	-3.7(3)	C29A	N3A	C27A	O2A	9.8(3)
C29	N3	C27	C26	176.80(14)	C29A	N3A	C27A	C26A	-169.54(14)
C29	N3	C28	03	2.9(3)	C29A	N3A	C28A	O3A	-3.5(2)
C29	N3	C28	C25	-176.54(14)	C29A	N3A	C28A	C25A	173.36(14)

Table S7. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 3a.

Atom	x	у	z	U(eq)
H1	4519.72	6543.65	3047.97	37
H2	4525.18	7316.43	2199.18	40
H3	3450.09	8527.05	1767.51	37
H4	2351.55	8939.84	2172.65	33
H7	3833.91	6365.62	3858.33	27
H11	1587.3	6337.59	4756.4	28
H14	-198.29	7322.15	2838.6	36
H15	-1345.98	8309.64	2228.93	47
H17	-12.2	10748.16	3005.68	45
H18	1130.17	9759.13	3616.8	36
H20	26.31	5883.57	4216.54	37
H21	-1335.35	5908.68	4414.95	45
H22	-1966.6	7403.23	4549.59	45
H23	-1241.91	8871.03	4492.96	40
H24	90.18	8865.56	4258.66	34
H29A	3492.69	4843.18	6389.73	37
H29B	4552.92	4734.97	6525.33	37
H30A	3265.05	3464.04	5754.25	52
Atom	x	у	Z	U(eq)
------	---------	----------	---------	-------
H30B	3860.43	3171.54	6404.18	52
H30C	4327.7	3346.8	5911.9	52
H1A	4120.25	9756.93	3189.34	33
H2A	4975.22	10153.78	2599.82	38
H3A	6522.55	9827.66	2912.6	40
H4A	7218	9104.37	3809.22	35
H7A	4053.22	9138.62	4151.08	26
H11A	5009.38	8274.97	6149.29	26
H14A	8121.28	9003.32	5649.52	30
H15A	9537.42	8254.64	5913.67	34
H17A	8381.29	5588.05	5900.16	41
H18A	6963.99	6343.89	5655.96	34
H20A	7549.16	9251.78	6547.96	34
H21A	8328.85	9299.88	7548.68	44
H22A	7990.22	8182.33	8176.79	58
H23A	6864.69	7026.88	7813.57	64
H24A	6071.33	6962.43	6811.89	46
H29C	2032.02	7418.57	5911.03	35
H29D	1236.13	8065.15	5492.29	35
H30D	1587.59	9359.24	6166.82	65
H30E	2420.1	8752.07	6579.55	65
H30F	1418.59	8381.44	6485.47	65

Table S7. Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 3a.

5. Control experiments

Other control experiments were also tested as follows: When an ortho-chloroquinolin- α,β -unsaturated ester (2h and 2i) was used, the expected product could not be obtained. This can likely be ascribed to the fact that the ester group is less reactive compared to the ketone (Scheme S6 (1)). Subsequently, aniline was added to the reaction mixture of 1g and 2a. The experimental results revealed that the sole product formed was 3g (Scheme S6 (2)). These experiments clearly demonstrate that the reformation of the aniline fragment in this reaction occurs strictly via an intramolecular mechanism. Furthermore, under the same standard conditions, chloro-free quinoline chalcones 2a' were reacted with 1a. The results indicated that the formation of **5a** was feasible by using ¹H-NMR, ¹³C-NMR, and HRMS (Scheme S6 (3)), indicating that the step S_NAr reaction might serve as the driving force for the formation of this reaction. 2-chloropyridine chalcone and 2fluoropyridine chalcone were also examined within our reaction. Fortunately, the target products were obtained with yields of 14% and 23% respectively (Scheme S6 (4)). The purer and dry DMF was employed for the reaction. Nevertheless, no [3+3] product was observed, and only trace amounts of 3a were detected. Subsequently, 0.1 mL of H₂O was added to the reaction system, leading to a 24% yield of **3a** (Scheme S6 (5)). To further validate the vital effect of H₂O, different equivalents of H₂O were introduced into the reaction, and it was determined that 2.0 equivalents of H2O were the most appropriate for the best yield (Scheme S6 (6)).

H

N H 5a, 26% ¹H NMR, ¹³C NMR 2D-NMR, HRMS

Br

Et

Et

Et, 0

C

N

Scheme S6. Control experiments

6. Characterization of 4a

Table S8. HR-ESI-MS of 4a

Scheme S7. Structure of 4a

¹**H NMR** (600 MHz, Chloroform-d): δ 8.07 (s, 1H, H-4'), 7.98 (s, 1H, H-7'), 7.96 (d, J = 7.9 Hz, 2H, H-2", 6"), 7.76 (d, J = 8.2 Hz, 1H, H-6'), 7.69 (t, J = 7.7 Hz, 1H, H-8'), 7.56 (d, J = 8.1 Hz, 1H, H-4"), 7.53 (d, J = 8.0 Hz, 1H, H-9'), 7.45 (t, J = 7.6 Hz, 2H, H-3", 5"), 7.35 (d, J = 8.1 Hz, 2H, H-3", 5"), 7.18 (s, 1H, -NH-), 6.94 (d, J = 8.1 Hz, 2H, H-2", 6"), 4.70 (dd, J = 10.1, 4.1 Hz, 1H, H-6), 4.37 (dd, J = 18.0, 10.1 Hz, 1H, H-7a), 3.51 (q, J = 7.2 Hz, 2H, NC<u>H</u>₂-), 3.42 (dd, J = 18.1, 4.1 Hz, 1H, H-7b), 1.15 (t, J = 7.2 Hz, 3H, NCH₂C<u>H</u>₃).

¹³C NMR (150MHz, Chloroform-*d*): δ 197.93 (s, 8), 173.02 (s, 5), 167.29 (s, 3), 150.39 (s, 2'), 146.52 (s, 10'), 140.43 (s, 3), 137.93 (d, 4'), 136.64 (s, 1"'), 136.52 (s, 1"), 133.51 (s, 3'), 133.46 (d, 4"), 132.51 (d, 3"', 5"'), 130.38 (d, 8'), 128.79 (d, 3", 5"), 128.19 (d, 2", 6"), 128.19 (d, 7'), 127.62 (d, 6'), 127.35 (s, 5'), 127.25 (d, 9'), 125.29 (d, 2"', 6"'), 119.66 (s, 4"'), 101.68 (s, 4), 41.15 (t, 7), 33.82 (d, 6), 32.99 (t, N-CH₂), 14.05 (q, N-CH₂CH₃).

IR(KBr): v_{max}: 3295, 2925, 2851, 1761, 1698, 1641, 1587, 1520, 1486, 1447, 1413, 1070, 1010, 817, 689 cm⁻¹.

	Compound 4a							
No.	$\delta_{\mathrm{H}}(J \text{ in Hz})$	δ_C	COSY(H)	HMBC(H→C)	NOESY			
2	-	167.3 (s)	-	-	-			
3	-	140.4 (s)	_	_	_			
4	-	101.7 (s)	-	-	_			
5	-	173.0 (s)	-	-	_			
6	4.70 (dd, <i>J</i> = 10.1, 4.1 Hz, 1H)	33.5 (d)	7	3, 4, 5, 7, 8, 2', 4'	_			
7	4.37 (dd, <i>J</i> = 18.0, 10.1 Hz, 1H) 3.42 (dd, J = 18.1, 4.1 Hz, 1H)	33.8 (t)	6	4, 6, 3', 1"	_			
8	_	197.9 (s)	_	_	-			
2'	-	150.4 (s)	-	-	_			
3'	-	133.5 (s)	-	-	_			
4'	8.07 (s, 1H)	137.9 (d)		6, 2', 6', 10'	_			
5'	-	127.4 (s)	-	-	-			
6'	7.76 (d, J = 8.2 Hz, 1H)	127.6 (d)	-	4', 8', 10'	-			
7'	7.98 (s, 1H)	128.2 (d)	8'	9'	-			
8'	7.69 (t, J = 7.7 Hz, 1H)	130.4 (d)	7', 9'	6', 10'	-			
9'	7.53 (d, J = 8.0 Hz, 1H)	127.3 (d)	8'	5'	-			
10'	_	146.5 (s)	_	_	_			
1"	-	136.5 (s)	_	-	-			
2", 6"	7.96 (d, J = 9.2 Hz, 2H)	128.2 (d)	3", 5"	3", 4", 5", 8	_			
3", 5"	7.45 (t, J = 7.6 Hz, 2H)	128.8 (d)	2", 4", 6"	1", 2", 6"	_			
4"	7.56 (d, J = 8.1 Hz, 1H)	133.4 (d)	3", 5"	_	—			
1'''	-	136.6 (s)	_	_	—			
2''', 6'''	6.94 (d, <i>J</i> = 8.1 Hz, 2H)	125.3 (d)	3''', 5'''	1''', 4'''	-			
3''', 5'''	7.35 (d, <i>J</i> = 8.1 Hz, 2H)	132.5 (d)	2''', 6'''	1''', 4'''	—			
4'''	_	119.7 (s)	_	_	_			
NH	7.18 (s, 1H)	—	_	2, 4, 2'''	_			
NCH ₂ -	3.51 (q, J = 7.2 Hz, 2H)	33.0 (t)	CH ₂ CH ₃	2, 5, CH ₃	_			
$CH_2 \underline{CH_3}$	1.15 (t, J = 7.2 Hz, 3H)	12.1 (q)	NCH ₂ -	NCH ₂ -	—			
Measured in CDCl ₃ at 600 MHz.								

