Supporting Information

Switching Mesoionic Carbene-Organocatalysis from Radical to Ionic Pathway through Base-Controlled Formation of Breslow Intermediates versus Breslow Enolates

Jie Jiao^{1,‡}, Zengyu Zhang^{1,‡}, Guangyin Lu¹, Shiqing Huang¹, Yajing Bian¹, Fan Gao¹, Guy Bertrand^{2,*} & Xiaoyu Yan^{1,*}

¹Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China. ²UCSD-CNR Joint Research Laboratory (IRL3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0358, United States. [‡]These authors contributed equally: Jie Jiao, Zengyu Zhang. Email: gbertrand@ucsd.edu; yanxy@ruc.edu.cn

Table of Contents

1. General	1
2. Scope for alkyl iodides	2
3. Base screening	3
4. General procedure for alkylation of aldehydes	4
5. General procedure for the synthesis of α -alkylated benzoin derivatives	14
6. Kinetic experiments for cis-trans isomerization	25
7. Computational details	26
8. References	53
9. NMR Spectra	57

1. General

Unless otherwise noted, all the reagents were obtained from commercial suppliers and used directly without further purification. Solvents were obtained directly from a solvent purification system to get rid of moisture and oxygen. All air sensitive synthetic manipulations were performed in glovebox or carried out in flame-dried glassware equipped with magnetic agitators under nitrogen atmosphere using Schlenk techniques. All reactions that required heating were carried out under oil bath conditions. Analytical thin layer chromatography was carried out with silica gel pre-coated glass plates (TLC-Silica gel HSGF254) purchased from Xinnuo Chemical (Yantai, China). Chromatographic purification of the products was performed on silica gel 200-300 mesh purchased from Qingdao Haiyang Chemical Co., Ltd.

NMR spectra were recorded on Bruker 400 MHz spectrometers. The chemical shift data for each signal were given in units of δ (ppm) relative to tetramethylsilane (TMS) where δ (TMS) = 0, or referenced to the residual solvent resonances (CDCl₃: δ 7.26 (CHCl₃)). NMR multiplicities were abbreviated as follows: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, br = broad signal. Coupling constants *J* were given in Hz. High-resolution mass spectra were acquired on Thermo Q Exactive Focus Hybrid Quadrupole-Orbitrap mass spectrometer using electrospray ionization mode (ESI).

2. Scope for alkyl iodides

Most alkyl iodides were purchased from commercial source or were synthesized by simple and general methods according to literature procedures¹⁻⁷.

3. Base screening

s J	`H + /		base, cat A. CH ₃ CN, 40 °C,	2 h	0		
1a		2a			3aa	L	4aa
-	Entry	1 (mmol)	2 (mmol)	Base	T (°C)	3aa (%)	4aa (%)
_	1	0.2	0.2	DBU	40	4	10
	2	0.2	0.2	DIPEA	40	trace	trace
	3	0.2	0.2	DABCO	40	trace	trace
	4	0.2	0.2	TEA	40	trace	trace
	5	0.2	0.2	DMAP	40	trace	trace
	6	0.2	0.2	K ₃ PO ₄	40	2	10
	7	0.2	0.2	K_2SO_3	40	trace	trace
	8	0.2	0.2	Na ₂ HPO ₄	40	trace	trace
	9	0.2	0.2	Na ₂ CO ₃	40	trace	trace
	10	0.2	0.2	K ₂ CO ₃	40	trace	trace
	11	0.2	0.2	NaHCO ₃	40	trace	trace
	12	0.2	0.2	Cs_2CO_3	40	88	trace
	13	0.2	0.2	NaOAc	40	trace	trace
	14	0.2	0.2	KOAc	40	trace	trace
	15	0.2	0.2	CsOAc	40	trace	trace

Reactions were performed with 0.20 mmol of 1a, 0.20 mmol of 2a and 20 mol% of A in 1.0 mL CH₃CN for 2 h.

4. General procedure for alkylation of aldehydes

In a glovebox, a 25 mL seal bottle was charged with aldehyde (0.2 mmol), catalyst A (21.4 mg, 0.04 mmol), Cs₂CO₃ (260.6 mg, 0.8 mmol), alkyl iodide (0.2 mmol) and CH₃CN (1 mL). The solution was heated to 40 °C in oil bath and stirred for 2 h. The reaction was then quenched with water (2 mL) and extracted with ethyl acetate. The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel chromatography: PE/AcOEt \rightarrow 100/1 to 5/1, unless otherwise stated.

3aa was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as colorless oil (29 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 3.8 Hz, 1H), 7.61 (d, *J* = 4.9 Hz, 1H), 7.12 (t, *J* = 4.4 Hz, 1H), 2.89 (t, *J* = 7.5 Hz, 2H), 1.77 – 1.70 (m, 2H), 1.46 – 1.39 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 193.5, 144.5, 133.2, 131.6, 127.9, 39.1, 26.8, 22.4, 13.8. All the characterization data are consistent with previous report.⁸

3ba was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as colorless oil (17 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 3.6 Hz, 1H), 7.21 (d, *J* = 3.6 Hz, 1H), 6.53 (dd, *J* = 3.6, 1.7 Hz, 1H), 2.81 (t, *J* = 7.5 Hz, 2H), 1.74 – 1.66 (m, 2H), 1.45 – 1.39 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 189.7, 152.7, 146.1, 116.7, 112.0, 38.2, 26.4, 22.4, 13.9. All the characterization data are consistent with previous report.⁹

3ca was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as white solid (37 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.90 – 7.84 (m, 2H), 7.45 (t, *J* = 7.5 Hz, 1H), 7.40 (t, *J* = 7.5 Hz, 1H), 3.00 (t, *J* = 7.5 Hz, 2H), 1.82 – 1.74 (m, 2H), 1.49 – 1.40 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 195.2, 144.0, 142.5, 139.3, 128.9, 127.4, 126.0, 125.0, 123.1, 39.1, 27.0, 22.6, 14.1. All the characterization data are consistent with previous report.¹⁰

3da was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as yellow oil (26 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.68 (m, 1H), 7.59 – 7.55 (m, 1H), 7.49 (s, 1H), 7.48 – 7.44 (m, 1H), 7.33 – 7.29 (m, 1H), 2.97 (t, *J* = 7.5 Hz, 2H), 1.78 – 1.73 (m, 2H), 1.41 – 1.38 (m, 2H), 0.95 (t, *J* = 7.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.7, 155.5, 152.6, 128.1, 127.0, 123.8, 123.2, 122.5, 122.4, 38.7, 26.4, 22.4, 13.9. All the characterization data are consistent with previous report.⁸

3ea was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as colorless oil (10 mg, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, *J* = 7.3 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 2.97 (t, *J* = 7.6 Hz, 2H), 1.76 – 1.69 (m, 2H), 1.46 – 1.37 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 200.2, 136.8, 132.6, 128.3, 127.9, 38.1, 26.2, 22.3, 13.7. All the characterization data are consistent with previous report.⁸

3fa was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as colorless oil (21 mg, 46%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.1 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 2.99 (t, *J* = 7.4 Hz, 2H), 1.77 – 1.70 (m, 2H), 1.45 – 1.38 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 199.5, 139.7, 134.2 (q, *J*_{C-F} = 32.6 Hz), 128.4, 125.6 (q, *J*_{C-F} = 3.8 Hz), 123.7 (q, *J*_{C-F} = 271.2 Hz), 38.6, 26.2, 22.4, 13.9. All the characterization data are consistent with previous report.⁸

3ga was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as white solid (23 mg, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.6 Hz, 2H), 7.85 (d, *J* = 8.5 Hz, 2H), 3.89 (s, 3H), 2.98 (t, *J* = 7.4 Hz, 2H), 1.66 – 1.48 (m, 2H), 1.45 – 1.37 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.9, 166.3, 140.6, 134.0, 129.6, 127.6, 52.6, 38.7, 26.4, 22.4, 13.9. All the characterization data are consistent with previous report.¹¹

3ha was purified by column chromatography on silica gel (PE/AcOEt = 5/1) as white solid (23 mg, 71%). ¹H NMR (400 MHz, CDCl₃) δ 9.16 (br, 1H), 8.77 (dd, *J* = 4.9, 1.7 Hz, 1H), 8.22 (dt, *J* = 8.0, 2.0 Hz, 1H), 7.41 (dd, *J* = 8.0, 4.8 Hz, 1H), 2.98 (t, *J* = 7.4 Hz, 2H), 1.77 – 1.70 (m, 2H), 1.46 – 1.37 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.2, 153.3, 149.6, 135.3, 132.2, 123.6, 38.6, 26.1, 22.4, 13.9. All the characterization data are consistent with previous report.¹²

3ab was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as colorless oil (29 mg, 86%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.61 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.10 (dd, *J* = 5.0, 3.8 Hz, 1H), 3.69 (t, *J* = 6.1 Hz, 2H), 2.87 (t, *J* = 7.1 Hz, 2H), 2.25 – 2.18 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.5, 144.2, 133.9, 131.9, 128.4, 62.6, 36.3, 27.4. All the characterization data are consistent with previous report.¹³

3ac was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as white solid (30 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.63 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.13 (dd, *J* = 5.0, 3.8 Hz, 1H), 3.58 (t, *J* = 6.1 Hz, 2H), 2.95 (t, *J* = 6.7 Hz, 2H), 1.96 – 1.84 (m, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.5, 144.2, 133.5, 131.7, 128.1, 44.6, 38.3, 32.0, 21.9. All the characterization data are consistent with previous report.¹⁴

3ad was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as light-yellow oil (22 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 3.8 Hz, 1H), 7.64 (d, *J* = 5.0 Hz, 1H), 7.13 (t, *J* = 4.4 Hz, 1H), 4.54 (dt, *J* = 47.2, 5.8 Hz, 2H), 3.08 (t, *J* = 7.2 Hz, 2H), 2.21 – 2.08 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.0, 144.0, 133.6, 131.9, 128.1, 83.1 (d, *J*_{C-F} = 164.8 Hz), 34.6 (d, *J*_{C-F} = 4.3 Hz), 25.1 (d, *J*_{C-F} = 20.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -220.2. All the characterization data are consistent with previous report.¹⁵

3ae was purified by column chromatography on silica gel (PE/AcOEt = 50/1) as light-yellow oil (44 mg, 78%). IR (KBr): v_{max} 2955, 2921, 2858, 1672, 1469, 1419, 1257, 1098, 843, 753, 713 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 3.8, 1.1 Hz, 1H), 7.61 (dd, J = 4.9, 1.2 Hz, 1H), 7.12 (dd, J = 5.0, 3.8 Hz, 1H), 3.69 (t, J = 6.0 Hz, 2H), 3.00 (t, J = 7.3 Hz, 2H), 1.96 (tt, J = 7.3, 6.0 Hz, 2H), 0.89 (s, 9H), 0.04 (s, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.2, 144.4, 133.3, 131.7, 128.0, 62.1, 35.6, 27.6, 25.9, 18.3, -5.4. HRMS (ESI+): m/z calcd for C₁₄H₂₄O₂SSi+H⁺: 285.1340, [M+H]⁺, found: 285.1333.