Table S9. Hydrogen and carbon spectra data of compound 4a in deuterated CDCl₃

Figure S1. Structure of New Compound 4a

Analysis process:

The ¹H-NMR spectrum of the compound shows 23 proton signals, including 14 aromatic ring proton signals with a δ 8.07 (s, 1H, H-4'), 7.98 (s, 1H, H-7'), 7.96 (d, J = 7.9 Hz, 2H, H-2", 6"), 7.76 (d, J = 8.2 Hz, 1H, H-6'), 7.69 (t, J = 7.7 Hz, 1H, H-8'), 7.56 (d, J = 8.1 Hz, 1H, H-4"), 7.53 (d, J = 8.0 Hz, 1H, H-9'), 7.45 (t, J = 7.6 Hz, 2H, H-3", 5"), 7.35 (d, J = 8.1 Hz, 2H, H-3"', 5"'), 6.94 (d, J = 8.1 Hz, 2H, H-2"', 6"'); One secondary amine bond hydrogen proton signal δ H7.18 (s, 1H, - NH -); 1 NCH₂CH₃ signal δ H 3.51 (q, J = 7.2 Hz, 2H, NCH₂-), 1.15 (t, J = 7.2 Hz, 3H, NCH₂CH₃).

The ¹³C-NMR spectrum combined with DEPT spectrum of the compound shows 30 carbon signals, including 3 carbonyl carbon signals δ C197.93 (s, 8), 173.02 (s, 5), 167.29 (s, 3); 21 aromatic ring carbon signals: δ C 150.39 (s, 2 '), 146.52 (s, 10'), 137.93 (d, 4 '), 136.64 (s, 1' '), 136.52 (s, 1' '), 133.51 (s, 3'), 133.46 (d, 4 "), 132.51 (d, 3 " ', 5' "), 130.38 (d, 8 '), 128.79 (d, 3' ', 5'), 128.19 (d, 2 ", 6 ''), 128.19 (d, 7 '), 127.62 (d, 6'), 127.19 (d, 7 ') 35 (s, 5'), 127.25 (d, 9 '), 125.29 (d, 2' ', 6' '), 119.66 (s, 4' ').

According to HR-ESI-MS (positive), the molecular weight of $C_{30}H_{23}BrClN_3O_3$ was determined to be 587 based on m/z: 588.0684 [M+H]⁺, indicating the presence of binding ¹H-NMR, ¹³C-NMR, and DEPT spectra. The molecular formula was determined to be $C_{30}H_{23}BrClN_3O_3$ with an unsaturation of 20.

Figure S2. ¹H-¹H COSY and HMBC related signal diagrams of compound

Based on the ¹H-¹H COSY spectrum, six structural fragments were obtained as shown by the thick blue solid line in Figure S2, combined with the relevant signals from H-6 to C-3, C-4, C-5, C-8, C-2 ', C-4' in the HMBC spectrum; Related signals from H-7 to C-4, C-3 ', C-1' '; Related signals from H-4 'to C-6, C-2', C-6 ', C-10; Related signals from H-6 'to C-8', C-10 '; Related signals from H-N to C-2, C-4, C-2 '' '. It is speculated that the planar structure of the compound is shown in Figure S1.

S45

4.0 3.5 2.5 0.5 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 3.0 2.0 1.5 1.0

7. Characterization of 5a

Table S10. HR-ESI-MS of 5a

Scheme S8. Structure of 5a

¹**H NMR** (500 MHz, Chloroform-d): δ 8.61 (d, *J* = 2.3 Hz, 1H, H-2'), 8.06 (d, *J* = 9.0 Hz, 1H, H-7'), 7.89 (m, 2H, H-2'', 6''), 7.74 (m, overlap, 1H, H-6'), 7.74 (m, overlap, 1H, H-8'), 7.70 (d, *J* = 2.0 Hz, 1H, H-4'), 7.58 (m, 1H, H-4''), 7.57 (m, 1H, H-9'), 7.48 (d, *J* = 8.1 Hz, 2H, H-3'', 5''), 7.26 (s, 1H, H-7), 7.14 (s, 1H, NH), 6.95 (d, *J* = 8.7 Hz, 2H, H-3''', 5'''), 6.55 (d, *J* = 8.7 Hz, 2H, H-2''', 6'''), 3.65 (q, *J* = 7.1 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (125 MHz, Chloroform-d): δ 190.1 (s, 8), 169.8 (s, 5), 167.3 (s, 2), 149.3 (d, 2'), 147.9 (s, 10'), 140.8 (s, 3), 140.0 (s, 6), 138.2 (s, 1"), 136.0 (s, 1"'), 134.7 (d, 4'), 133.0 (d, 4"), 131.8 (s, 3'), 131.6 (d, 3"', 5"'), 130.5 (d, 8'), 129.1 (d, 7'), 128.7 (d, 3", 5"), 128.5 (d, 2", 6"), 128.3 (d, 6'), 127.6 (s, 5'), 127.3 (d, 9'), 126.4 (d, 7), 125.0 (d, 2"', 6"'), 119.2 (s, 4"'), 100.3 (s, 4), 33.7 (t, N-<u>CH</u>₂), 14.2 (q, N-CH₂<u>C</u>H₃).

IR(KBr): v_{max}: 3356, 2922, 2854, 1735, 1700, 1654, 1631, 1493, 1458, 1401, 1082, 1009, 830, 703 cm⁻¹.

	Compound 5a						
No.	$\delta_{\rm H}(J \text{ in Hz})$	δ_C	COSY(H)	HMBC(H→C)	ROESY		
2	—	167.3 (s)	—	—	—		
3	—	140.8 (s)	—	—	—		
4	—	100.3 (s)	—	—	—		
5	—	169.8 (s)	—	—	—		
6	—	140.0 (s)	—	—	—		
7	7.26 (s, 1H)	126.4 (d)	—	4, 3'	2', 2", 4'		
8	—	190.1 (s)	—	—	—		
2'	8.61 (d, <i>J</i> = 2.3 Hz, 1H)	149.3 (d)	—	4', 6	—		
3'	—	131.8 (s)	—	—	—		
4'	7.70 (d, <i>J</i> = 2.0 Hz, 1H)	134.7 (d)	—	6, 2', 6', 10'	—		
5'		127.6 (s)	—	—	—		
6'	7.74 (m, overlap, 1H)	128.3 (d)	—	4', 8', 10'	—		
7'	8.06 (d, <i>J</i> = 9.0 Hz, 1H)	129.1 (d)	8'	9'	—		
8'	7.74 (m, overlap, 1H)	130.5 (d)	7', 9'	6', 10'	—		
9'	7.57 (m, 1H)	127.3 (d)	8'	5'	—		
10'		147.9 (s)	—	—	—		
1"		138.2 (s)	_	_	_		
2", 6"	7.89 (m, 2H)	128.5 (d)	3", 5"	4", 8	3", 5"		
3", 5"	7.48 (d, <i>J</i> = 8.1 Hz, 2H)	128.7 (d)	2", 4", 6"	1", 2", 6"	2", 6"		
4"	7.58 (m, 1H)	133.0 (d)	3", 5"	_	_		
1'''	-	136.0 (s)	—	—	—		
2''', 6'''	6.55 (d, <i>J</i> = 8.7 Hz, 2H)	125.0 (d)	3''', 5'''	1''', 4'''	—		
3''', 5'''	6.95 (d, <i>J</i> = 8.7 Hz, 2H)	131.6 (d)	2''', 6'''	1''', 4'''	—		
4'''	—	119.2 (s)	—	—	—		
NH	7.14 (s, 1H)	—	—	2, 4, 2"", 6""	—		
NCH ₂ -	3.65 (q, <i>J</i> = 7.1 Hz, 2H)	33.7 (t)	CH ₂ CH ₃	2, 5, CH ₃	—		
CH ₂ CH ₃	1.27 (t, <i>J</i> = 7.1 Hz, 3H)	14.2 (q)	NCH ₂ -	NCH ₂ -	—		
Measured in CDCl ₃ at 500 MHz.							

Table S11. Hydrogen and carbon spectra data of compound 5a in deuterated CDCl₃

Figure S3. Structure of New Compound 5a

Analysis process:

The ¹H-NMR spectrum of the compound shows 22 proton signals, including 15 aromatic ring proton signals with a δ 8.61 (d, J = 2.3 Hz, 1H, H-2'), 8.06 (d, J = 9.0 Hz, 1H, H-7'), 7.89 (m, 2H, H-2", 6"), 7.74 (m, overlap, 1H, H-4'), 7.74 (m, overlap, 1H, H-8'), 7.70 (d, J = 2.0 Hz, 1H, H-4'), 7.58 (m, 1H, H-4"), 7.57 (m, 1H, H-9'), 7.48 (d, J = 8.1 Hz, 2H, H-3", 5"), 6.95 (d, J = 8.7 Hz, 2H, H-3"', 5"'), 6.55 (d, J = 8.7 Hz, 2H, H-2"', 6"'); One secondary amine bond hydrogen proton signal $\delta_{\rm H}$ 7.14 (s, 1H, -NH-); A proton signal of a trisubstituted vinyl group 7.26 (s, 1H, H-7); A set of ethyl proton signals 3.65 (q, J = 7.1 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H).

The ¹³C-NMR spectrum combined with DEPT spectrum of the compound shows 30 carbon signals, including 3 carbonyl carbon signals δ_{C} 190.1 (s, 8), 169.8 (s, 5), 167.3 (s, 2); 21 aromatic ring carbon signals: δ_{C} 149.3 (d, 2'), 147.9 (s, 10'), 140.8 (s, 3), 138.2 (s, 1"), 136.0 (s, 1"'), 134.7 (d, 4'), 133.0 (d, 4"), 131.8 (s, 3'), 131.6 (d, 3"', 5"'), 130.5 (d, 8'), 129.1 (d, 7'), 128.7 (d, 3", 5"), 128.5 (d, 2", 6"), 128.3 (d, 6'), 127.6 (s, 5'), 127.3 (d, 9'), 126.4 (d, 7), 125.0 (d, 2"', 6"'), 119.2 (s, 4"'), 100.3 (s, 4).

According to HR-ESI-MS (positive), the molecular weight of $C_{30}H_{22}BrN_3O_3$ was determined to be 551 based on m/z: 552.0918 [M+H] ⁺, indicating the presence of binding ¹H-NMR, ¹³C-NMR, and DEPT spectra. The molecular formula was determined to be $C_{30}H_{22}BrN_3O_3$ with an unsaturation of 21.

Figure S4. ¹H-¹H COSY and HMBC related signal diagrams of compound

Based on the ¹H-¹H COSY spectrum, five structural fragments were obtained as shown by the thick blue solid line in Figure S4, combined with the relevant signals from H-7 to C-4, C-3'; Related signals from H-2' to C-4', C-6; Related signals from H-4' to C-6, C-2'; C-6', C-10; Related signals from H-6' to C-4', C-8'; C-10'; Related signals from H-7' to C-9'; Related signals from H-N to C-2, C-4; C-2'''. Based on the ROESY correlation signals between H-7 and H-2', it is inferred that the configuration at position 7 is *E*. Therefore, the proposed planar structure of the compound is shown in Figure S3.

8. General procedure for the synthesis of 3 and 7a

Scheme S9. Synthesis of 3

To a mixture of aminomaleimides 1 (0.1 mmol, 1 equiv) and *ortho*-chloroquinolin chalcone 2 (0.2 mmol, 2.0 equiv) in DMF (2 mL) was added Cs_2CO_3 (0.15 mmol, 1.5 equiv). Then the reaction solution was vigorously stirred at 80 °C for 12 h in air and monitored by TLC. After the reaction was complete, the mixture was concentrated in vacuo and purified by column chromatography on silica gel with petroleum ether/EtOAc (5:1) as the eluent to furnish the corresponding product **3**.

General procedure for the synthesis of 7a

Scheme S10. Synthesis of 7a

To a mixture of 1-ethyl-3-(*p*-tolylamino)-1*H*-pyrrole-2,5-dione **1f** (0.1 mmol, 1 equiv) and 2chloropyridine chalcone **6a** or 2-fluoropyridine chalcone **6b** (0.2 mmol, 2.0 equiv) in DMF (2 mL) was added Cs_2CO_3 (0.15 mmol, 1.5 equiv). Then the reaction solution was vigorously stirred at 80 °C for 12 h in air and monitored by TLC. After the reaction was complete, the mixture was concentrated in vacuo and purified by column chromatography on silica gel with petroleum ether/EtOAc (5:1) as the eluent to furnish the corresponding product **7a**. (E) - 4 - (1 - (4 - bromophenyl) - 2 - phenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenyl) - 2 - phenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenyl) - 2 - phenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenyl) - 2 - phenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenyl) - 2 - phenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenyl) - 2 - phenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenyl) - 2 - phenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - ylidene) - 1 - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1H) - (1 - (4 - bromophenylbenzo[b][1,8] naphthyridin - 4(1 - (4 - bromophenylbenzo[b][1,8]

ethylpyrrolidine-2,3,5-trione (3a)

70% yield, red solid, m.p.: 145-146 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 1H), 8.51 (s, 1H), 8.09 (t, J = 8.2 Hz, 1H), 7.81 (q, J = 8.8 Hz, 2H), 7.62 – 7.55 (m, 1H), 7.52 (d, J = 8.5 Hz, 2H), 7.38 – 7.28 (m, 5H), 7.11 (d, J = 8.6 Hz, 2H), 3.72 (q, J = 6.4 Hz, 2H), 1.27 (t, J = 7.1 Hz, 3H). ¹³C NMR (100MHz, CDCl₃): δ 177.1, 171.2, 163.6, 156.5, 153.4, 149.7, 147.3, 143.3, 137.7, 134.6, 133.9, 132.0, 131.3, 130.0, 129.7, 129.3, 128.5, 128.1, 126.8, 125.5, 122.8, 116.3, 114.1, 101.4, 32.6, 13.8. IR(KBr): v_{max}: 2923, 2852, 1735, 1685, 1634, 1569, 1537, 1493, 1482, 1468, 1444, 1399, 1070, 1013, 831, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀BrN₃O₃ [M+H]⁺ = 550.0760, found = 550.0756.

(*E*)-4-(1,2-diphenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1-ethylpyrrolidine-2,3,5-trione (3b)

68% yield, red solid, m.p.: 132-133 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 8.52 (s, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.85 – 7.77 (m, 2H), 7.60 (ddd, J = 8.1, 6.0, 1.8 Hz, 1H), 7.42 – 7.37 (m, 3H), 7.34 – 7.27 (m, 5H), 7.24 – 7.20 (m, 2H), 3.79 (q, J = 7.2 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.0, 171.6, 163.9, 157.1, 153.6, 149.9, 147.5, 143.3, 138.7, 134.9, 133.8, 129.8, 129.7, 129.6, 129.3, 128.8, 128.35, 128.33, 126.8, 125.6, 116.5, 114.4, 101.0, 32.7, 13.9. IR(KBr): v_{max}: 2922, 2850, 1734, 1685, 1652, 1561, 1537, 1493 1467, 1437, 1400, 1070, 1008, 831, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₁N₃O₃ [M+H]⁺ = 472.1655, found =472.1650.

(E)-4-(1-(4-chlorophenyl)-2-phenylbenzo[b][1,8]naphthyridin-4(1H)-ylidene)-1-

ethylpyrrolidine-2,3,5-trione (3c)

66% yield, red solid, m.p.: 152-153 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.53 (s, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.90 – 7.78 (m, 2H), 7.61 (ddd, J = 8.0, 6.2, 1.5 Hz, 1H), 7.39 – 7.37 (m, 1H), 7.37 – 7.33 (m, 2H), 7.33 – 7.27 (m, 4H), 7.20 – 7.13 (m, 2H), 3.77 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.2, 171.3, 163.7, 156.7, 153.6, 149.8, 147.4, 143.4, 137.2, 134.8, 134.6, 134.0, 131.0, 130.0, 129.7, 129.3, 129.1, 128.6, 128.2, 126.9, 125.6, 116.3, 114.2, 101.4, 32.7, 13.8. IR(KBr): v_{max}: 2923, 2854, 1756, 1688, 1652, 1561, 1538, 1494, 1467, 1437, 1401, 1089, 1015, 837, 700 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀ClN₃O₃ [M+H]⁺ = 506.1266, found = 506.1270.

(*E*)-1-ethyl-4-(1-(4-fluorophenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3d)

63% yield, red solid, m.p.: 119-120 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.06 (s, 1H), 8.53 (s, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.65 – 7.57 (m, 1H), 7.35 – 7.28 (m, 5H), 7.23 – 7.17 (m, 2H), 7.09 (t, J = 8.5 Hz, 2H), 3.78 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 163.7, 160.9, 156.9, 153.6, 149.8, 147.5, 143.4, 134.8, 134.0, 131.4, 131.3, 129.9, 129.7, 129.2, 128.5, 128.2, 126.9, 125.6, 116.4, 116.1, 115.8, 114.2, 101.3, 32.7, 13.8. ¹⁹F NMR (377 MHz, CDCl₃): δ -110.22 – -113.73 (m). IR(KBr): v_{max}: 2923, 2851, 1735, 1697, 1653, 1577, 1561, 1494, 1436, 1401, 1072, 1008, 831, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀FN₃O₃ [M+H]⁺ = 490.1561, found = 490.1570.

(E)-1-ethyl-4-(1-(4-iodophenyl)-2-phenylbenzo[b][1,8]naphthyridin-4(1H)-

ylidene)pyrrolidine-2,3,5-trione (3e)

68% yield, red solid, m.p.: 155-156 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 1H), 8.50 (s, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.72 (d, J = 8.5 Hz, 2H), 7.64 – 7.55 (m, 1H), 7.39 – 7.27 (m, 5H), 6.98 (d, J = 8.5 Hz, 2H), 3.74 (q, J = 7.1 Hz, 2H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.1, 171.2, 163.6, 156.5, 153.4, 149.7, 147.2, 143.3, 138.4, 138.0, 134.6, 133.9, 131.4, 130.0, 129.7, 129.3, 128.5, 128.2, 126.8, 125.5, 116.3, 114.2, 101.3, 94.4, 32.6, 13.8. IR(KBr): v_{max}: 2922, 2850, 1734, 1697, 1652, 1631, 1561, 1537, 1493, 1467 1437, 1072, 1008 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀IN₃O₃ [M+H]⁺ = 598.0622, found =598.0615. (*E*)-1-ethyl-4-(2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (3f)

72% yield, red solid, m.p.: 108-109 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 8.51 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.83 – 7.79 (m, 2H), 7.62 – 7.56 (m, 1H), 7.30 (qd, *J* = 7.2, 3.4 Hz, 5H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 3.77 (q, *J* = 7.2 Hz, 2H), 2.39 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 171.6, 163.9, 157.3, 153.5, 149.9, 147.6, 143.2, 138.8, 136.1, 135.0, 133.7, 129.7, 129.7, 129.4, 129.3, 129.3, 128.4, 128.3, 126.7, 125.6, 116.6, 114.5, 100.8, 32.6, 21.2, 13.9. IR(KBr): v_{max}: 2924, 2851, 1734, 1696, 1652, 1631, 1577, 1561, 1542, 1494, 1436, 1073, 831, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₃N₃O₃ [M+H]⁺ = 486.1812, found =486.1816.