3af was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as colorless oil (15 mg, 41%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.63 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.13 (dd, *J* = 4.9, 3.8 Hz, 1H), 3.22 (t, *J* = 6.4 Hz, 2H), 2.88 (t, *J* = 6.4 Hz, 2H), 2.24 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 207.1, 191.4, 143.7, 133.5, 132.0, 128.1, 37.0, 32.9, 30.0. All the characterization data are consistent with previous report.¹⁶

3ag was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as light-yellow oil (35 mg, 82%). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.63 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.13 (dd, *J* = 4.9, 3.8 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.25 (t, *J* = 6.8 Hz, 2H), 2.75 (t, *J* = 6.8 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.0, 172.7, 143.7, 133.6, 131.9, 128.1, 60.7, 33.9, 28.3, 14.2. All the characterization data are consistent with previous report.¹⁷

3ah was purified by column chromatography on silica gel (PE/AcOEt = 5/1) as light-yellow oil (22 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 3.8, 1.2 Hz, 1H), 7.64 (dd, J = 5.0, 1.2 Hz, 1H), 7.13 (dd, J = 5.0, 3.8 Hz, 1H), 3.80 (t, J = 6.4 Hz, 2H), 3.36 (s, 3H), 3.17 (t, J = 6.4 Hz, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.1,

144.4, 133.8, 132.2, 128.1, 67.8, 58.9, 39.5. All the characterization data are consistent with previous report.¹⁸

3ai was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as yellow oil (30 mg, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 3.8 Hz, 1H), 7.63 (d, *J* = 4.9 Hz, 1H), 7.13 (t, *J* = 4.4 Hz, 1H), 4.42 – 4.35 (m, 1H), 3.92 – 3.86 (m, 1H), 3.77 – 3.72 (m, 1H), 3.30 (dd, *J* = 15.4, 6.3 Hz, 1H), 2.98 (dd, *J* = 15.4, 6.5 Hz, 1H), 2.22 – 2.11 (m, 1H), 1.98 – 1.87 (m, 2H), 1.65 – 1.56 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 191.1, 144.6, 133.8, 132.3, 128.1, 75.5, 67.9, 45.4, 31.5, 25.6. All the characterization data are consistent with previous report.¹⁹

3aj was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as colorless oil (14 mg, 35%). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 3.6 Hz, 1H), 7.60 (d, *J* = 4.8 Hz, 1H), 7.34 – 7.26 (m, 5H), 7.12 (dd, *J* = 4.9, 3.8 Hz, 1H), 4.15 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 190.5, 144.0, 134.5, 134.1, 132.5, 129.6, 128.8, 128.3, 127.4, 45.4. All the characterization data are consistent with previous report.²⁰

3ak was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as white solid (31 mg, 44%). IR (KBr): v_{max} 2955, 2923, 2850, 1668, 1379, 1273, 770, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 3.8 Hz, 1H), 7.63 (d, *J* = 4.9 Hz, 1H), 7.12 (t, *J* = 4.4 Hz, 1H), 5.49 (d, *J* = 5.0 Hz, 1H), 4.64 (dd, *J* = 7.9, 2.4 Hz, 1H), 4.50 (t, *J* = 6.6 Hz, 1H), 4.36 – 4.29 (m, 2H), 3.38 – 3.16 (m, 2H), 1.61 (s, 3H), 1.49 (s, 3H), 1.34 (d, *J* = 3.9 Hz, 6H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 190.2, 144.3, 133.7, 132.3,

128.0, 109.2, 108.9, 96.4, 72.5, 70.9, 70.5, 64.2, 40.0, 26.1, 26.0, 25.0, 24.4. HRMS (ESI+): *m/z* calcd for C₁₇H₂₂O₆S+H⁺: 355.1210, [M+H]⁺, found: 355.1201.

3al was purified by column chromatography on silica gel (PE/AcOEt = 40/1) as colorless oil (29 mg, 76%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.61 (dd, *J* = 4.9, 1.1 Hz, 1H), 7.13 (dd, *J* = 4.9, 3.7 Hz, 1H), 3.10 (tt, *J* = 11.6, 3.3 Hz, 1H), 1.93 – 1.89 (m, 2H), 1.85 – 1.82 (m, 2H), 1.75 – 1.72 (m, 1H), 1.58 – 1.52 (m, 2H), 1.41 – 1.32 (m, 2H), 1.32 – 1.25 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 196.6, 143.9, 133.5, 131.4, 128.0, 47.6, 29.9, 25.8, 25.7. All the characterization data are consistent with previous report.¹²

3am was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as yellow solid (29 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.63 (dd, *J* = 4.9, 1.2 Hz, 1H), 7.13 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.06 – 4.03 (m, 2H), 3.55 – 3.49 (m, 2H), 3.33 (tt, *J* = 14.8, 4.1 Hz, 1H), 1.96 – 1.89 (m, 2H), 1.81 – 1.78 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 194.6, 143.5, 133.5, 131.2, 128.0, 67.5, 44.3, 29.1. All the characterization data are consistent with previous report.²¹

3an was purified by column chromatography on silica gel (PE/AcOEt = 80/1) as yellow solid (22 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 3.8, 1.1 Hz, 1H), 7.59 (dd, J = 5.0, 1.1 Hz, 1H), 7.11 (dd, J = 5.0, 3.8 Hz, 1H), 3.60 – 3.52 (m, 1H), 1.94 – 1.89 (m, 4H), 1.75 – 1.66 (m, 2H), 1.67 – 1.58 (m, 2H). ¹³C NMR (101 MHz,

CDCl₃) δ 195.8, 144.5, 133.1, 131.0, 128.0, 47.5, 30.3, 26.1. All the characterization data are consistent with previous report.²²

3ao was purified by column chromatography on silica gel (PE/AcOEt = 50/1) as light-yellow oil (13 mg, 43%). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.62 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.13 (dd, *J* = 5.0, 3.8 Hz, 1H), 3.44 – 3.34 (m, 1H), 1.23 (d, *J* = 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 197.6, 143.0, 133.5, 131.0, 127.5, 37.4, 19.4. All the characterization data are consistent with previous report.²¹

3ap was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as colorless oil (20 mg, 48%, trans: cis = 11: 1). IR (KBr): v_{max} 2923, 2862, 1664, 1517, 1452, 1412, 1257, 1200, 932, 786, 721 cm⁻¹; The following data is for trans isomer. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (dd, J = 3.8, 1.1 Hz, 1H), 7.61 (dd, J = 4.9, 1.1 Hz, 1H), 7.12 (dd, J = 5.0, 3.8 Hz, 1H), 3.03 (tt, J = 12.0, 3.4 Hz, 1H), 1.95 – 1.89 (m, 2H), 1.85 – 1.78 (m, 2H), 1.64 – 1.55 (m, 2H), 1.47 – 1.36 (m, 1H), 1.10 – 0.99 (m, 2H), 0.92 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.9, 143.9, 133.3, 131.4, 128.0, 47.3, 34.5, 32.0, 29.6, 22.6. HRMS (ESI+): m/z calcd for C₁₂H₁₆OS+H⁺: 209.0995, [M+H]⁺, found: 209.0990.

3aq was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as white solid (43 mg, 70%, trans: cis = 6: 1). IR (KBr): v_{max} 3362, 2980, 2923, 2858, 1704, 1664, 1533, 1412, 753 cm⁻¹; The following data is for trans isomer. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 3.9, 1.1 Hz, 1H), 7.63 (dd, J = 5.0, 1.1 Hz, 1H), 7.12 (dd,

J = 5.0, 3.8 Hz, 1H), 4.42 (br, 1H), 3.45 (br, 1H), 3.03 (tt, J = 12.0, 3.4 Hz, 1H), 2.17 – 2.11 (m, 2H), 2.00 – 1.94 (m, 2H), 1.74 – 1.62 (m, 2H), 1.44 (s, 9H), 1.28 – 1.17 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 195.8, 155.1, 143.6, 133.6, 131.5, 128.0, 79.2, 49.1, 46.4, 32.7, 28.4, 28.4. HRMS (ESI+): m/z calcd for C₁₆H₂₃NO₃S+H⁺: 310.1472, [M+H]⁺, found: 310.1469.

3ar was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as white solid (32 mg, 51%, trans : cis = 7 : 10). The following data is for cis isomer. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, *J* = 3.8, 1.1 Hz, 1H), 7.63 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.13 (dd, *J* = 5.0, 3.8 Hz, 1H), 4.73 (br, 1H), 3.80 (br, 1H), 3.23 – 3.17 (m, 1H), 1.87 – 1.77 (m, 6H), 1.74 – 1.66 (m, 2H), 1.44 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 196.2, 155.2, 143.5, 133.6, 131.6, 128.1, 79.2, 45.8, 44.9, 29.5, 28.4, 24.9. HRMS (ESI+): *m/z* calcd for C₁₆H₂₃NO₃S+H⁺: 310.1472, [M+H]⁺, found: 310.1473.

3at was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as white solid (42 mg, 55%, dr = 4: 1). IR (KBr): v_{max} 2923, 2850, 1736, 1655, 1452, 1412, 1266, 1054, 746 cm⁻¹; The following data is for major isomer. ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 3.8, 1.2 Hz, 1H), 7.62 (dd, J = 5.0, 1.1 Hz, 1H), 7.12 (dd, J = 5.0, 3.8 Hz, 1H), 3.15 (tt, J = 12.0, 4.1 Hz, 1H), 2.48 – 2.40 (m, 1H), 2.11 – 2.02 (m, 1H), 1.98 – 1.89 (m, 1H), 1.86 – 1.73 (m, 5H), 1.71 – 1.55 (m, 4H), 1.54 – 1.47 (m, 2H), 1.38 – 1.26 (m, 5H), 1.12 – 0.97 (m, 2H), 0.87 (s, 3H), 0.86 (s, 3H), 0.80 – 0.74 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 210.3, 196.4, 143.8, 133.4, 131.4, 128.0, 54.6, 51.5, 47.9, 47.8, 46.2, 37.8, 36.1, 35.8, 35.0, 31.7, 31.5, 30.9, 28.4, 25.1, 21.7, 20.2, 13.8, 12.3. HRMS (ESI+): *m/z* calcd for C₂₄H₃₂O₂S+H⁺: 385.2196, [M+H]⁺,

found: 385.2193.

3cu was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as light-yellow oil (30 mg, 54%, er = 62 : 38). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 0.8 Hz, 1H), 7.91 – 7.86 (m, 2H), 7.48 – 7.38 (m, 2H), 3.46 – 3.37 (m, 1H), 1.91 – 1.81 (m, 1H), 1.55 – 1.47 (m, 1H), 1.37 – 1.28 (m, 8H), 1.26 (d, *J* = 6.8 Hz, 3H), 0.85 (t, *J* = 7.2 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 199.0, 143.8, 142.6, 139.2, 128.5, 127.3, 125.9, 124.9, 123.0, 42.5, 34.1, 31.7, 29.4, 27.5, 22.6, 17.6, 14.0. HRMS (ESI+): *m/z* calcd for C₁₇H₂₂OS+H⁺: 275.1465, [M+H]⁺, found: 275.1458.

3aad was purified by column chromatography on silica gel (PE/AcOEt = 100/1) as colorless oil (12 mg, 35%). IR (KBr): v_{max} 2955, 2923, 2858, 1665, 1469, 1419, 1379, 1266, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (dd, J = 3.8, 1.2 Hz, 1H), 7.63 (dd, J = 4.9, 1.2 Hz, 1H), 7.12 (dd, J = 5.0, 3.8 Hz, 1H), 2.80 (d, J = 6.9 Hz, 2H), 1.22 – 1.13 (m, 1H), 0.63 – 0.57 (m, 2H), 0.24 – 0.20 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.9, 144.4, 133.5, 131.8, 128.0, 44.5, 7.1, 4.6. HRMS (ESI+): m/z calcd for C₉H₁₀OS+H⁺: 167.0526, [M+H]⁺, found: 167.0521.

5. General procedure for the synthesis of α-alkylated benzoin derivatives

In a glovebox, a 25 mL seal bottle was charged with aldehyde (0.2 mmol), catalyst A (10.7 mg, 0.02 mmol), Cs₂CO₃ (130.3 mg, 0.4 mmol), alkyl iodide (0.1 mmol) and CH₃OH (1 mL). The solution was heated to 60 °C in oil bath and stirred for 2 h. The reaction was then quenched with water (2 mL) and extracted with ethyl acetate. The organic layers were combined, dried over Na₂SO₄, and filtered. The volatiles were removed in vacuo and the crude product was purified by silica gel chromatography: $PE/AcOEt \rightarrow 100/1$ to 10/1, unless otherwise stated.