(*E*)-1-ethyl-4-(1-(4-methoxyphenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3g)

74% yield, red solid, m.p.: 137-138 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.50 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 3.4 Hz, 2H), 7.63 – 7.55 (m, 1H), 7.37 – 7.27 (m, 5H), 7.14 – 7.08 (m, 2H), 6.92 – 6.83 (m, 2H), 3.83 (s, 3H), 3.76 (d, *J* = 7.2 Hz, 2H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 171.5, 163.9, 159.4, 157.5, 153.5, 149.9, 147.7, 143.2, 135.1, 133.7, 131.3, 130.6, 129.70, 129.66, 129.3, 128.4, 128.3, 126.7, 125.5, 116.6, 114.5, 113.9, 100.7, 55.4, 32.6, 13.9. IR(KBr): v_{max}: 2923, 2851, 1754, 1694, 1652, 1631, 1567, 1538, 1509, 1494, 1467, 1442, 1071,1029, 833, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₃N₃O₄ [M+H]⁺=502.1761, found =502.1755.

(*E*)-1-ethyl-4-(1-(4-(methylthio)phenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3h)

70% yield, red solid, m.p.:149-150 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 8.52 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 3.4 Hz, 2H), 7.63 – 7.58 (m, 1H), 7.36 – 7.29 (m, 5H), 7.24 – 7.20 (m, 2H), 7.16 – 7.08 (m, 2H), 3.78 (q, *J* = 7.2 Hz, 2H), 2.50 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 163.9, 161.2, 157.1, 153.5, 149.8, 147.5, 143.3, 140.1, 135.3, 134.9, 133.8, 129.9, 129.8, 129.7, 129.3, 128.5, 128.3, 126.8, 125.8, 125.6, 116.5, 114.5, 101.0, 32.7, 15.3, 13.9. IR(KBr): v_{max}: 2922, 2854, 1753, 1703, 1652, 1578, 1561, 1537, 1493, 1467, 1437, 1401, 1090,1010, 831, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₃N₃O₃S [M+H]⁺ = 518.1532, found = 518.1539.

(*E*)-1-ethyl-4-(2-phenyl-1-(4-(trifluoromethyl)phenyl)benzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3i)

42% yield, red solid, m.p.: 252-253 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.07 (s, 1H), 8.55 (s, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.87 – 7.76 (m, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.36 – 7.27 (m, 5H), 3.76 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.2, 163.5, 156.3, 153.5, 149.7, 147.2, 143.5, 141.8, 134.4, 134.1, 130.4, 130.1, 129.7, 129.3, 128.6, 128.1, 126.9, 126.0, 125.9, 125.6, 116.2, 114.1, 101.7, 32.7, 13.8. ¹⁹F NMR (377 MHz, CDCl₃): δ -62.60. IR(KBr): v_{max} : 2922, 2851 1754, 1697, 1653, 1578, 1540, 1494, 1467, 1437, 1400, 1067, 1021, 831, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₀F₃N₃O₃ [M+H]⁺ = 506.1266, found = 506.1270.

(*E*)-4-(4-(1-ethyl-2,4,5-trioxopyrrolidin-3-ylidene)-2-phenylbenzo[*b*][1,8]naphthyridin-1(4*H*)yl)benzonitrile (3j)

44% yield, red solid, m.p.:169-170 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.06 (s, 1H), 8.55 (s, 1H), 8.12 (d, *J* = 8.2 Hz, 1H), 7.89 – 7.82 (m, 1H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.70 (d, *J* = 8.5 Hz, 2H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.39 (d, *J* = 8.5 Hz, 3H), 7.29 (dd, *J* = 8.1, 4.1 Hz, 4H), 3.74 (q, *J* = 7.2 Hz, 2H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.4, 171.0, 163.4, 155.8, 153.4, 149.6, 147.1, 143.6, 142.7, 134.3, 134.2, 132.6, 130.9, 130.3, 129.8, 129.2, 128.7, 128.0, 127.0, 125.5, 117.7, 116.1, 113.9, 112.8, 102.1, 32.8, 13.8. IR(KBr): v_{max}: 2924, 2851 1755, 1697, 1654, 1569, 1538, 1493, 1468, 1435, 1400, 1071, 1021, 837, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₀N₄O₃ [M+H]⁺ = 497.1608, found = 497.1612.

(*E*)-4-(1-([1,1'-biphenyl]-4-yl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3k)

56% yield, red solid, m.p.:145-146 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.54 (s, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.82 (dd, *J* = 8.0, 5.5 Hz, 2H), 7.61 (t, *J* = 7.2 Hz, 5H), 7.47 (t, *J* = 7.5 Hz, 2H), 7.40 (d, *J* = 7.3 Hz, 1H), 7.36 – 7.33 (m, 2H), 7.30 (t, *J* = 8.4 Hz, 5H), 3.78 (q, *J* = 7.2 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.0, 171.5, 163.8, 157.1, 153.5, 149.8, 147.5, 143.3, 141.5, 139.5, 137.7, 134.9, 133.8, 129.9, 129.8, 129.7, 129.3, 128.9, 128.4, 128.3, 128.0, 127.3, 127.1, 126.8, 125.6, 116.5, 114.5, 101.0, 32.7, 13.9. IR(KBr): v_{max}: 2922, 2851 1753, 1697, 1652, 1578, 1562, 1494, 1468, 1444, 1400, 1071, 1009, 789, 698 cm⁻¹. HRMS (ESI) m/z calculated for C₃₆H₂₅N₃O₃ [M+H]⁺ = 548.1968, found = 548.1972.

(*E*)-1-ethyl-4-(2-phenyl-1-(m-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (3l)

48% yield, red solid, m.p.: 239-240 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.04 (s, 1H), 8.51 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 3.4 Hz, 2H), 7.59 (dt, *J* = 8.1, 3.9 Hz, 1H), 7.29 (ddd, *J* = 13.6, 8.3, 4.4 Hz, 6H), 7.17 (d, *J* = 7.6 Hz, 1H), 7.06 – 6.96 (m, 2H), 3.77 (d, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 171.6, 163.9, 157.2, 153.9, 153.5, 149.9, 147.5, 143.2, 138.9, 138.5, 135.0, 133.7, 130.0, 129.7, 129.7, 129.5, 129.2, 128.5, 128.4, 128.3, 126.8, 125.6, 116.6, 114.5, 100.8, 77.3, 77.0, 76.7, 32.6, 21.2, 13.9. IR(KBr): v_{max}: 2923, 2848 1753, 1694, 1652, 1566, 1538, 1497, 1468, 1437, 1400, 1075, 1003, 792, 699 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₃N₃O₃ [M+H]⁺ = 486.1812, found = 486.1814.

(*E*)-4-(1-(3-bromophenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3m)

45% yield, red solid, m.p.:262-263 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.06 (s, 1H), 8.53 (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.88 – 7.80 (m, 2H), 7.61 (ddd, J = 8.1, 5.8, 2.1 Hz, 1H), 7.52 (ddd, J = 8.0, 1.7, 1.0 Hz, 1H), 7.44 (t, J = 1.9 Hz, 1H), 7.36 – 7.28 (m, 5H), 7.25 (d, J = 8.1 Hz, 1H), 7.15 (ddd, J = 8.0, 1.9, 0.9 Hz, 1H), 3.77 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 168.5, 163.6, 156.5, 153.5, 149.7, 147.3, 143.4, 139.7, 134.5, 134.0, 132.9, 132.0, 130.0, 129.9, 129.7, 129.2, 128.5, 128.5, 128.2, 126.9, 125.6, 122.0, 116.3, 114.0, 101.6, 32.7, 13.8. IR(KBr): v_{max}: 2923, 2851, 1753, 1697,1685, 1653, 1577, 1562, 1538 1494, 1467, 1437, 1400, 1071, 1008, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀BrN₃O₃ [M+H]⁺ = 550.0760, found = 550.0777.

(*E*)-1-ethyl-4-(1-(3-fluorophenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3n)

41% yield, red solid, m.p.: 256-257 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 10.06 (s, 1H), 8.53 (s, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.88 – 7.78 (m, 2H), 7.61 (ddd, J = 8.1, 6.1, 1.7 Hz, 1H), 7.38 – 7.29 (m, 6H), 7.11 (td, J = 8.3, 1.8 Hz, 1H), 7.03 (ddd, J = 17.3, 9.7, 5.0 Hz, 2H), 3.77 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.3, 163.6, 161.2, 156.6, 153.6, 149.8, 147.3, 143.4, 139.8, 134.6, 134.0, 130.0, 129.9, 129.7, 129.2, 128.5, 128.2, 126.9, 125.6, 117.8, 117.5, 116.3, 116.2, 116.0, 114.1, 101.5, 32.7, 13.8. ¹⁹F NMR (377 MHz, CDCl₃): δ -111.20 (dd, J = 15.1, 8.3 Hz). IR(KBr): v_{max}: 2922, 2851, 1753, 1698,1685, 1653, 1577, 1561, 1537 1494, 1467, 1436, 1401, 1069, 1007, 830, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀FN₃O₃ [M+H]⁺ = 490.1561, found = 490.1567.

(*E*)-4-(1-(3-chlorophenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (30)

43% yield, red solid, m.p.: 271-272 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H), 8.53 (s, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.89 – 7.79 (m, 2H), 7.61 (ddd, J = 8.0, 6.0, 1.7 Hz, 1H), 7.40 – 7.32 (m, 3H), 7.32 – 7.28 (m, 5H), 7.13 – 7.08 (m, 1H), 3.77 (q, J = 7.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.6, 171.3, 163.6, 156.5, 153.6, 149.7, 147.3, 143.4, 139.6, 134.5, 134.4, 134.0, 130.1, 130.0, 129.73, 129.72, 129.2, 129.1, 128.5, 128.2, 128.0, 126.9, 125.6, 116.3, 114.1, 101.5, 32.7, 13.8. IR(KBr): v_{max}: 2924, 2853, 1756, 1697,1653, 1625, 1567, 1538, 1494, 1468, 1444, 1399, 1072, 1009, 791, 697 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀ClN₃O₃ [M+H]⁺ = 506.1266, found = 506.1273.