4aa was purified by column chromatography on silica gel (PE/AcOEt = 40/1) as light-yellow solid (25 mg, 88%). IR (KBr): v_{max} 2964, 2918, 2858, 1704, 1387, 1273, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 3.9, 1.1 Hz, 1H), 7.62 (dd, J = 4.9, 1.1 Hz, 1H), 7.30 (dd, J = 5.1, 1.2 Hz, 1H), 7.12 (dd, J = 3.6, 1.2 Hz, 1H), 7.04 (dd, J = 5.0, 3.9 Hz, 1H), 6.99 (dd, J = 5.1, 3.6 Hz, 1H), 4.81 (s, 1H), 2.55 – 2.34 (m, 2H), 1.61 – 1.48 (m, 1H), 1.39 – 1.26 (m, 2H), 1.14 – 1.03 (m, 1H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.9, 147.1, 138.5, 135.0, 134.9, 128.1, 126.9, 126.1, 125.7, 79.5, 40.0, 25.3, 22.8, 13.8. HRMS (ESI+): *m/z* calcd for C₁₄H₁₆O₂S₂+H⁺: 281.0665, [M+H]⁺, found: 281.0675.

4ba was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as colorless oil (12 mg, 48%). IR (KBr): v_{max} 2964, 2923, 2858, 1664, 1469, 1371, 1257, 1064, 835, 798, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 1.7 Hz, 1H), 7.34

(d, J = 1.8 Hz, 1H), 7.11 (d, J = 3.7 Hz, 1H), 6.48 (dd, J = 3.7, 1.7 Hz, 1H), 6.46 (d, J = 3.3 Hz, 1H), 6.36 (dd, J = 3.3, 1.8 Hz, 1H), 4.78 (s, 1H), 2.41 – 2.29 (m, 2H), 1.54 – 1.47 (m, 1H), 1.35 – 1.27 (m, 2H), 1.09 – 1.01 (m, 1H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 187.3, 154.5, 149.2, 147.4, 142.5, 120.9, 112.3, 110.6, 107.7, 77.1, 36.9, 24.9, 22.8, 13.8. HRMS (ESI+): m/z calcd for C₁₄H₁₆O₄+K⁺: 287.0681, [M+K]⁺, found: 287.0674.

4ca was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as yellow solid (22 mg, 57%). IR (KBr): v_{max} 2964, 2923, 2866, 1655, 1509, 1273, 770 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 0.8 Hz, 1H), 7.83 – 7.78 (m, 3H), 7.75 (dd, J = 5.0, 1.1 Hz, 1H), 7.46 – 7.41 (m, 2H), 7.37 – 7.29 (m, 3H), 4.76 (s, 1H), 2.70 – 2.62 (m, 1H), 2.55 – 2.48 (m, 1H), 1.64 – 1.54 (m, 1H), 1.41 – 1.31 (m, 2H), 1.22 – 1.13 (m, 1H), 0.88 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.0, 147.5, 142.8, 139.8, 139.4, 138.7, 138.0, 132.4, 127.9, 126.4, 125.0, 124.7, 124.4, 123.9, 122.6, 122.4, 122.3, 80.5, 39.9, 25.4, 22.8, 13.9. HRMS (ESI+): m/z calcd for C₂₂H₂₀O₂S₂+H⁺: 381.0978, [M+H]⁺, found: 381.0971.

4da was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as colorless oil (16 mg, 45%). IR (KBr): v_{max} 2964, 2914, 2850, 1672, 1542, 1460, 1397, 1038, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.63 (m, 1H), 7.60 (d, *J* = 1.0 Hz, 1H), 7.59 – 7.56 (m, 1H), 7.55 – 7.52 (m, 1H), 7.49 – 7.44 (m, 1H), 7.43 – 7.40 (m, 1H), 7.30 – 7.27 (m, 1H), 7.25 – 7.19 (m, 2H), 6.94 (d, *J* = 1.0 Hz, 1H), 4.88 (s, 1H), 2.67 – 2.59 (m, 1H), 2.55 – 2.48 (m, 1H), 1.40 – 1.29 (m, 4H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 188.9, 157.0, 155.7, 154.9, 149.1, 129.1, 127.9,

126.6, 124.7, 124.1, 123.6, 123.0, 121.3, 116.9, 112.5, 111.5, 104.6, 78.1, 37.0, 25.0, 22.8, 13.8. HRMS (ESI+): *m/z* calcd for C₂₂H₂₀O₄+Na⁺: 371.1254, [M+Na]⁺, found: 371.1262.

4fa was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as light-yellow solid (32 mg, 78%). IR (KBr): v_{max} 2964, 2940, 2866, 1679, 1419, 1323, 1176, 1135, 1063, 1013, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.80 – 7.78 (m, 2H), 7.66 – 7.64 (m, 2H), 7.61 – 7.58 (m, 4H), 4.08 (s, 1H), 2.36 – 2.26 (m, 2H), 1.37 – 1.28 (m, 3H), 1.12 – 1.03 (m, 1H), 0.85 (t, J = 7.2 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 200.3, 145.4, 137.0, 134.2 (q, J = 33.0 Hz), 130.4 (q, J = 32.8 Hz), 130.1, 126.2, 125.9 (q, J = 3.8 Hz), 125.4 (q, J = 3.6 Hz), 125.0 (q, J = 270.9 Hz), 122.2 (q, J = 270.4 Hz), 82.2, 38.5, 25.1, 22.8, 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7, -63.4. HRMS (ESI+): m/z calcd for C₂₀H₁₈F₆O₂+Na⁺: 427.1104, [M+Na]⁺, found: 427.1096.

4ab was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as light-yellow solid (20 mg, 72%). IR (KBr): v_{max} 2964, 2923, 2858, 1639, 1509, 1412, 1355, 1240, 1046, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 3.9, 1.1 Hz, 1H), 7.59 (dd, J = 4.9, 1.1 Hz, 1H), 7.25 (dd, J = 5.1, 1.1 Hz, 1H), 7.08 (dd, J = 3.6, 1.2 Hz, 1H), 7.02 (dd, J = 5.0, 3.8 Hz, 1H), 6.95 (dd, J = 5.1, 3.6 Hz, 1H), 5.57 (s, 1H), 3.67 (t, J = 6.0 Hz, 2H), 2.66 – 2.58 (m, 1H), 2.49 – 2.42 (m, 1H), 1.82 – 1.72 (m, 1H), 1.65 – 1.52 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.0, 147.2, 138.7, 135.4, 134.9, 127.9, 127.0, 125.8, 125.2, 80.4, 62.7, 37.9, 26.6. HRMS (ESI+): *m/z* calcd for C₁₃H₁₄O₃S₂+H⁺: 283.0458, [M+H]⁺, found: 283.0454.

4ah was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as white solid (17 mg, 60%). IR (KBr): v_{max} 2964, 2931, 2858, 1655, 1412, 1347, 1282, 1103, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 3.8, 1.4 Hz, 1H), 7.59 (dd, J = 4.9, 1.2 Hz, 1H), 7.24 (dd, J = 5.1, 1.2 Hz, 1H), 7.05 (dd, J = 5.0, 3.9 Hz, 1H), 7.01 (dd, J = 5.1, 3.9 Hz, 1H), 6.95 (dd, J = 5.1, 3.5 Hz, 1H), 5.76 (s, 1H), 3.73 – 3.68 (m, 1H), 3.59 – 3.54 (m, 1H), 3.29 (s, 3H), 2.73 – 2.67 (m, 1H), 2.50 – 2.43 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.6, 147.3, 139.2, 135.7, 134.6, 127.6, 127.2, 125.3, 124.3, 82.6, 70.1, 59.0, 39.5. HRMS (ESI+): m/z calcd for C₁₃H₁₄O₃S₂+H⁺: 283.0458, [M+H]⁺, found: 283.0450.

4av was purified by column chromatography on silica gel (PE/AcOEt = 40/1) as colorless oil (21 mg, 78%). IR (KBr): v_{max} 2964, 2923, 2858, 1639, 1460, 1412, 1351, 1249, 1063, 859, 729, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 3.9, 1.2 Hz, 1H), 7.62 (dd, J = 5.0, 1.1 Hz, 1H), 7.30 (dd, J = 5.1, 1.2 Hz, 1H), 7.12 (dd, J = 3.6, 1.2 Hz, 1H), 7.03 (dd, J = 5.0, 3.9 Hz, 1H), 6.98 (dd, J = 5.1, 3.6 Hz, 1H), 4.83 (s, 1H), 2.52 – 2.33 (m, 2H), 1.64 – 1.53 (m, 1H), 1.20 – 1.07 (m, 1H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 192.8, 147.1, 138.5, 135.0, 134.9, 128.1, 126.9, 126.1, 125.7, 79.5, 42.5, 16.6, 14.2. HRMS (ESI+): m/z calcd for C₁₃H₁₄O₂S₂+K⁺: 305.0067, [M+K]⁺, found: 305.0062.

4aw was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as light-yellow oil (19 mg, 75%). IR (KBr): v_{max} 2971, 2923, 2850, 1721, 1452, 1273, 753

cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.65 (dd, J = 3.9, 1.1 Hz, 1H), 7.62 (dd, J = 4.9, 1.1 Hz, 1H), 7.31 (dd, J = 5.1, 1.2 Hz, 1H), 7.13 (dd, J = 3.6, 1.2 Hz, 1H), 7.03 (dd, J = 5.0, 3.9 Hz, 1H), 6.99 (dd, J = 5.1, 3.6 Hz, 1H), 4.82 (s, 1H), 2.60 – 2.40 (m, 2H), 0.93 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.8, 146.9, 138.5, 135.0, 134.9, 128.1, 126.9, 126.1, 125.7, 79.7, 33.2, 7.6. HRMS (ESI+): m/z calcd for C₁₂H₁₂O₂S₂+H⁺: 253.0352, [M+H]⁺, found: 253.0350.

4ax was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as light-yellow oil (13 mg, 56%). IR (KBr): v_{max} 2964, 2923, 2850, 1704, 1460, 1257, 770 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.61 (m, 2H), 7.32 (dd, J = 5.1, 1.2 Hz, 1H), 7.13 (dd, J = 3.6, 1.2 Hz, 1H), 7.03 (dd, J = 4.9, 3.9 Hz, 1H), 7.00 (dd, J = 5.1, 3.6 Hz, 1H), 4.80 (s, 1H), 2.04 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.1, 147.0, 138.2, 135.4, 135.1, 128.1, 127.0, 126.4, 125.9, 76.8, 28.1. HRMS (ESI+): m/z calcd for C₁₁H₁₀O₂S₂+H⁺: 239.0195, [M+H]⁺, found: 239.0185.

4ay was purified by column chromatography on silica gel (PE/AcOEt = 50/1) as light-yellow solid (16 mg, 55%, dr = 1: 1.5). IR (KBr): v_{max} 2964, 2923, 2874, 1655, 1419, 1347, 1240, 1063, 851, 746, 696 cm⁻¹; The following data is for mixed isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, *J* = 3.9 Hz, 0.4H), 7.67 (d, *J* = 3.9 Hz, 0.6H), 7.61 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.29 (dd, *J* = 5.2, 1.8 Hz, 1H), 7.10 (dd, *J* = 3.7, 1.1 Hz, 1H), 7.03 (dd, *J* = 4.9, 3.9 Hz, 1H), 6.97 (dd, *J* = 5.2, 3.5 Hz, 1H), 4.78 (s, 1H), 2.61 – 2.48 (m, 1H), 2.41 – 2.25 (m, 1H), 1.54 – 1.42 (m, 1H), 1.29 – 1.05 (m, 2H), 1.00 (d, *J* = 6.7 Hz, 1.8H), 0.87 (t, *J* = 7.4 Hz, 1.2H), 0.74 (d, *J* = 6.7 Hz, 1.2H), 0.68 (t, *J* = 7.4 Hz, 1.8H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.3, 193.1, 147.9, 147.8, 138.9, 138.7, 135.1, 134.8, 128.0, 126.9, 126.9, 126.0, 125.5, 80.2, 79.9, 46.8, 46.2, 30.9, 30.8, 30.6, 30.1, 21.1, 20.2, 11.1, 10.9. HRMS (ESI+): *m*/*z* calcd for C₁₅H₁₈O₂S₂+K⁺: 333.0380, [M+H]⁺, found: 333.0375.

4aaa was purified by column chromatography on silica gel (PE/AcOEt = 50/1) as light-yellow solid (15 mg, 50%). IR (KBr): v_{max} 2955, 2923, 2858, 1647, 1469, 1412, 1355, 1244, 1046, 756, 721, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 3.9, 1.1 Hz, 1H), 7.62 (dd, J = 5.0, 1.3 Hz, 1H), 7.30 (dd, J = 5.2, 1.2 Hz, 1H), 7.12 (dd, J= 3.5, 1.2 Hz, 1H), 7.04 (dd, J = 5.0, 3.9 Hz, 1H), 6.98 (dd, J = 5.1, 3.6 Hz, 1H), 4.73 (s, 1H), 2.54 – 2.36 (m, 2H), 1.59 – 1.42 (m, 2H), 1.04 – 0.95 (m, 1H), 0.88 (d, J = 6.4 Hz, 3H), 0.82 (d, J = 6.4 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.9, 147.2, 138.5, 135.0, 134.8, 128.0, 126.9, 126.0, 125.6, 79.7, 38.2, 32.0, 28.1, 22.4, 22.3. HRMS (ESI+): m/z calcd for C₁₅H₁₈O₂S₂+K⁺: 333.0380, [M+K]⁺, found: 333.0376.

4aab was purified by column chromatography on silica gel (PE/AcOEt = 20/1) as yellow solid (28 mg, 83%). IR (KBr): v_{max} 2947, 2914, 2858, 1672, 1266, 1046, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.69 (dd, J = 3.9, 1.1 Hz, 1H), 7.65 (dd, J = 5.0, 1.1 Hz, 1H), 7.32 (dd, J = 5.1, 1.2 Hz, 1H), 7.11 (dd, J = 3.6, 1.2 Hz, 1H), 7.06 (dd, J = 5.0, 3.9 Hz, 1H), 7.00 (dd, J = 5.1, 3.6 Hz, 1H), 4.83 (s, 1H), 2.61 – 2.42 (m, 2H), 2.17 – 2.06 (m, 2H), 1.89 – 1.79 (m, 1H), 1.50 – 1.41 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.2, 146.3, 138.0, 135.4, 135.3, 128.2, 127.0, 126.8 (q, J_{C-F} = 274.0 Hz), 126.4, 125.8, 79.3, 39.0, 33.6 (q, J_{C-F} = 28.7 Hz), 16.2 (q, J_{C-F} = 3.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.2. HRMS (ESI+): m/z calcd for C₁₄H₁₃F₃O₂S₂+K⁺: 372.9941, [M+K]⁺, found: 372.9950.

4ao was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as colorless oil (23 mg, 87%). IR (KBr): v_{max} 2971, 2914, 2858, 1664, 1476, 1371, 1273, 761 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 3.9, 1.1 Hz, 1H), 7.63 (dd, J = 4.9, 1.1 Hz, 1H), 7.27 (dd, J = 5.0, 1.1 Hz, 1H), 7.19 (dd, J = 3.6, 1.1 Hz, 1H), 7.07 (dd, J = 5.0, 3.9 Hz, 1H), 6.99 (dd, J = 5.0, 3.6 Hz, 1H), 4.59 (s, 1H), 3.04 – 2.95 (m, 1H), 1.13 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.7 Hz, 3H). ¹³C {¹H} NMR (101 MHz, CDCl₃) δ 193.1, 146.4, 138.7, 134.8, 134.7, 127.9, 126.9, 125.9, 125.8, 83.7, 36.0, 17.0, 16.9. HRMS (ESI+): m/z calcd for C₁₃H₁₄O₂S₂+H⁺: 267.0508, [M+H]⁺, found: 267.0502.

4al was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as light-yellow oil (24 mg, 77%). IR (KBr): v_{max} 2931, 2850, 1647, 1412, 1338, 1240, 1054, 761, 713, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 3.9, 1.1 Hz, 1H), 7.63 (dd, J = 5.0, 1.1 Hz, 1H), 7.25 (dd, J = 5.1, 1.2 Hz, 1H), 7.15 (dd, J = 3.6, 1.2 Hz, 1H), 7.08 (dd, J = 5.0, 3.9 Hz, 1H), 6.97 (dd, J = 5.1, 3.6 Hz, 1H), 4.58 (s, 1H), 2.61 (tt, J = 11.2, 3.0 Hz, 1H), 1.91 – 1.78 (m, 2H), 1.75 – 1.65 (m, 2H), 1.37 – 1.30 (m, 2H), 1.25 – 1.15 (m, 2H), 0.88 – 0.81 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.2, 146.1, 138.8, 134.8, 134.7, 127.9, 126.9, 125.8, 125.6, 84.0, 46.4, 27.1, 26.7, 26.4, 26.2, 26.2. HRMS (ESI+): m/z calcd for C₁₆H₁₈O₂S₂+K⁺: 345.0380, [M+K]⁺, found: 345.0377.

4am was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as colorless oil (27 mg, 87%). IR (KBr): v_{max} 2964, 2931, 2850, 1651, 1428, 1355, 1240,

1078, 859, 729, 689 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (dd, *J* = 3.9, 1.2 Hz, 1H), 7.64 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.27 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.16 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.09 (dd, *J* = 5.0, 3.9 Hz, 1H), 6.98 (dd, *J* = 5.1, 3.6 Hz, 1H), 4.51 (s, 1H), 4.06 – 3.93 (m, 2H), 3.49 – 3.35 (m, 2H), 2.83 (tt, *J* = 11.8, 3.6 Hz, 1H), 1.82 – 1.64 (m, 2H), 1.34 – 1.26 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.4, 145.0, 138.7, 135.1, 135.1, 128.0, 127.0, 126.1, 125.6, 83.2, 68.0, 67.5, 43.7, 26.9, 26.5. HRMS (ESI+): *m/z* calcd for C₁₅H₁₆O₃S₂+K⁺: 347.0173, [M+K]⁺, found: 347.0168.

4aac was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as colorless oil (26 mg, 89%, dr = 1: 1). IR (KBr): v_{max} 2931, 2866, 1655, 1509, 1412, 1355, 1249, 1135, 1063, 916, 737 cm⁻¹; The following data is for mixed isomers. ¹H NMR (400 MHz, CDCl₃) δ 7.94 – 7.92 (m, 1H), 7.64 – 7.62 (m, 1H), 7.29 – 7.27 (m, 1H), 7.14 – 7.11 (m, 1H), 7.07 – 7.04 (m, 1H), 6.99 – 6.97 (m, 1H), 4.79 (s, 0.5H), 4.69 (s, 0.5H), 4.01 – 3.90 (m, 2H), 3.79 – 3.66 (m, 2H), 3.57 – 3.48 (m, 1H), 2.13 – 2.06 (m, 1H), 1.96 – 1.87 (m, 0.5H), 1.83 – 1.75 (m, 0.5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.6, 191.9, 146.4, 145.8, 138.6, 138.6, 135.6, 135.5, 135.2, 135.2, 128.0, 127.9, 127.2, 127.1, 126.4, 126.0, 125.8, 125.5, 82.7, 82.2, 69.6, 69.3, 68.5, 68.4, 47.1, 46.9, 27.4, 27.0. HRMS (ESI+): *m/z* calcd for C₁₄H₁₄O₃S₂+H⁺: 295.0458, [M+H]⁺, found: 295.0452.

4ap was purified by column chromatography on silica gel (PE/AcOEt = 50/1) as light-yellow oil (18 mg, 57%). IR (KBr): v_{max} 2955, 2923, 2858, 1639, 1452, 1419, 1355, 1237, 1059, 753, 721, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (dd, J = 3.9, 1.1 Hz, 1H), 7.62 (dd, J = 5.0, 1.2 Hz, 1H), 7.24 (dd, J = 5.1, 1.2 Hz, 1H), 7.15 (dd, J = 3.6, 1.2 Hz, 1H), 7.07 (dd, J = 5.0, 3.9 Hz, 1H), 6.97 (dd, J = 5.1, 3.6 Hz, 1H), 4.61 (s, 1H), 2.56 (tt, J = 11.8, 3.2 Hz, 1H), 1.91 – 1.84 (m, 1H), 1.81 – 1.73 (m, 1H), 1.72 – 1.66 (m, 1H), 1.46 – 1.28 (m, 4H), 1.07 – 0.91 (m, 2H), 0.87 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 193.2, 146.2, 138.8, 134.8, 134.7, 127.9, 126.9, 125.8, 125.6, 83.7, 46.0, 34.9, 34.8, 32.4, 26.9, 26.5, 22.4. HRMS (ESI+): m/z calcd for C₁₇H₂₀O₂S₂+K⁺: 359.0537, [M+K]⁺, found: 359.0533.

4aq was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as colorless oil (31 mg, 74%). IR (KBr): v_{max} 3346, 2964, 2914, 2842, 1655, 1517, 1412, 1347, 1266, 1055, 746, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 3.8 Hz, 1H), 7.64 (dd, J = 5.0, 1.1 Hz, 1H), 7.25 (d, J = 1.2 Hz, 1H), 7.14 (dd, J = 3.6, 1.2 Hz, 1H), 7.08 (dd, J = 5.0, 3.9 Hz, 1H), 6.97 (dd, J = 5.1, 3.6 Hz, 1H), 5.29 (s, 1H), 4.82 (br, 1H), 3.86 (br, 1H), 2.63 (t, J = 10.8 Hz, 1H), 1.92 – 1.73 (m, 4H), 1.63 – 1.46 (m, 4H), 1.43 (s, 9H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.7, 155.2, 145.7, 138.5, 135.0, 134.9, 128.0, 127.0, 126.0, 125.6, 83.6, 79.1, 45.5, 44.7, 30.1, 30.0, 28.4, 21.5, 20.9. HRMS (ESI+): m/z calcd for C₂₁H₂₇NO₄S₂+K⁺: 460.1014, [M+K]⁺, found: 460.1006.

4ar was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as colorless oil (27 mg, 63%). IR (KBr): v_{max} 3362, 2940, 2858, 1696, 1647, 1509, 1395, 1266, 1159, 1064, 753, 737, 701 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.96 (dd, J = 3.9, 1.1 Hz, 1H), 7.63 (dd, J = 5.0, 1.2 Hz, 1H), 7.25 (dd, J = 5.0, 1.1 Hz, 1H), 7.13 (dd, J = 3.6, 1.2 Hz, 1H), 7.08 (dd, J = 5.0, 3.9 Hz, 1H), 6.96 (dd, J = 5.1, 3.6 Hz, 1H), 4.48 (br, 1H), 4.36 (br, 1H), 3.38 (br, 1H), 2.55 (tt, J = 11.7, 3.4 Hz, 1H), 2.09 – 1.98 (m,

2H), 1.90 – 1.86 (m, 1H), 1.58 – 1.49 (m, 1H), 1.42 (s, 9H), 0.94 – 0.82 (m, 4H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.7, 155.1, 145.9, 138.6, 135.0, 134.9, 128.0, 126.9, 126.0, 125.5, 83.4, 79.1, 49.4, 45.4, 33.2, 33.0, 28.4, 25.7, 25.3. HRMS (ESI+): *m*/*z* calcd for C₂₁H₂₇NO₄S₂+K⁺: 460.1014, [M+K]⁺, found: 460.1012.