(*E*)-1-ethyl-4-(1-(3-methoxyphenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3p)

48% yield, red solid, m.p.: 232-233 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 10.02 (s, 1H), 8.50 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.82 (dd, *J* = 7.9, 4.5 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.36 – 7.26 (m, 6H), 6.94 – 6.89 (m, 1H), 6.82 (dd, *J* = 7.8, 1.1 Hz, 1H), 6.76 (t, *J* = 2.1 Hz, 1H), 3.76 (dd, *J* = 14.2, 7.1 Hz, 2H), 3.73 (s, 3H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 177.0, 171.5, 163.9, 159.8, 157.0, 153.5, 149.9, 147.4, 143.2, 139.5, 134.9, 133.8, 129.8, 129.7, 129.4, 129.1, 128.35, 128.33, 126.8, 125.6, 122.1, 116.5, 115.6, 114.5, 114.4, 100.9, 55.5, 32.6, 13.9. IR(KBr): v_{max}: 2923, 2848, 1754, 1698, 1653, 1625, 1568, 1537, 1493, 1467, 1436, 1400, 1071, 1009, 830, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₃N₃O₄ [M+H]⁺ = 502.1761, found = 502.1770.

(*E*)-1-ethyl-4-(1-(3-nitrophenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3q)

38% yield, red solid, m.p.: 284-285 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.11 (s, 1H), 8.59 (s, 1H), 8.28 – 8.23 (m, 1H), 8.18 – 8.13 (m, 2H), 7.88 – 7.82 (m, 1H), 7.76 (d, J = 8.5 Hz, 1H), 7.63 (dd, J = 8.2, 1.2 Hz, 1H), 7.61 – 7.57 (m, 2H), 7.35 – 7.28 (m, 5H), 3.77 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.4, 171.0, 163.3, 155.9, 153.5, 149.6, 148.2, 147.2, 143.7, 139.7, 135.9, 134.2, 130.2, 129.8, 129.6, 129.3, 128.8, 128.0, 127.0, 125.6, 125.3, 123.7, 119.6, 116.1, 113.8, 102.3, 32.8, 13.8. IR(KBr): v_{max} : 2922, 2851, 1754, 1694, 1653, 1575, 1562, 1532, 1494, 1467, 1436, 1400, 1071, 1009, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀N₄O₅ [M+H]⁺ = 517.1506, found = 517.1514.

(*E*)-1-ethyl-4-(1-(2-fluorophenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3r)

40% yield, red solid, m.p.: 239-240 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.07 (s, 1H), 8.54 (s, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.82 (ddd, *J* = 13.4, 10.5, 4.5 Hz, 2H), 7.63 – 7.57 (m, 1H), 7.44 – 7.38 (m, 1H), 7.36 (d, *J* = 8.0 Hz, 3H), 7.31 (d, *J* = 6.9 Hz, 2H), 7.20 – 7.13 (m, 3H), 3.79 (q, *J* = 7.2 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 173.1, 171.3, 163.6, 157.0, 153.9, 149.9, 146.9, 143.4, 134.4, 133.9, 131.2, 131.1, 130.7, 130.1, 129.8, 128.6, 128.4, 128.2, 126.7, 125.7, 124.4, 124.4, 116.2, 116.0, 113.8, 101.7, 32.7, 13.8. ¹⁹F NMR (377 MHz, CDCl₃) δ -118.51 (dd, *J* = 8.8, 6.1 Hz). IR(KBr): v_{max}: 2924, 2851, 1755 1697, 1654, 1572, 1540, 1493, 1468, 1436, 1400, 1071, 1008, 830, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀FN₃O₃ [M+H]⁺ = 490.1561, found = 490.1556.

(*E*)-4-(1-(2-chlorophenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3s)

44% yield, red solid, m.p.: 257-258°C, ¹H NMR (400 MHz, CDCl₃): δ 10.09 (s, 1H), 8.54 (s, 1H), 8.14 (d, *J* = 8.3 Hz, 1H), 7.85 – 7.75 (m, 2H), 7.60 (ddd, *J* = 8.0, 5.0, 1.3 Hz, 1H), 7.46 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.38 (ddd, *J* = 9.1, 5.1, 1.4 Hz, 3H), 7.35 – 7.32 (m, 1H), 7.29 (ddd, *J* = 8.5, 4.2, 2.6 Hz, 3H), 7.24 (dd, *J* = 7.8, 1.7 Hz, 1H), 3.78 (q, *J* = 7.2 Hz, 2H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.2, 171.4, 163.7, 156.9, 153.9, 150.0, 146.8, 143.4, 136.8, 134.2, 133.9, 133.2, 131.3, 130.4, 130.1, 130.0, 129.8, 128.8, 128.3, 128.2, 127.3, 126.8, 125.7, 116.3, 114.0, 101.6, 32.7, 13.8. IR(KBr): v_{max}: 2922, 2850, 1755 1697, 1653, 1562, 1539, 1494, 1468, 1438, 1399, 1074, 1006, 831, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₀H₂₀ClN₃O₃ [M+H]⁺ = 506.1266, found = 506.1273.

(*E*)-1-ethyl-4-(1-(2-methoxyphenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3t)

60% yield, red solid, m.p.: 232-233°C, ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.47 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 2.5 Hz, 2H), 7.60 – 7.56 (m, 1H), 7.40 – 7.30 (m, 4H), 7.29 – 7.26 (m, 2H), 7.17 (dd, *J* = 7.8, 1.6 Hz, 1H), 6.98 (td, *J* = 7.7, 1.1 Hz, 1H), 6.91 – 6.86 (m, 1H), 3.78 (q, *J* = 7.2 Hz, 2H), 3.59 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.8, 171.7, 164.1, 158.2, 154. 6, 153.9, 150.0, 147.1, 143.1, 134.8, 133.6, 130.7, 130.5, 129.9, 129.7, 128.7, 128.3, 128.0, 127.7, 126. 6, 125.7, 120.4, 116.7, 114.4, 111.8, 100.6, 55.5, 32.6, 13.9. IR(KBr): v_{max}: 2923, 2851, 1753 1697, 1652, 1561, 1537, 1494, 1467, 1438, 1400, 1070, 1006, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₃N₃O₄ [M+H]⁺ = 502.1761, found = 502.1770.

(*E*)-4-(1-(2,5-dimethylphenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3u)

56% yield, red solid, m.p.: 231-232 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.06 (s, 1H), 8.52 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 3.6 Hz, 2H), 7.60 (ddd, J = 8.1, 4.7, 3.1 Hz, 1H), 7.34 – 7.27 (m, 5H), 7.12 (q, J = 8.2 Hz, 2H), 6.83 (s, 1H), 3.79 (q, J = 7.2 Hz, 2H), 2.24 (s, 3H), 1.93 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 171.7, 164.0, 157.3, 153.6, 150.1, 146.9, 143.3, 137.8, 136.3, 134.6, 133.8, 132.8, 130.5, 130.0, 130.0, 129.8, 129.7, 128.9, 128.4, 128.2, 126.8, 125.6, 116.6, 114.6, 100.7, 32.6, 20.7, 17.7, 13.9. IR(KBr): v_{max}: 2923, 2850, 1755 1697, 1652, 1569, 1536, 1494, 1468, 1444, 1400, 1070, 1009, 831, 699 cm⁻¹. HRMS (ESI) m/z calculated for C₃₂H₂₅N₃O₃ [M+H]⁺ = 500.1968, found = 500.1978.

(*E*)-4-(1-(2,4-dimethylphenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3v)

58% yield, red solid, m.p.: 221-222 °C, ¹H NMR (400 MHz, CDCl₃) δ 10.05 (s, 1H), 8.51 (s, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 3.5 Hz, 2H), 7.60 (ddd, J = 8.1, 4.5, 3.3 Hz, 1H), 7.36 – 7.27 (m, 5H), 7.06 (s, 1H), 6.99 (d, J = 8.1 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 3.79 (q, J = 7.2 Hz, 2H), 2.35 (s, 3H), 1.93 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 171.7, 164.0, 157.5, 153.6, 150.2, 147.0, 143.3, 139.2, 135.5, 135.4, 134.7, 133.7, 131.4, 129.9, 129.7, 129.2, 129.0, 128.4, 128.3, 127.2, 126.8, 125.6, 116.6, 114.7, 100.7, 32.6, 21.2, 18.1, 13.9. IR(KBr): v_{max}: 2924, 2850, 1755 1697, 1652, 1568, 1537, 1493, 1468, 1444, 1401, 1069, 855, 699 cm⁻¹. HRMS (ESI) m/z calculated for C₃₂H₂₅N₃O₃ [M+H]⁺ = 500.1968, found = 500.1976.