4at was purified by column chromatography on silica gel (PE/AcOEt = 10/1) as white solid (27 mg, 55%, dr = 1 : 1). The following data is for mixed isomers. IR (KBr): v_{max} 2923, 2842, 1736, 1655, 1271, 1054, 892, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.97 – 7.94 (m, 1H), 7.64 – 7.62 (m, 1H), 7.26 – 7.23 (m, 1H), 7.18 – 7.13 (m, 1H), 7.10 – 7.06 (m, 1H), 6.99 – 6.96 (m, 1H), 4.79 (s, 0.5H), 4.66 (s, 0.5H), 2.73 – 2.63 (m, 1H), 2.46 – 2.39 (m, 0.5H), 2.28 – 2.19 (m, 0.5H), 2.11 – 1.99 (m, 0.5H), 1.92 – 1.86 (m, 1.5H), 1.82 – 1.75 (m, 1H), 1.74 – 1.57 (m, 5H), 1.55 – 1.45 (m, 2H), 1.40 – 1.29 (m, 3H), 1.25 – 1.15 (m, 5.5H), 1.09 – 0.94 (m, 2.5H), 0.91 (s, 2H), 0.84 (s, 3H), 0.81 (s, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 209.6, 193.0, 193.0, 146.1, 146.0, 138.7, 138.7, 134.9, 134.8, 134.7, 127.9, 127.8, 126.9, 125.9, 125.7, 125.6, 125.5, 83.6, 83.5, 54.7, 54.5, 51.5, 51.4, 49.3, 49.3, 48.0, 47.8, 46.6, 46.5, 46.3, 46.3, 38.1, 38.0, 36.2, 36.2, 36.0, 35.8, 35.0, 34.6, 31.6, 31.5, 31.1, 31.0, 29.1, 29.0, 28.6, 28.5, 22.3, 21.7, 20.3, 20.3, 14.6, 13.8, 12.3, 12.3. HRMS (ESI+): *m/z* calcd for C₂₉H₃₆O₃S₂+K⁺: 535.1738, [M+K]⁺, found:535.1731.

4cu was purified by column chromatography on silica gel (PE/AcOEt = 100/1) as yellow oil (38 mg, 87%, dr = 1 : 1). IR (KBr): v_{max} 2964, 2923, 2874, 1647, 1509, 1282, 761 cm⁻¹; The following data is for mixed isomers. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 0.5H), 8.23 (s, 0.5H), 7.76 (d, J = 8.0 Hz, 1H), 7.73 – 7.61 (m, 3H), 7.38 – 7.16 (m,

5H), 4.46 (s, 0.5H), 4.30 (s, 0.5H), 2.93 – 2.84 (m, 0.5H), 2.84 – 2.75 (m, 0.5H), 1.71 – 1.65 (m, 0.5H), 1.46 – 1.32 (m, 1H), 1.29 – 1.14 (m, 6.5H), 1.12 – 1.04 (m, 2H), 1.05 (d, J = 6.7 Hz, 1.5H), 0.91 (d, J = 6.6 Hz, 1.5H), 0.77 (t, J = 6.5 Hz, 1.5H), 0.70 (t, J = 6.9 Hz, 1.5H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 194.4, 194.1, 147.0, 146.9, 142.7, 139.9, 139.9, 139.6, 139.6, 138.7, 138.6, 138.6, 138.4, 132.4, 132.3, 127.8, 127.7, 126.3, 125.0, 124.9, 124.4, 124.3, 124.2, 124.2, 123.7, 123.6, 122.5, 122.5, 122.4, 122.2, 122.2, 85.8, 85.4, 41.4, 41.2, 31.8, 31.6, 31.4, 30.8, 29.4, 29.1, 27.7, 27.3, 22.6, 22.5, 14.1, 14.0, 14.0, 13.6. HRMS (ESI+): *m/z* calcd for C₂₆H₂₈O₂S₂+K⁺: 475.1163, [M+K]⁺, found:475.1158.

5ac was purified by column chromatography on silica gel (PE/AcOEt = 30/1) as light-yellow oil (23 mg, 82%). IR (KBr): v_{max} 2923, 2874, 1664, 1412, 1351, 1249, 1054, 770 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.12 (dd, J = 3.9, 1.2 Hz, 1H), 7.57 (dd, J = 5.0, 1.2 Hz, 1H), 7.22 (dd, J = 4.1, 2.4 Hz, 1H), 7.05 (dd, J = 5.0, 3.9 Hz, 1H), 6.92 – 6.88 (m, 2H), 4.05 – 4.00 (m, 1H), 3.73 – 3.65 (m, 1H), 2.72 – 2.66 (m, 1H), 1.93 – 1.86 (m, 1H), 1.80 – 1.67 (m, 3H), 1.62 – 1.53 (m, 1H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.2, 146.1, 139.2, 135.2, 134.3, 127.6, 126.9, 125.1, 124.0, 84.5, 65.9, 34.8, 24.9, 20.4. HRMS (ESI+): m/z calcd for C₁₄H₁₄O₂S₂+H⁺: 279.0508, [M+H]⁺, found: 279.0503.

5ad was purified by column chromatography on silica gel (PE/AcOEt = 50/1) as colorless oil (22 mg, 85%). IR (KBr): v_{max} 2964, 2931, 2874, 1647, 1492, 1419, 1347, 1038, 753 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (dd, J = 4.0, 1.1 Hz, 1H), 7.61 (dd, J = 4.9, 1.1 Hz, 1H), 7.20 (dd, J = 5.0, 1.1 Hz, 1H), 7.07 (dd, J = 4.9, 3.9 Hz, 1H), 6.98 (dd, J = 3.7, 1.1 Hz, 1H), 6.92 (dd, J = 5.0, 3.7 Hz, 1H), 4.26 – 4.21 (m, 1H), 4.11 –

4.06 (m, 1H), 3.05 - 2.98 (m, 1H), 2.28 - 2.20 (m, 1H), 2.11 - 1.91 (m, 2H). ¹³C{¹H} NMR (101 MHz, CDCl₃) δ 192.2, 146.1, 139.1, 135.8, 134.8, 127.6, 127.2, 124.8, 124.1, 91.0, 69.6, 38.4, 25.6. HRMS (ESI+): *m*/*z* calcd for C₁₃H₁₂O₂S₂+H⁺: 265.0352, [M+H]⁺, found: 265.0347.

6. Kinetic experiments for cis-trans isomerization

The ratio were determined by ¹H NMR.

7. Computational details

Geometry optimizations were performed using M06-2X functional²³ theory combining with the basis set of $6-31+G(d,p)^{24}$. Frequencies calculations were carried out at the same level of theory to verify that we have obtained the minimum in the potential energy surface and to obtain the thermo correction data. The solvent free energy was treated at M05-2X/6-31G* level²⁵ based on the optimized structures. This method is shown to be accurate for the calculations of solvent free energy as demonstrated by Truhlar and workers. All these calculations were done with GAUSSIAN 16²⁶. Single point energy calculations were further conducted at DLPNO-CCSD(T)/cc-pVTZ level^{27, 28} utilizing ORCA 6.0.0²⁹.

Table S1. The summary of electronic energy in solvent model and gas phase based on the optimized geometries. ΔG_{solv} refers to the solvent free energy as calculated at M05-2X/6-31G* level. All units are given by Hartree.

Filename	Energy_solv	Energy_gas	ΔG_{solv}
TZ_BI	-1053.448067	-1053.415971	-0.0321
TZ_BI_Anion	-1052.929825	-1052.828048	-0.10178
DBU	-462.0453161	-462.0284954	-0.01682
DBU_H^+	-462.5329725	-462.4443285	-0.08864
MIC_BI	-1521.480317	-1521.443839	-0.03648
MIC_BI_Anion	-1520.958619	-1520.858983	-0.09964
$MIC_BI_K^+$	-2120.806048	-2120.760194	-0.04585
NHC_BI	-1269.65781	-1269.625684	-0.03213
NHC_BI_Anion	-1269.137833	-1269.038819	-0.09901
NMe ₃	-174.4374401	-174.4322716	-0.00517
NMe ₃ _H ⁺	-174.9122086	-174.8086009	-0.10361
NS_BI	-1616.091511	-1616.063721	-0.02779
NS_BI_Anion	-1615.584976	-1615.49222	-0.09276
^t BuOH	-233.6340169	-233.626428	-0.00759
^t BuOK	-832.9341539	-832.9134657	-0.02069

Filename	SP(a.u.)	G _{corr} (a.u.)
124_BI	-1051.639101	0.349023
124_BI_Anion	-1051.054654	0.336181
DBU	-461.2580299	0.213072
DBU_H^+	-461.6730627	0.227786
MIC_BI	-1518.856753	0.606583
MIC_BI_Anion	-1518.274888	0.591816
$MIC_BI_K^+$	-2117.676128	0.592019
NHC_BI	-1267.445211	0.451483
NHC_BI_Anion	-1266.860143	0.439182
NMe ₃	-174.1596041	0.094287
$NMe_3_H^+$	-174.5381663	0.109624
NS_BI	-1613.545906	0.508875
NS_BI_Anion	-1612.975527	0.495658
^t BuOH	-233.2845547	0.107784
^t BuOK	-832.0482765	0.091092

Table S2. The summary of single point energy (SP) and the correction of Gibbs free energy (G_{corr}) , given by Hartree.

Cartesian coordinates

TZ_BI_Anion

С	-0.56461800	0.41395000	-0.06367100
С	1.97044700	0.26099300	0.07210300
С	3.06191400	0.62743200	-0.74501300
С	2.11465700	-0.77664800	1.01756900
С	4.27874300	-0.03223700	-0.58639500
С	3.34719900	-1.42349600	1.11457100
С	4.44523900	-1.07018500	0.33174300
Н	5.11262500	0.25254600	-1.22798600

Η	3.45332800	-2.22243300	1.84813100
Ν	0.75940800	0.94337100	-0.07000100
С	-0.90491600	-0.84375500	-0.51770000
С	-2.28767400	-1.34986000	-0.25868900
С	-3.06858200	-0.98193500	0.85023700
С	-2.78902600	-2.35110100	-1.10872300
С	-4.32821400	-1.54050800	1.06224300
Η	-2.66296400	-0.27137200	1.56830700
С	-4.05022000	-2.90016900	-0.90542100
Η	-2.14012300	-2.68010300	-1.91502100
С	-4.83670200	-2.49310500	0.17747900
Η	-4.90787500	-1.24538200	1.93427600
Η	-4.42380700	-3.66110400	-1.58710000
Η	-5.81804200	-2.92977100	0.34249700
0	-0.06237200	-1.64329500	-1.07389800
С	-0.49323700	2.62955500	0.20036200
Ν	-1.35107200	1.54186600	0.34912900
С	5.75315500	-1.81512200	0.43991700
Η	5.78566500	-2.66766400	-0.24953500
Η	6.60148400	-1.16574000	0.20009700
Η	5.90260600	-2.20667600	1.45143900
С	0.99920100	-1.16272600	1.94990200
Η	0.48943900	-0.27663000	2.34397100
Η	0.25482000	-1.76595500	1.42055900
Η	1.39995100	-1.74006400	2.78915700
С	2.89789200	1.66134400	-1.82760100
Η	1.95645800	1.49002300	-2.36019600
Η	2.84970100	2.67607200	-1.42250900
Η	3.72736300	1.59782300	-2.53858700
N	0.73465400	2.34436200	-0.02251500 _{\$29}

С	-2.63875100	1.93559200	-0.20823200
С	-2.72141800	3.42485100	0.18193800
С	-1.25548200	3.92056700	0.14889900
Н	-3.46209800	1.34859500	0.20009800
Н	-2.62911800	1.78963100	-1.30260300
Н	-3.12364900	3.51022900	1.19572100
Н	-3.37541100	3.98755800	-0.48883500
Н	-1.01756800	4.44366500	-0.78163600
Н	-1.01262600	4.58675700	0.98096800

TZ_BI

С	-1.62414900	0.05201000	0.84225100
С	-0.11055400	1.19892500	2.47667500
С	1.07695700	0.75483400	3.07592700
С	-0.96234100	2.10852000	3.11330300
С	1.39936900	1.24207000	4.33912700
С	-0.60861600	2.55440000	4.39168900
С	0.56531800	2.13801700	5.01627000
Η	2.31612600	0.90187000	4.81688300
Η	-1.26211300	3.26093500	4.89936700
Ν	-0.44511200	0.70131800	1.18796100
С	-2.43879000	-0.66245200	1.67327400
С	-3.81305500	-1.05381900	1.38362200
С	-4.64656800	-0.29039500	0.54339100
С	-4.36981700	-2.18301800	2.01340200
С	-5.96239400	-0.67287700	0.29946800
Η	-4.26421800	0.63245000	0.11207300
С	-5.68774000	-2.55491700	1.77336100
Η	-3.74477700	-2.76261000	2.68517300
С	-6.49140800	-1.81155000	0.90663400 _{\$30}

Η	-6.58571400	-0.06349800	-0.34888200
Η	-6.09183400	-3.43585000	2.26368300
Н	-7.51935500	-2.10563000	0.72126600
0	-1.89630700	-1.04956200	2.89607300
Н	-2.21689100	-0.47270000	3.60437000
С	-0.52403500	0.85907300	-0.91690100
Ν	-1.71053200	0.25897400	-0.53015500
С	0.94582300	2.64887000	6.38317300
Н	1.18024300	1.82206300	7.06031400
Н	1.83212200	3.28909800	6.32718800
Н	0.13624500	3.23297100	6.82702100
С	-2.22100600	2.60719800	2.44986200
Н	-2.05546200	2.78935500	1.38327500
Н	-3.03691000	1.87836300	2.52677100
Н	-2.55139800	3.53899400	2.91405300
С	1.94325600	-0.25053800	2.36867300
Н	1.35528100	-1.14120900	2.12357500
Н	2.32690200	0.15547600	1.42828100
Н	2.78585600	-0.54588900	2.99742900
Ν	0.24756200	1.16534500	0.06290500
С	-2.26994500	-0.53902100	-1.61428800
С	-1.73135900	0.21452200	-2.84966400
С	-0.37827200	0.82553800	-2.40718800
Η	-3.35922700	-0.56977400	-1.57647400
Η	-1.89341000	-1.56879200	-1.54755000
Η	-2.43001300	1.01460700	-3.10877000
Η	-1.63358200	-0.44169300	-3.71563200
Н	0.46511200	0.17942600	-2.66796500
Н	-0.19217000	1.81167200	-2.83599600

DBU

С	0.01275400	0.75216500	0.39680500
С	0.99207900	1.34129500	-0.65876000
С	1.87156700	2.46654600	-0.15661900
С	-0.13990200	1.57393600	1.68303700
С	-0.82027900	2.93048200	1.47483200
С	-0.23250300	3.67831600	0.26866600
Н	-0.97539600	0.61018500	-0.05831200
Η	1.68206100	0.57286500	-1.00777200
Η	0.85405200	1.72968700	2.12075700
Н	-0.71423300	3.53496500	2.38385900
Н	0.36778900	-0.24428500	0.67560500
Η	0.44026200	1.69304400	-1.53747800
Η	-0.70974200	0.99303700	2.41608000
Η	-1.89667200	2.79689700	1.30870900
Η	-0.52993600	4.73230900	0.28274100
Η	-0.63439300	3.26083600	-0.65833200
С	3.94923700	3.39613800	0.33419300
С	3.26853000	4.13611400	1.48345300
С	1.92059400	4.65246100	1.00093800
Н	4.92446800	3.00954300	0.64306000
Η	3.12380400	3.43611800	2.31468600
Н	3.87740700	4.96901900	1.84708700
Η	1.29187100	4.93095700	1.85647100
Н	2.05338000	5.55326500	0.38577100
Н	4.13100500	4.09691000	-0.49560600
Ν	1.22126500	3.62985200	0.22131800
Ν	3.14272700	2.28234400	-0.13798800

DBU_H+

S32

С	-0.03898000	0.73838700	0.37567100
С	0.97168200	1.33659800	-0.65135300
С	1.79814000	2.47982900	-0.12518500
С	-0.18650900	1.51331400	1.69081400
С	-0.83775300	2.89166900	1.53068800
С	-0.26378200	3.66284600	0.33884300
Η	-1.01608000	0.65163600	-0.10932500
Η	1.65586000	0.56094100	-1.00202400
Η	0.79844800	1.61961600	2.16405700
Η	-0.70961500	3.46953300	2.45198000
Η	0.28113600	-0.27936700	0.60879100
Η	0.45240200	1.70255900	-1.54317100
Η	-0.78325200	0.91485700	2.38387800
Η	-1.91598000	2.78896900	1.36982600
Η	-0.52343900	4.72266000	0.37495600
Η	-0.65372600	3.27436600	-0.60451900
С	4.02587000	3.40784600	0.37195300
С	3.30196700	4.19585500	1.45389400
С	1.96430000	4.68630300	0.91975900
Η	4.92187600	2.92297000	0.76152000
Η	3.14292400	3.55726600	2.32882100
Η	3.90667700	5.04938100	1.76576400
Η	1.34968800	5.08639500	1.72986100
Η	2.09442300	5.47479400	0.17045700
Η	4.31635700	4.05403000	-0.46308100
N	1.20710800	3.57944900	0.30632200
N	3.12131800	2.36228900	-0.11363200
Η	3.51339000	1.50136900	-0.46887700

MIC_BI_Anion

С	0.49379500	1.12993400	-0.41558700
Н	0.86080100	2.09525800	-0.72772800
С	-0.81187700	0.59066000	-0.41067500
С	2.75755100	0.26299100	-0.02546400
С	3.41542700	1.00364700	0.97056300
С	3.43158400	-0.43978200	-1.03385800
С	4.81198900	1.04124900	0.91885300
С	4.82795800	-0.38375600	-1.03201800
С	5.51138200	0.35146700	-0.06836300
Н	5.36330500	1.60758500	1.66213600
Н	5.38492300	-0.91558000	-1.79851400
Н	6.59695500	0.38921800	-0.08530000
С	-1.49213900	-1.63793100	0.60997200
С	-1.73829000	-2.90591900	0.04684200
С	-2.07036700	-1.26502000	1.83331400
С	-2.61526400	-3.77274200	0.69670100
С	-2.97251900	-2.14904200	2.43783700
С	-3.24525400	-3.39130500	1.88061500
Н	-2.82539600	-4.74966100	0.27019200
Н	-3.46069300	-1.86071000	3.36615300
Н	-3.94388500	-4.06612600	2.36842300
С	2.62915500	1.67039300	2.09160000
Н	1.75039600	2.15128300	1.64893500
С	2.68040600	-1.23733600	-2.08673600
Н	1.62387200	-0.95573600	-2.03486800
С	3.18170100	-0.93154500	-3.50278800
Н	4.20861000	-1.28243500	-3.65582500
Н	2.54714700	-1.44035200	-4.23521700
Н	3.15216800	0.14214400	-3.71157300
С	2.77098000	-2.73818800	-1.78108100 _{\$34}
Н	2.35602800	-2.94085900	-0.79028200
---	-------------	-------------	--------------------------------
Н	2.19851300	-3.30898300	-2.52106900
Н	3.81323500	-3.07978600	-1.81596300
С	3.41969200	2.75110700	2.83044900
Н	2.76024300	3.26680400	3.53472500
Н	4.24277300	2.31913800	3.41126000
Н	3.83619200	3.49499100	2.14349500
С	2.12056000	0.60639700	3.07843500
Н	1.51450100	-0.14996700	2.56941900
Н	2.97098500	0.10439700	3.55578000
Н	1.51269300	1.07541000	3.86004200
С	-1.76273000	0.06299400	2.50287200
Н	-0.90597500	0.50818500	1.98868400
С	-2.95317300	1.02305700	2.36534400
Н	-3.27526100	1.09319700	1.32274900
Н	-3.79955800	0.65671700	2.96085100
Н	-2.68807900	2.02303900	2.72907800
С	-1.36741900	-0.11663100	3.97380700
Н	-0.52682900	-0.81078300	4.07447100
Н	-1.07462600	0.84856600	4.40388600
Н	-2.20110400	-0.50276500	4.57085800
С	-1.11219500	-3.25659800	-1.29165300
Н	-0.14794200	-2.74034500	-1.33514400
С	-0.85082200	-4.75284200	-1.47425000
Н	-0.29621200	-4.92042900	-2.40453700
Н	-0.26281200	-5.16193100	-0.64545200
Н	-1.78365600	-5.32430400	-1.54768900
С	-1.99574200	-2.70609800	-2.42098500
Н	-2.94963400	-3.24875700	-2.44627300
Η	-2.21740000	-1.64687200	-2.25232200 ^{\$35}

Η	-1.50218900	-2.83438300	-3.39292000
N	1.33140900	0.18404100	-0.01019400
N	0.78496500	-1.00450900	0.30264300
N	-0.58605400	-0.80105200	-0.10180000
С	-2.04153200	1.05883200	-0.88595300
С	-2.18534700	2.49444900	-1.23795800
С	-1.44368300	3.54858600	-0.66891300
С	-3.19038400	2.83563300	-2.16449000
С	-1.64680800	4.86876200	-1.06290000
Н	-0.73962000	3.33794700	0.13140600
С	-3.39175600	4.15345700	-2.55674500
Н	-3.79824700	2.02346900	-2.55124800
С	-2.61389500	5.18433700	-2.01978900
Н	-1.06325000	5.66107000	-0.59968100
Н	-4.16630600	4.38514600	-3.28435400
Н	-2.77622700	6.21537500	-2.32101200
0	-3.03832500	0.27164700	-1.04151300

MIC_BI

С	0.48587200	1.21179300	0.22022800
Н	0.85026000	2.21524300	0.35015500
С	-0.83454100	0.66993800	0.17369400
С	2.75710400	0.29398400	-0.14704100
С	3.50540600	-0.00343300	0.99846100
С	3.30870900	0.67856000	-1.37221500
С	4.89193700	0.11770700	0.88993200
С	4.70126100	0.78996500	-1.42556600
С	5.48176500	0.51644000	-0.30743100
Н	5.51840500	-0.10452300	1.74810200
Н	5.17763900	1.08862700	-2.35498200

Η	6.56168900	0.60775000	-0.36971400
С	-1.46597800	-1.79032200	-0.24710100
С	-2.16841800	-1.94679500	-1.44939000
С	-1.57654800	-2.67669500	0.83263900
С	-3.01957000	-3.04691500	-1.55473600
С	-2.43523300	-3.76911600	0.67794600
С	-3.14918400	-3.95003200	-0.50233100
Н	-3.59135400	-3.20032900	-2.46391100
Н	-2.54979800	-4.48423600	1.48561100
Н	-3.81426600	-4.80241500	-0.60319100
С	2.84482200	-0.50621600	2.27034800
Н	1.78536200	-0.22449400	2.23751800
С	2.45625800	0.94524000	-2.60078400
Н	1.40712500	0.76562300	-2.34133600
С	2.58084200	2.40524300	-3.05227800
Н	3.60938200	2.63943600	-3.34691900
Н	1.93266400	2.59036400	-3.91390900
Н	2.29167800	3.09293300	-2.25218300
С	2.82070600	-0.02207900	-3.73363700
Н	2.72293800	-1.06182700	-3.40821200
Н	2.15703500	0.13460100	-4.58944700
Н	3.85011200	0.13544000	-4.07259200
С	3.44475400	0.11747100	3.53374900
Н	2.86438400	-0.18969400	4.40859400
Н	4.47627700	-0.21153200	3.69499600
Н	3.43737600	1.20990000	3.48268100
С	2.92477800	-2.03953100	2.32218300
Н	2.46525300	-2.48711900	1.43575100
Н	3.96981600	-2.36505800	2.37067600
Н	2.40777100	-2.41713400	3.21084200

С	-0.83674800	-2.40827000	2.13347200
Η	0.14301500	-1.99150600	1.87328600
С	-1.59198600	-1.35824600	2.96350400
Η	-1.71693600	-0.41967200	2.41304500
Η	-2.58503200	-1.73518300	3.23415800
Η	-1.04760100	-1.13902500	3.88854400
С	-0.58863400	-3.66855600	2.96345100
Η	-0.09220500	-4.44690900	2.37595300
Η	0.04872200	-3.42642300	3.81934300
Η	-1.52180900	-4.07929900	3.36324400
С	-1.97154700	-0.95721900	-2.58318300
Η	-1.80923200	0.02718100	-2.13109900
С	-0.72066100	-1.32974000	-3.39429400
Η	-0.53327100	-0.58042900	-4.17159600
Η	0.16486100	-1.39759300	-2.75411300
Η	-0.85830800	-2.30133800	-3.88222000
С	-3.19411700	-0.83284700	-3.49256400
Η	-3.36273100	-1.74496100	-4.07543300
Η	-4.09373400	-0.61544200	-2.91004700
Η	-3.04083800	-0.01615400	-4.20401500
Ν	1.32385400	0.19719600	-0.05688000
Ν	0.75266800	-0.94822500	-0.27034000
Ν	-0.56686500	-0.67970200	-0.11992500
С	-2.07998700	1.24180000	0.31855100
С	-2.32829800	2.61820600	0.70157600
С	-1.40988200	3.39555600	1.44063900
С	-3.56159200	3.22080800	0.36939500
С	-1.69312100	4.71325400	1.78432400
Η	-0.48978500	2.94842300	1.80237100
С	-3.83817000	4.53619400	0.72200100 ^{S38}