(*E*)-4-(1-(2,3-dimethylphenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3w)

60% yield, red solid, m.p.: 254-255 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.06 (s, 1H), 8.51 (s, 1H), 8.14 (d, *J* = 8.4 Hz, 1H), 7.81 (dd, *J* = 5.6, 1.2 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.35 – 7.26 (m, 5H), 7.19 (d, *J* = 7.5 Hz, 1H), 7.09 (t, *J* = 7.7 Hz, 1H), 6.92 (d, *J* = 7.7 Hz, 1H), 3.79 (q, *J* = 7.2 Hz, 2H), 2.28 (s, 3H), 1.83 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.9, 171.7, 164.0, 157.5, 153.6, 150.1, 147.0, 143.3, 138.1, 138.0, 134.6, 134.4, 133.7, 130.6, 129.9, 129.7, 128.9, 128.4, 128.2, 127.2, 126.8, 125.7, 125.6, 116.6, 114. 6, 100.7, 32.6, 20.3, 15.0, 13.9. IR(KBr): v_{max}: 2924, 2853, 1756 1697, 1653, 1565, 1537, 1494, 1468, 1444, 1400, 1076, 1006, 791, 700 cm⁻ ¹. HRMS (ESI) m/z calculated for C₃₂H₂₅N₃O₃ [M+H]⁺ = 500.1968, found = 500.1971. (*E*)-1-ethyl-4-(1-(naphthalen-1-yl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3x)

70% yield, red solid, m.p.: 283-284 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 10.09 (s, 1H), 8.59 (s, 1H), 8.13 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 8.3 Hz, 2H), 7.72 – 7.67 (m, 1H), 7.58 – 7.48 (m, 3H), 7.48 – 7.35 (m, 3H), 7.30 (dd, J = 7.3, 0.8 Hz, 1H), 7.21 – 7.15 (m, 3H), 7.07 (t, J = 7.6 Hz, 2H), 3.80 (q, J = 7.2 Hz, 2H), 1.32 (dd, J = 9.5, 4.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃): δ 177.1, 171.6, 163.9, 158.1, 153.8, 150.0, 147.7, 143.3, 135.7, 134.6, 133.7, 130.9, 129.8, 129.7, 129.6, 128.5, 128.4, 128.3, 128.0, 127.7, 127.6, 126.8, 126.6, 125.7, 124.9, 122.5, 116.4, 114.4, 101.1, 32.7, 13.9. IR(KBr): v_{max}: 2924, 2851, 1754 1696, 1653, 1563, 1540, 1497, 1471, 1438, 1400, 1067, 1008, 831, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₄H₂₃N₃O₃ [M+H]⁺ = 522.1812, found = 522.1812.

(*E*)-4-(1-(benzo[*d*][1,3]dioxol-4-yl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3y)

47% yield, red solid, m.p.:258-259 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.01 (s, 1H), 8.48 (s, 1H), 8.13 (d, *J* = 8.3 Hz, 1H), 7.90 – 7.80 (m, 2H), 7.60 (ddd, *J* = 8.1, 6.2, 1.6 Hz, 1H), 7.40 – 7.30 (m, 5H), 6.76 (dd, *J* = 14.8, 5.1 Hz, 2H), 6.58 (d, *J* = 2.1 Hz, 1H), 6.06 (d, *J* = 17.8 Hz, 2H), 3.76 (q, *J* = 7.2 Hz, 2H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.0, 171.5, 163.8, 157.3, 153.5, 149.9, 147.9, 147.8, 147. 7, 143.3, 135.0, 133.8, 132.2, 129.8, 129.7, 129.1, 128.4, 128.3, 126.8, 125.6, 123.2, 116.5, 114.4, 110.7, 107.9, 102.0, 101.0, 32.6, 13.9. IR(KBr): v_{max}: 2923, 2851, 1754, 1703, 1652, 1569, 1537, 1482, 1468, 1444, 1400, 1069, 1036, 811, 700 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₁N₃O₅ [M+H]⁺ = 516.1554, found = 516.1564.

(*E*)-4-(1-(4-(dimethylamino)phenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3z)

46% yield, red solid, m.p.: 186-187 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 9.99 (s, 1H), 8.48 (s, 1H), 8.11 (d, *J* = 8.3 Hz, 1H), 7.89 – 7.76 (m, 2H), 7.56 (t, *J* = 7.1 Hz, 1H), 7.31 (td, *J* = 7.6, 3.4 Hz, 5H), 7.01 (d, *J* = 8.9 Hz, 2H), 6.62 (d, *J* = 8.9 Hz, 2H), 3.76 (q, *J* = 7.1 Hz, 2H), 2.98 (s, 6H), 1.29 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.6, 171. 7, 164.1, 157.9, 153.2, 149.9, 149.9, 147.9, 143.1, 135.4, 133.5, 129.9, 129.6, 129.5, 129.2, 128.5, 128.3, 127.0, 126.6, 125.5, 116.8, 114.8, 111.3, 100.2, 40.2, 32.5, 13.9. IR(KBr): v_{max}: 2927, 2854, 1753, 1697, 1652, 1561, 1520, 1493, 1467, 1438, 1400, 1070, 1008, 830, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₂H₂₆N₄O₃ [M+H]⁺ = 515.2077, found = 515.2081.

(*E*)-4-(1-(4-(9*H*-carbazol-9-yl)phenyl)-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3aa)

45% yield, red solid, m.p.: 277-278 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.09 (s, 1H), 8.60 (s, 1H), 8.16 (t, J = 6.8 Hz, 3H), 7.91 (dt, J = 6.5, 4.7 Hz, 2H), 7.61 (ddt, J = 9.5, 4.7, 2.0 Hz, 4H), 7.47 – 7.43 (m, 4H), 7.39 – 7.32 (m, 8H), 3.79 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.1, 171.4, 165.5, 156.8, 153. 6, 149.8, 147.4, 143.4, 140.4, 138.0, 137.3, 134.8, 134.0, 131.3, 130.0, 129.8, 129.4, 128.5, 128.2, 127.1, 126.9, 126.1, 125.6, 123.5, 120.5, 120.4, 116.4, 114.2, 109.4, 32.7, 13.9. IR(KBr): v_{max}: 2925, 2854, 1755, 1697, 1653, 1574, 1539, 1512, 1493, 1467, 1446, 1400, 1070, 1009, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₄₂H₂₈N₄O₃ [M+H]⁺ = 637.2234, found = 637.2229.

(*E*)-1-ethyl-4-(1-(2-(2-isopropyl-2,5-dihydrooxazol-4-yl)-4-methylphenyl)-2phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (3ab)

38% yield(d.r.=1:1), red solid, m.p.: 255-256 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.07 (d, *J* = 6.0 Hz, 1H), 8.52 (d, *J* = 3.6 Hz, 1H), 8.12 (dd, *J* = 8.2, 2.9 Hz, 1H), 8.02 – 7.95 (m, 1H), 7.75 (ddd, *J* = 21.5, 12.1, 7.6 Hz, 2H), 7.56 (dd, *J* = 9.6, 5.2 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.37 (dd, *J* = 11.8, 4.2 Hz, 2H), 7.29 – 7.23 (m, 3H), 7.18 – 7.14 (m, 1H), 4.01 (dd, *J* = 8.8, 7.7 Hz, 1H), 3.78 (q, *J* = 7.1 Hz, 2H), 3.72 – 3.63 (m, 1H), 3.55 – 3.47 (m, 1H), 1.30 (t, *J* = 7.2 Hz, 3H), 0.92 – 0.86 (m, 1H), 0.59 (dd, *J* = 40.1, 6.7 Hz, 3H), 0.26 (dd, *J* = 13.6, 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.7, 164.1, 160.3, 159.8, 157.7, 157.3, 153.8, 153.7, 149.7, 149.6, 147.6, 147.6, 143.1, 137.9, 137.7, 134.9, 134.8, 133.5, 131.1, 130.6, 130.5, 130.2, 129.0, 129.85, 129.78, 129.7, 129.6, 129.1, 129.0, 128.3, 128.2, 128.1, 127.3, 127.1, 126.5, 126.4, 125.4, 114.6, 114.5, 100.5, 72.9, 72.8, 70.2, 69.6, 32.7, 32.6, 32.4, 18.8, 18.2, 18.0, 17.8, 13.9. IR(KBr): v_{max}: 2925, 2853, 1756, 1698, 1652, 1566, 1538, 1493, 1468, 1444, 1400, 1059, 855, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₆H₃₀N₄O₄ [M+H]⁺=583.2339, found =583.2344.

(4Z,4'E)-4,4'-(naphthalene-1,5-diylbis(2-phenylbenzo[b][1,8]naphthyridine-1(1H)-yl-4(1H)ylidene))bis(1-ethylpyrrolidine-2,3,5-trione) (3ac)

30% yield, red solid, m.p.: 219-220 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.13 (s, 2H), 8.62 (d, J = 20.4 Hz, 2H), 8.17 (d, J = 8.2 Hz, 2H), 7.91 – 7.79 (m, 3H), 7.63 (dd, J = 12.5, 6.2 Hz, 4H), 7.41 (d, J = 1.4 Hz, 1H), 7.39 – 7.35 (m, 3H), 7.32 (d, J = 6.4 Hz, 3H), 7.20 – 7.15 (m, 4H), 7.15 – 7.09 (m, 4H), 3.81 (q, J = 7.0 Hz, 4H), 1.33 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): δ 171.4, 168.7, 163.7, 157.6, 157.4, 153.7, 147.7, 143.5, 136.4, 134.5, 134.1, 131.6, 130.0, 128.5, 128.4, 128.2, 128.1, 127.0, 126.8, 125.7, 124.4, 116.3, 114.2, 109.0, 101.7, 32.8, 13.9. IR(KBr): v_{max}: 2925, 2857, 1753, 1698, 1653, 1572, 1537, 1494, 1467, 1435, 1400, 1076, 1008, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₅₈H₃₈N₆O₆ [M+H]⁺=915.2925, found = 915.2918.

(*E*)-1-ethyl-4-(1-ethyl-2-phenylbenzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (3ad)

52% yield, red solid, m.p.: 109-110 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 10.07 (s, 1H), 8.18 (s, 1H), 8.15 – 8.10 (m, 2H), 7.91 (dd, J = 8.0, 3.7 Hz, 2H), 7.74 (ddd, J = 8.4, 6.8, 1.3 Hz, 1H), 7.50 (tdd, J = 6.9, 4.2, 2.5 Hz, 4H), 4.97 (q, J = 7.0 Hz, 2H), 3.69 (q, J = 7.2 Hz, 2H), 1.45 (t, J = 7.0 Hz, 3H), 1.29 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 189.6, 167.4, 163.4, 147. 9, 147.0, 141.4, 141.2, 140.6, 138.5, 132.1, 129.1, 128.5, 128.3, 127.6, 126.1, 125.4, 118.5, 112.2, 107.5, 39.6, 33.0, 14.6, 13.9. IR(KBr): v_{max}: 2931, 2851, 1752, 1700, 1652, 1640, 1604, 1561, 1494, 1439, 1402, 1085, 1008, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₂₆H₂₁N₃O₃ [M+H]⁺ = 423.1582, found = 423.1581.

(*E*)-1-phenyl-4-(2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (3af)

48% yield, red solid, m.p.: 142-143 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.06 (s, 1H), 8.56 (s, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 3.5 Hz, 2H), 7.65 – 7.59 (m, 1H), 7.51 (t, *J* = 7.3 Hz, 4H), 7.37 (d, *J* = 6.9 Hz, 1H), 7.33 – 7.27 (m, 5H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 175.7, 170.8, 163.1, 157.9, 154.1, 150.0, 147.4, 143.3, 139.0, 135.9, 134.8, 134.0, 131.9, 129.9, 129.8 129.5, 129.3, 129.2, 128.9, 128.4, 128.4, 127.7, 127.0, 126.4, 125.7, 116.9, 115.7, 99.9, 21.3. IR(KBr): v_{max}: 2924, 2851, 1753, 1734, 1653, 1562, 1538, 1494, 1438, 1401, 1093, 1008, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₅H₂₃N₃O₃ [M+H]⁺ = 534.1812, found = 534.1805.

(*E*)-1-benzyl-4-(2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (3ag)

62% yield, red solid, m.p.: 144-145 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 9.98 (s, 1H), 8.47 (s, 1H), 8.11 (d, J = 8.3 Hz, 1H), 7.80 (t, J = 6.4 Hz, 2H), 7.62 – 7.53 (m, 1H), 7.48 (d, J = 7.3 Hz, 2H), 7.29 (dd, J = 11.2, 7.6 Hz, 7H), 7.24 (d, J = 7.3 Hz, 1H), 7.18 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 4.86 (s, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.5, 171.1, 163.7, 157.4, 153.5, 149.8, 147.4, 143.1, 138.8, 136.7, 135.9, 134.9, 133.7, 129.7, 129.6, 129.4, 129.20, 129.16, 128.54, 128.47, 128.2, 127.7, 127.5, 126.7, 125.5, 116.5, 114.6, 100.6, 41.2, 21.2. IR(KBr): v_{max}: 2925, 2854, 1754, 1734, 1697, 1653, 1567, 1537, 1493, 1467, 1444, 1073, 1022, 831, 699 cm⁻¹. HRMS (ESI) m/z calculated for C₃₆H₂₅N₃O₃ [M+H]⁺ = 548.1968, found = 548.1971.

(*R*,*E*)-1-(2-hydroxypropyl)-4-(2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione ((*R*)-3ah)

46% yield, red solid, m.p.: 139-140°C, ¹**H NMR** (400 MHz, CDCl₃): δ 9.97 (s, 1H), 8.46 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 3.4 Hz, 2H), 7.60 (dt, *J* = 8.1, 3.9 Hz, 1H), 7.35 – 7.28 (m, 5H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 4.13 (td, *J* = 6.9, 3.0 Hz, 1H), 3.80 (ddd, *J* = 21.5, 14.1, 5.2 Hz, 2H), 3.10 (s, 1H), 2.39 (s, 3H), 1.27 (d, *J* = 6.4 Hz, 3H). ¹³**C NMR** (100MHz, CDCl₃): δ 176.2, 172. 7, 164.6, 157.7, 153.7, 149.9, 147.4, 143.2, 138.9, 135.9, 134.8, 133.9, 129.8, 129.7, 129.5, 129.3, 129.2, 128.4, 126.9, 125.6, 116.6, 115.1, 100.1, 67.1, 45.5, 21.3, 21.0. IR(KBr): v_{max}: 3448, 2924, 2853, 1753, 1734, 1697, 1652, 1562, 1538, 1510, 1494, 1468, 1436, 1070, 1024, 831, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₂H₂₅N₃O₄ [M+H]⁺ = 516.1917, found = 516.1911. (*S,E*)-1-(2-hydroxypropyl)-4-(2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione ((*S*)-3ah)

43% yield, red solid, m.p.: 139-140 °C, ¹H NMR (400 MHz, CDCl₃): δ 9.97 (s, 1H), 8.46 (s, 1H), 8.13 (d, *J* = 8.3 Hz, 1H), 7.83 (d, *J* = 3.5 Hz, 2H), 7.60 (dd, *J* = 8.2, 4.0 Hz, 1H), 7.32 (dt, *J* = 10.8, 4.3 Hz, 5H), 7.18 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.2 Hz, 2H), 4.19 – 4.08 (m, 1H), 3.80 (ddd, *J* = 21.5, 14.1, 5.0 Hz, 2H), 3.10 (s, 1H), 2.39 (s, 3H), 1.27 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.2, 172.7, 164.6, 157.7, 153.7, 149.9, 147.4, 143.2, 138.9, 135.9, 134.8, 133. 9, 129.9, 129.7, 129.5, 129.30, 129.2, 128.4, 126.9, 125.6, 116.6, 115.1, 100.1, 67.1, 45.5, 21.3, 21.0. IR(KBr): v_{max}: 3445, 2923, 2854, 1754, 1734, 1698, 1653, 1571, 1540, 1512, 1493, 1467, 1438, 1069, 1013, 831, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₂H₂₅N₃O₄[M+H]⁺ = 516.1917, found = 516.1913. (*E*)-1-(2-hydroxyethyl)-4-(2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3ai)

48% yield, red solid, m.p.: 205-206 °C, ¹H NMR (400 MHz, CDCl₃): δ 9.98 (s, 1H), 8.47 (s, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 3.4 Hz, 2H), 7.60 (dt, *J* = 8.1, 3.9 Hz, 1H), 7.36 – 7.28 (m, 5H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.08 (d, *J* = 8.3 Hz, 2H), 3.92 (dt, *J* = 9.3, 4.2 Hz, 4H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.2, 172.5, 164.6, 157.7, 153.7, 150.0, 147.4, 143.2, 139.0, 135.9, 134.8, 133.9, 129.9, 129.7, 129.5, 129.3, 129.2, 128.4, 126.9, 125.7, 116.6, 115.0, 100.2, 61.7, 41.0, 21.3. IR(KBr): v_{max}: 3449, 2924, 2854, 1753, 1734, 1652, 1571, 1539, 1497, 1467, 1432, 1400, 1066, 1008, 831, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₃N₃O₄ [M+H]⁺ = 502.1761, found = 502.1757.

(*E*)-1-ethyl-4-(8-fluoro-2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3aj)

51% yield, red solid, m.p.: 243-244 °C, ¹H NMR (400 MHz, CDCl₃): δ 10.03 (s, 1H), 8.51 (s, 1H), 8.14 (dd, J = 9.1, 6.1 Hz, 1H), 7.46 – 7.38 (m, 2H), 7.33 – 7.27 (m, 5H), 7.18 (d, J = 8.1 Hz, 2H), 7.06 (d, J = 8.2 Hz, 2H), 3.77 (q, J = 7.2 Hz, 2H), 2.39 (s, 3H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 177.0, 171.5, 163.9, 157.3, 153.4, 151.0, 148.3, 143.3, 138.9, 135. 9, 134.9, 132.3, 129. 8, 129.5, 129.3, 129.2, 128.4, 122.8, 118.6, 118.3, 114.6, 111.6, 111.4, 100. 9, 32.7, 21.2, 13.9. ¹⁹F NMR (377 MHz, CDCl₃): δ -98.61 – -103.02 (m). IR(KBr): v_{max}: 2922, 2851, 1754, 1735, 1698, 1653, 1576, 1543, 1494, 1467, 1439, 1402, 1073, 1010, 830, 702 cm⁻¹. HRMS (ESI) m/z calculated for C₃₁H₂₂FN₃O₃ [M+H]⁺ = 504.1718, found = 504.1728.

(*E*)-1-ethyl-4-(7-methyl-2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)ylidene)pyrrolidine-2,3,5-trione (3ak)

60% yield, red solid, m.p.: 280-281 °C, ¹H NMR (400 MHz, CDCl₃): δ 9.87 (s, 1H), 8.46 (s, 1H), 7.86 (s, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.63 (dd, J = 8.8, 1.8 Hz, 1H), 7.30 (ddt, J = 11.3, 8.1, 3.9 Hz, 5H), 7.17 (d, J = 8.1 Hz, 2H), 7.08 (d, J = 8.3 Hz, 2H), 3.74 (q, J = 7.2 Hz, 2H), 2.53 (s, 3H), 2.37 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 171.5, 163.9, 157.0, 153.4, 148.6, 147.0, 141.9, 138.7, 136.8, 136.5, 136.0, 135.0, 129.6, 129.3, 129.23, 129.19, 128.2, 127.9, 127.8, 125.6, 116.5, 114.6, 100.3, 32.5, 21.6, 21.2, 13.8. IR(KBr): v_{max}: 2923, 2854, 1754, 1719, 1698, 1653, 1561, 1537, 1493, 1483, 1448, 1401, 1072, 1022, 824, 701 cm⁻¹. HRMS (ESI) m/z calculated for C₃₂H₂₅N₃O₃ [M+H]⁺ = 500.1968, found = 500.1962.