Η	-4.28967400	2.63966000	-0.18647300
С	-2.90476100	5.30190800	1.42287400
Η	-0.96559300	5.27931500	2.35966300
Η	-4.79313800	4.97149300	0.44077100
Η	-3.12269600	6.32966600	1.69380300
0	-3.18288500	0.47099300	-0.06352900
Н	-3.67970400	0.20548900	0.72200400

MIC_BI_K⁺

С	0.93591000	1.05301700	-0.31913500
Н	1.46137500	1.98959900	-0.40883900
С	-0.45124100	0.72372200	-0.45057800
С	3.02737000	-0.19613100	-0.06942200
С	3.67058600	-0.11589900	1.17142600
С	3.69501700	-0.39243900	-1.28243600
С	5.06569300	-0.18321100	1.16668900
С	5.09056800	-0.45964500	-1.23407000
С	5.76831300	-0.34573700	-0.02488300
Н	5.60927700	-0.11701900	2.10392000
Н	5.65027300	-0.60517000	-2.15386900
Н	6.85276900	-0.39582700	-0.00749500
С	-1.44253900	-1.47162000	0.28318400
С	-2.16355800	-2.41840500	-0.47681900
С	-1.68027400	-1.30476100	1.65911200
С	-3.11605900	-3.21097800	0.17225000
С	-2.66316300	-2.10112200	2.26747200
С	-3.36672600	-3.05599500	1.53829200
Н	-3.66805500	-3.95893400	-0.38887900
Н	-2.86202300	-1.98620100	3.33021700
Η	-4.09915000	-3.68809600	2.03261600 ^{S39}

С	2.87789000	0.04706600	2.45626400
Н	1.87649500	-0.34804200	2.26036200
С	2.95145900	-0.54257300	-2.59823400
Н	1.87777400	-0.47136100	-2.39833400
С	3.32625500	0.57739400	-3.57589000
Н	4.39000500	0.53770000	-3.83497400
Н	2.75049200	0.47895100	-4.50113300
Н	3.11698000	1.56149100	-3.14616900
С	3.21163100	-1.92560800	-3.20769900
Н	2.92809500	-2.71608800	-2.50714100
Н	2.62578400	-2.04881300	-4.12401800
Н	4.26910000	-2.05403300	-3.46391700
С	2.74749200	1.52699000	2.84216300
Н	2.14079800	1.63285400	3.74841000
Н	3.73423800	1.96096900	3.03969900
Н	2.27282100	2.10610300	2.04471800
С	3.46658500	-0.76188700	3.61550100
Н	3.61053600	-1.80929500	3.33560200
Н	4.42932900	-0.35731600	3.94505400
Н	2.78804000	-0.72539400	4.47357600
С	-0.93745600	-0.26999500	2.48605100
Н	-0.11118300	0.11344700	1.88417900
С	-1.85573300	0.91844400	2.80404400
Н	-2.21906400	1.38331700	1.88036300
Н	-2.71032500	0.59668600	3.41364800
Н	-1.31196900	1.68214800	3.36992300
С	-0.34023200	-0.87472000	3.76107900
Н	0.29443500	-1.73539400	3.52673600
Н	0.27114800	-0.12525400	4.27588900
Н	-1.11640700	-1.20064300	4.46170900

С	-1.89112100	-2.53884600	-1.96534700
Η	-1.71181400	-1.51773800	-2.31795300
С	-0.61559800	-3.35997200	-2.20758800
Η	-0.39316500	-3.40200100	-3.27938400
Η	0.23869600	-2.91727300	-1.68858600
Η	-0.74909500	-4.38684300	-1.84651100
С	-3.06391500	-3.12391900	-2.75343600
Η	-3.23156100	-4.18142300	-2.51931300
Η	-3.99658900	-2.57863800	-2.56612100
Η	-2.85316100	-3.05886200	-3.82454600
Ν	1.59386300	-0.07934100	-0.11907800
Ν	0.88209400	-1.19458300	-0.09521100
Ν	-0.43322700	-0.72375400	-0.39829800
С	-1.58733700	1.45302900	-0.71386800
С	-1.54313200	2.93139600	-0.74055300
С	-0.65853200	3.70918200	0.02912200
С	-2.48835500	3.60889200	-1.53182200
С	-0.67919400	5.10013800	-0.03728800
Η	0.01920900	3.22339600	0.72623200
С	-2.50654500	4.99764400	-1.59874900
Η	-3.19583300	3.00781700	-2.09401200
С	-1.59589100	5.75591500	-0.85927900
Η	0.01090800	5.67581200	0.57359800
Η	-3.23562800	5.49611100	-2.23204400
Η	-1.61226400	6.84020400	-0.90901500
0	-2.73732000	0.86150400	-0.94651300
K	-4.40372800	-0.38449600	0.21119400

NHC_BI_Anion

С	-0.35871300	-0.27185100	0.15428200
			S41

С	-2.83161900	-0.60615300	-0.06639700
С	-3.51815100	-0.38607500	-1.27192400
С	-3.44912600	-0.36270600	1.16585100
С	-4.84344500	0.03805900	-1.21723500
С	-4.78230000	0.06551300	1.17706100
С	-5.49464600	0.26650300	-0.00123100
Н	-5.37828600	0.21300400	-2.14996600
Н	-5.26397600	0.25797600	2.13503800
N	-1.49531400	-1.11678900	-0.12072500
С	-0.29199700	1.04972600	-0.22381700
С	0.87877200	1.88343000	0.18651100
С	1.66443000	1.66887100	1.33189800
С	1.17473400	3.00322100	-0.60791100
С	2.72552100	2.51143400	1.64572800
Н	1.42418200	0.83653500	1.98633500
С	2.24199800	3.84358100	-0.29892800
Н	0.52654500	3.18521300	-1.45979800
С	3.03135600	3.60230200	0.82640500
Н	3.31713300	2.31780900	2.53784800
Н	2.45813400	4.69702300	-0.93803400
Н	3.86441000	4.25669300	1.06909700
0	-1.17026700	1.58466900	-1.00984500
С	1.98018400	-1.14177500	0.11554900
С	2.22531300	-0.93630300	-1.26016400
С	3.05209900	-1.35378700	0.99949400
С	3.54824200	-0.88883800	-1.69433100
С	4.36169900	-1.30778000	0.51219300
С	4.63337700	-1.05414100	-0.82768500
Н	3.73766700	-0.73294900	-2.75611500
Н	5.18616500	-1.45312000	1.20932500

С	-1.21794000	-2.36095200	0.45953200
Η	-1.97918500	-3.12809800	0.49362300
С	0.04694400	-2.40078600	0.90233300
Η	0.60608400	-3.22412700	1.32158700
Ν	0.66483800	-1.14349200	0.66514200
С	2.80137200	-1.62718500	2.46017400
Η	1.93123800	-1.06801700	2.81508900
Н	2.58984000	-2.68858900	2.64408600
Η	3.67635600	-1.35706500	3.05865100
С	6.04887100	-0.94025700	-1.33641600
Η	6.16957400	-1.45821100	-2.29373900
Η	6.32669700	0.10819100	-1.49333100
Η	6.76013600	-1.37048500	-0.62507900
С	1.11341800	-0.81492200	-2.27282900
Η	0.27587000	-1.47621500	-2.02926700
Η	0.70409300	0.20078700	-2.30994000
Η	1.49601000	-1.08139100	-3.26364100
С	-6.92345200	0.75302400	0.02117100
Η	-6.99565600	1.77540400	-0.36610100
Η	-7.56827500	0.12128200	-0.59909900
Η	-7.32474300	0.75142900	1.03869300
С	-2.69422800	-0.53639900	2.46018200
Η	-2.56528900	-1.59486100	2.71477800
Η	-1.69388900	-0.10026400	2.38012600
Η	-3.23038900	-0.04957900	3.27986200
С	-2.79913300	-0.54271500	-2.58069000
Η	-2.01000600	0.22025500	-2.60550800
Η	-2.32000900	-1.52366400	-2.65786900
Н	-3.48643600	-0.40855400	-3.42165700

NHC_BI

С	0.40619300	-0.43280200	0.22413400
С	2.88412700	-0.57519300	0.12441200
С	3.77361500	-0.32067900	1.17453900
С	3.21533800	-0.30857800	-1.20868600
С	5.02732000	0.20192000	0.86154900
С	4.48071600	0.22205700	-1.47678600
С	5.39867700	0.47748500	-0.45802600
Н	5.72797200	0.41021900	1.66763100
Н	4.75372500	0.43444100	-2.50843300
N	1.59882500	-1.13093000	0.42474800
С	0.27739700	0.92997300	0.29718200
С	-0.87491100	1.72424300	-0.11166100
С	-1.63627200	1.40970700	-1.25251400
С	-1.23797400	2.86822200	0.62407100
С	-2.75409800	2.15863200	-1.59949000
Н	-1.33556800	0.57092200	-1.87427100
С	-2.34661700	3.62791600	0.26215900
Н	-0.64347100	3.14002200	1.49125800
С	-3.12207300	3.27166400	-0.84163300
Н	-3.33186300	1.88103700	-2.47674800
Н	-2.61245200	4.50015300	0.85256400
Н	-3.99051500	3.86138300	-1.11739000
0	1.27955700	1.58752800	1.02032600
Н	1.79778800	2.14415700	0.42418300
С	-1.97408500	-1.22466500	0.13934400
С	-2.51398100	-0.69939700	1.32289000
С	-2.78551500	-1.56535300	-0.95111500
С	-3.88821300	-0.46316300	1.36248500
С	-4.15692100	-1.32985000	-0.85586200

С	-4.72288700	-0.75680400	0.28315200
Η	-4.31845200	-0.04158000	2.26887600
Н	-4.79367600	-1.57772800	-1.70267000
С	1.34985200	-2.50605900	0.31054800
Н	2.14982600	-3.22220200	0.41451700
С	0.03982000	-2.67797000	0.07549200
Η	-0.55131600	-3.57493500	-0.01843200
Ν	-0.56588400	-1.41312900	0.02016300
С	-2.18940800	-2.13901300	-2.21129000
Η	-1.25027800	-1.63857200	-2.46857300
Н	-1.96031200	-3.20503100	-2.10214100
Н	-2.88515700	-2.03351600	-3.04666600
С	-6.19461500	-0.43657800	0.34255400
Н	-6.60161000	-0.62712700	1.33929400
Н	-6.36424800	0.62078300	0.11255200
Η	-6.76024400	-1.03130200	-0.37891700
С	-1.65828000	-0.39712300	2.52486400
Η	-0.81345700	-1.08835200	2.59916400
Η	-1.24683600	0.61642200	2.46663200
Н	-2.25455300	-0.47483700	3.43719000
С	6.77246200	1.01618000	-0.76948800
Η	7.08175900	1.75946500	-0.02958700
Н	7.51578700	0.21197500	-0.75977300
Н	6.79981400	1.48379600	-1.75663400
С	2.22709800	-0.56415300	-2.31855300
Н	1.73860800	-1.53721900	-2.19978600
Н	1.43833900	0.19706500	-2.31536800
Н	2.72518400	-0.54142500	-3.29026400
С	3.34402300	-0.55810100	2.59631900
Η	2.46982900	0.06260400	2.81856000 s45