(*E*)-1-ethyl-4-(10-phenyl-11-(*p*-tolyl)naphtho[1,2-*b*][1,8]naphthyridin-8(11*H*)ylidene)pyrrolidine-2,3,5-trione (3al)

64% yield, red solid, m.p.: 164-165 °C, ¹H NMR (400 MHz, CDCl₃): δ 9.91 (s, 1H), 8.57 (s, 1H), 8.47 (d, *J* = 8.1 Hz, 1H), 7.85 (dd, *J* = 8.4, 3.8 Hz, 2H), 7.77 – 7.71 (m, 2H), 7.57 (dd, *J* = 9.5, 2.3 Hz, 1H), 7.36 – 7.29 (m, 5H), 7.24 (s, 2H), 7.15 (d, *J* = 8.3 Hz, 2H), 3.77 (q, *J* = 7.2 Hz, 2H), 2.46 (s, 3H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 171.8, 164.1, 156.0, 152.8, 149.6, 147.0, 141.2, 138.9, 136.2, 135.2, 134.8, 130.5, 130.0, 129.7, 129.45, 129.41, 129.2, 128.6, 128.4, 128.1, 127.4, 125.7, 125.5, 124.2, 117.0, 115.6,100.0, 32.6, 21.3, 13.9. IR(KBr): v_{max}: 2924, 2853, 1754, 1694, 1651, 1570, 1544, 1493, 1460, 1443, 1419, 1082, 1022, 830, 699 cm⁻¹. HRMS (ESI) m/z calculated for C₃₅H₂₅N₃O₃ [M+H]⁺ = 536.1968, found = 536.1971.

(*E*)-4-(8,9-dimethyl-2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3am)

62% yield, red solid, m.p.: 269-270 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 9.94 (s, 1H), 8.48 (s, 1H), 7.89 (d, J = 8.5 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.32 (ddd, J = 9.2, 6.6, 2.1 Hz, 5H), 7.19 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 3.78 (q, J = 7.2 Hz, 2H), 2.50 (s, 3H), 2.39 (s, 3H), 2.29 (s, 3H), 1.30 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.8, 171.8, 164.2, 156.8, 153.5, 149.0, 146.8, 142.9, 142.3, 138.6, 136.4, 135.0, 133.2, 130.4, 129.7, 129.4, 129.3, 129.2, 128.3, 126.5, 124.3, 115.8, 114.6, 100.3, 32.6, 21.2, 21.1, 13.9, 12.6. IR(KBr): v_{max}: 2922, 2851, 1753, 1697, 1652, 1561, 1542, 1493, 1466, 1440, 1402, 1082, 1007, 831, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₃₃H₂₇N₃O₃ [M+H]⁺ = 514.2125, found = 514.2118.

(*E*)-4-(8,9-dimethyl-2-phenyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)-1ethylpyrrolidine-2,3,5-trione (3an)

63% yield, red solid, m.p.: 230-231 °C, ¹**H NMR** (400 MHz, CDCl₃): δ 10.37 (s, 1H), 8.57 (s, 1H), 7.53 (d, J = 7.0 Hz, 1H), 7.37 – 7.34 (m, 2H), 7.33 – 7.27 (m, 4H), 7.18 (d, J = 8.2 Hz, 2H), 7.10 (d, J = 8.3 Hz, 2H), 3.78 (q, J = 7.2 Hz, 2H), 2.86 (s, 3H), 2.38 (s, 3H), 2.29 (s, 3H), 1.31 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.7, 171.9, 164.0, 156.8, 153.6, 149.6, 146.3, 140.2, 138.6, 136.2, 135.1, 135.0, 134.0, 133.2, 129.7, 129.4, 129.23, 129.15, 128.3, 126.5, 125.6, 116.0, 114.6, 100.3, 32.6, 21.2, 18.9, 17.0, 13.9. IR(KBr): vmax: 2924, 2857, 1753, 1698, 1652, 1560, 1545, 1493, 1477, 1440, 1402, 1074, 1007, 830, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₃₃H₂₇N₃O₃ [M+H]⁺ = 514.2125, found = 514.2121.

(*E*)-1-ethyl-4-(2-methyl-1-(*p*-tolyl)benzo[*b*][1,8]naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (3ao)

45% yield, red solid, m.p.: 121-122 °C, ¹H NMR (400 MHz, CDCl₃): δ 9.96 (s, 1H), 8.37 (s, 1H), 8.10 (d, *J* = 8.3 Hz, 1H), 7.81 – 7.75 (m, 2H), 7.59 – 7.54 (m, 1H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 3.79 (q, *J* = 7.1 Hz, 2H), 2.54 (s, 3H), 2.44 (s, 3H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 176.8, 171.8, 164.2, 156.6, 153.6, 149.7, 147.9, 143.1, 139.8, 135.9, 133.7, 130.6, 129.7, 128.3, 127.6, 126.6, 125.4, 116.4, 113.4, 99.6, 32.6, 23.7, 21.4, 14.0. IR(KBr): vmax: 2924, 2853, 1753, 1697, 1653, 1576, 1561, 1543, 1494, 1438, 1401, 1078, 1008, 830, 703 cm⁻¹. HRMS (ESI) m/z calculated for C₂₆H₂₁N₃O₃ [M+H]⁺ = 424.1655, found = 424.1650. (*E*)-1-ethyl-4-(2-phenyl-1-(*p*-tolyl)-1,8-naphthyridin-4(1*H*)-ylidene)pyrrolidine-2,3,5-trione (7a)

23% yield, red solid, m.p.: 132-133 °C, ¹H NMR (400 MHz, CDCl₃) δ 9.24 (dd, J = 8.1, 1.5 Hz, 1H), 8.41 (dd, J = 4.4, 1.6 Hz, 1H), 8.13 (d, J = 7.2 Hz, 2H), 8.08 (s, 1H), 7.51 (d, J = 7.6 Hz, 2H), 7.38 (d, J = 7.9 Hz, 3H), 7.19 (dd, J = 8.1, 4.7 Hz, 3H), 3.57 (q, J = 7.1 Hz, 2H), 2.49 (s, 3H), 1.19 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 189.7, 167.3, 162.1, 151.2, 139.4, 138.2, 133.6, 132.2, 130.1, 128.4, 128.2, 128.2, 127.7, 125.0, 119.8, 119.2, 117.8, 110.6, 109.6, 96.3, 32.92 21.4, 13.7. IR(KBr): vmax: 2922, 2853, 1766, 1713, 1642, 1615, 1561, 1525, 1510, 1439, 1400, 1067, 1003, 830, 699 cm⁻¹. HRMS (ESI) m/z calculated for C₂₇H₂₁N₃O₃ [M+H]⁺ = 436.1655, found = 436.1661.

9. Properties of Fluorescent Dyes of 3

nm).

9.1. Fluorescence spectra analysis of 3d, 3g, 3k, 3l, 3n, 3r, 3v, 3ag, 3ak

Experiments were set up using 96 well plates with black flat bottoms. Solutions of 5 mM in DMSO, EtOH, toluene, 1,4-dioxane, DCM, and PBS were separately placed in well plates and excited at wavelengths ranging from 320 nm to 520 nm. The best results were selected for presentation below. 9.2. Table S12. Maximum intensity (I) and their emission wavelength (λ em) of dihydrobenzo[*b*][1,8]naphthyridine-ylidene-pyrrolidinetriones (3d, 3g, 3k, 3l, 3n, 3r, 3v, 3ag, 3ak) in organic solvents were obtained at the corresponding excitation wavelength (λ ex = 420

Solvent						
λ _{em} I	DCM	EtOH	toluene	1,4-dioxane	DMSO	PBS
Compound						
V V V V V V V V V V	584 nm 20	590 nm 61	592 nm 24	590 nm 61	590 nm 91	742 nm 69
O O N N Ph OCH ₃ 3g	582 nm 52	594 nm 350	584 nm 34	590 nm 91	594 nm 153	766 nm 24

9.3. Photophysical properties in six selected organic solvents.

Figure S5. Photophysical properties in six selected organic solvents

(A) FITC channel: λ_{ex} = 488 nm; (B) Bright field; (C) Merged image.

Figure S6. Live human glioma U251 cell imaging of 3d, 3n, 3r, 3ag

10. NMR Spectra of Aminomaleimides

11. NMR Spectra of ortho-halogenated quinolin/pyridine chalcones

12. NMR Spectra of 3, 7a

$\begin{array}{c} -176.9 \\ -171.5 \\ -177.5 \\ -187.5 \\ -187.5 \\ -183.7 \\ -133.7 \\ -133.7 \\ -133.6 \\ -133.6 \\ -133.7 \\ -133.6 \\ -55.4 \\ -55.4 \\ -55.4 \\ -55.4 \\ -55.4 \\ -13.9 \\ -32.6 \\ -13.9 \\ -13$

S151

S154

S166

−1767 −171.8 −164.1 −164.1 −164.1 138.9 138.9 138.9 138.6 138.6 138.6 138.6 138.5 128.4 1 77.3 77.0 76.7 --32.6 --21.3 --13.9 ¹³C NMR CDCI₃ 100MHz 3al 100 90 fl (ppm) 180 170 160 150 140 130 120 110 80 70 60 50 40 30 20 10 -9.94-8.48 $\overbrace{128}^{132}$ 7.263.81 3.79 3.77 3.75 239 11] ſ H₃C с́н₃ ¹H NMR CDCl₃ 400MHz 3am $1.02 \pm$ 1.09 - 1.12 5.16 ₹ 2.01 ₹ 2.14 3.05 3.02 3.17 3.06-* -00 2.12 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 fl (ppm) 9.5 9.0 8.5 8.0 7.5 7.0 12.5 11.5 10.5