Н	3.05597700	-1.60092200	2.76088100
Н	4.14762500	-0.30661700	3.29182600

NMe₃

Ν	1.40099200	1.14012800	0.00008100
С	1.85062900	-0.23969900	-0.00006500
Η	1.46677600	-0.75406600	0.88535700
Η	1.46980300	-0.75300000	-0.88738000
Η	2.95517200	-0.32209900	0.00182300
С	1.84857600	1.82915100	1.19630900
Η	1.46663400	2.85383700	1.19792900
Η	1.46427500	1.31809500	2.08344900
Η	2.95298800	1.86990100	1.26988400
С	1.85279300	1.83085200	-1.19358500
Η	1.47253300	1.32038300	-2.08277800
Η	1.46997000	2.85520800	-1.19567700
Н	2.95745700	1.87260900	-1.26264500

NMe₃_H⁺

С	1.85151200	-0.28964800	-0.00016000
Н	1.46764400	-0.78145400	0.89330300
Н	1.47108500	-0.78014900	-0.89580300
Н	2.94208100	-0.30154000	0.00192900
С	1.84955200	1.85407800	1.23964400
Н	1.46750600	2.87440900	1.21789500
Н	1.46593000	1.32425100	2.11119200
Н	2.94009800	1.85989600	1.25171200
С	1.85395600	1.85593700	-1.23681000
Н	1.47338900	1.32743100	-2.11051100
Н	1.47187500	2.87624400	-1.21486800

Η	2.94454200	1.86174600	-1.24502400
Н	0.37735600	1.14027900	-0.00173700
Ν	1.40207300	1.14018100	0.00007600

NS_BI_Anion

С	-1.01558700	0.38926600	-0.02449500
С	1.16057100	-0.78890500	0.13002200
С	1.79024300	-1.49239300	-0.91299600
С	1.26790300	-1.23307400	1.46028000
С	2.55984800	-2.61270200	-0.59197800
С	2.02983000	-2.37388500	1.72810300
С	2.68868900	-3.07176000	0.71771600
Η	3.05912000	-3.15821700	-1.39179300
Η	2.11635100	-2.72829600	2.75429600
N	0.41661100	0.40041500	-0.17948800
С	-1.77081300	-0.56943200	-0.67057800
С	-3.26160400	-0.58137200	-0.50485100
С	-3.95748400	-0.06169100	0.59653000
С	-4.00865100	-1.19783300	-1.52227600
С	-5.35107400	-0.11370300	0.65457400
Η	-3.41330900	0.35138200	1.44145500
С	-5.39695800	-1.24566500	-1.46834500
Η	-3.44972500	-1.64019200	-2.34114200
С	-6.08100700	-0.69590700	-0.37992800
Η	-5.86577400	0.29152800	1.52239600
Η	-5.95333500	-1.71846700	-2.27439700
Η	-7.16611700	-0.73564300	-0.33316400
0	-1.24895900	-1.47610400	-1.41355400
С	0.96877000	1.65079500	0.11370600
С	0.10255600	2.57982400	0.55288100

С	3.48243400	-4.31815800	1.02600400
Н	2.86031100	-5.21446800	0.92140200
Н	4.33161300	-4.42536500	0.34417100
Н	3.86696600	-4.29968500	2.05025500
С	0.54540300	-0.52718400	2.59557300
Н	0.19973700	0.44352600	2.23398000
С	1.64468300	-1.07158100	-2.36466200
Н	0.90455400	-0.26760400	-2.38294000
S	-1.53049300	1.91494200	0.78273300
С	1.45787500	-0.26238600	3.79870000
Н	0.92361800	0.33327200	4.54698100
Н	1.77650200	-1.19243000	4.28320200
Н	2.35583700	0.28769900	3.49771700
С	-0.69711900	-1.32642000	3.01058800
Н	-1.34857000	-1.48540800	2.14599900
Н	-0.41039900	-2.30447900	3.41714800
Н	-1.26026700	-0.78398300	3.77894400
С	1.09070300	-2.21954300	-3.21610500
Н	0.91185600	-1.86943500	-4.23992800
Н	1.79955100	-3.05609300	-3.27021700
Н	0.14433000	-2.55507000	-2.78710000
С	2.97246500	-0.56286200	-2.94417900
Н	3.36285000	0.29590400	-2.38815400
Н	3.73659800	-1.35014000	-2.92295400
Н	2.83713200	-0.25577800	-3.98788400
С	0.41275400	4.02862400	0.79183900
С	0.93502000	4.74661900	-0.46302400
С	2.37781500	4.39226400	-0.84796400
С	2.65250900	2.93901100	-1.25729900
С	2.42737600	1.91601300	-0.13416900

Η	1.15736100	4.13442400	1.59770800
Η	0.26025900	4.52187000	-1.29852200
Η	3.03343800	4.64051200	0.00114900
Η	2.02668100	2.66255500	-2.11586200
Η	-0.49318000	4.53389100	1.14324100
Η	0.89263600	5.83168900	-0.29556900
Η	2.68525500	5.04795900	-1.67291600
Η	3.69721900	2.87560900	-1.59054700
Η	2.92338500	0.97215500	-0.37596000
Η	2.89791200	2.28788200	0.78811600

NS_BI

С	-0.90039800	0.63623700	-0.16694300
С	0.97362300	-0.93601800	0.14146300
С	1.68973500	-1.59473800	-0.87240400
С	0.72726300	-1.54212100	1.38172800
С	2.13956000	-2.88985200	-0.62230500
С	1.18112200	-2.85230500	1.57335700
С	1.88667900	-3.53985000	0.58852000
Н	2.68989500	-3.41972000	-1.39792600
Н	0.98633100	-3.34697800	2.52286000
Ν	0.47782600	0.39271700	-0.09593000
С	-1.82615600	-0.25156500	-0.61760100
С	-3.28213300	-0.07750400	-0.59985000
С	-3.94988200	0.68813600	0.37122100
С	-4.05778400	-0.73687100	-1.57092900
С	-5.33566800	0.81996100	0.34637700
Н	-3.39008300	1.15582100	1.17524200
С	-5.44174400	-0.60525200	-1.58839600
Н	-3.55419900	-1.34332700	-2.31604400

С	-6.09055400	0.18023200	-0.63496400
Η	-5.82796800	1.41448200	1.11016000
Η	-6.01782000	-1.11578900	-2.35446400
Η	-7.17078600	0.28368200	-0.65088400
0	-1.35786600	-1.39221700	-1.26049700
Η	-1.46112400	-2.16470200	-0.68600400
С	1.23373500	1.51961600	0.28291100
С	0.50533900	2.62038900	0.51819900
С	2.39212900	-4.94105900	0.82396700
Η	2.17556900	-5.58667600	-0.03194200
Η	3.47712700	-4.94312400	0.97134800
Η	1.93263500	-5.38395000	1.71073200
С	-0.00966700	-0.82864600	2.50471600
Η	-0.18676100	0.20727200	2.19985400
С	1.94888400	-0.94396300	-2.22006000
Η	1.54339300	0.07227100	-2.17801100
S	-1.22359800	2.31231100	0.32212300
С	0.83631200	-0.78458400	3.78368300
Η	0.32505600	-0.19761400	4.55293600
Η	1.00581600	-1.78819900	4.18745000
Η	1.81239000	-0.32779600	3.59317300
С	-1.37457900	-1.47655300	2.77230700
Η	-2.00351500	-1.45846300	1.87616300
Η	-1.25633900	-2.51784100	3.09229300
Η	-1.90360600	-0.93765300	3.56488800
С	1.21304100	-1.69349800	-3.33902200
Η	1.36484900	-1.18544100	-4.29689400
Η	1.59650100	-2.71553900	-3.43703400
Η	0.14236200	-1.74146900	-3.12879600
С	3.44899000	-0.85199900	-2.52972000 ^{\$50}

Η	3.99650900	-0.31879500	-1.74608900
Н	3.89270900	-1.84847500	-2.62911000
Η	3.60634100	-0.32233000	-3.47481200
С	1.02145100	3.99010200	0.85180100
С	1.98156400	4.54651600	-0.21090300
С	3.36634200	3.88830800	-0.22996100
С	3.42125300	2.40976500	-0.63259900
С	2.73297300	1.45398800	0.35366600
Н	1.53206400	3.96766400	1.82567700
Н	1.51014100	4.45293700	-1.19719100
Н	3.82025800	3.99559000	0.76617500
Н	2.98105300	2.27375800	-1.62945700
Н	0.17423800	4.67364000	0.96605600
Н	2.12017700	5.61778300	-0.02320700
Н	4.00470600	4.45437400	-0.91808000
Н	4.47595300	2.11960300	-0.71094900
Н	3.05783100	0.42724400	0.16826600
Н	3.05545000	1.69827700	1.37557000

^tBuOH

С	0.13220300	1.49950500	0.05053400
С	0.70707900	0.09428800	-0.07700900
Η	0.35097200	-0.37339900	-0.99909100
Η	1.79913100	0.13855000	-0.11224700
Η	0.40512800	-0.52421700	0.77310300
С	-1.39659100	1.46264200	0.05084300
Η	-1.77608300	0.89510200	0.90628500
Η	-1.80820500	2.47708800	0.11183200
Η	-1.76041200	0.99760800	-0.86966400
С	0.65892400	2.18930300	1.30962600

Н	1.75101100	2.23895900	1.28070800
Н	0.26816300	3.21112100	1.38338700
Н	0.35444700	1.64828200	2.21100700
0	0.59615500	2.19510100	-1.10861900
Н	0.26151200	3.09948000	-1.08423400

^tBuOK

С	0.05597500	1.59510900	0.11983000
С	0.72099700	0.23698800	-0.18206600
Η	0.35636500	-0.13771200	-1.14542600
Η	1.80568200	0.37476600	-0.25889000
Η	0.51679400	-0.51781200	0.58816400
С	-1.46803500	1.38460800	0.22491800
Η	-1.74604600	0.66791200	1.00832700
Η	-1.95139000	2.34448600	0.44044600
Η	-1.84941400	1.01936300	-0.73557700
С	0.57726800	2.10771200	1.47757000
Η	1.66088300	2.25997900	1.41434300
Η	0.11025700	3.07344000	1.70278400
Η	0.36771900	1.41555100	2.30322000
0	0.34489000	2.49844300	-0.87335700
K	0.82355600	3.99396800	-2.51768500

8. References

- Gao, P.; Jiang, J.; Maeda, S.; Kubota, K.; Ito, H. Mechanochemically Generated Calcium-Based Heavy Grignard Reagents and Their Application to Carbon-Carbon Bond-Forming Reactions. *Angew. Chem. Int. Ed.* 2022, *61*, e2022071s.
- Cai, A.; Yan, W.; Wang, C.; Liu, W. Copper-Catalyzed Difluoromethylation of Alkyl Iodides Enabled by Aryl Radical Activation of Carbon-Iodine Bonds. *Angew. Chem. Int. Ed.* 2021, 60, 27070–27077.
- Huang, W.; Wang, Y.; Weng, Y.; Shrestha, M.; Qu, J.; Chen, Y. Nickel-Catalyzed Formal Aminocarbonylation of Unactivated Alkyl Iodides with Isocyanides. *Org. Lett.* 2020, 22, 3245–3250.
- Tao, L.; Ren, Y.; Li, C.; Li, H.; Chen, X.; Liu, L.; Yang, Q. Efficient Asymmetric Hydrogenation of Quinolines over Chiral Porous Polymers Integrated with Substrate Activation Sites. ACS Catalysis 2020, 10(3), 1783-1791.
- Wang, C.; Lei, Y.; Guo, M.; Shang, Q.; Liu, H.; Xu, Z.; Wang, R. Photoinduced, Copper-Promoted Regio- and Stereoselective Decarboxylative Alkylation of α,β-Unsaturated Acids with Alkyl Iodides. *Org. Lett.* 2017, *19*(23), 6412-6415.
- Fu, M.; Wang, J.; Shang, R. Triphenylphosphine-Catalyzed Alkylative Iododecarboxylation with Lithium Iodide under Visible Light. Org. Lett. 2020, 22(21), 8572-8577.
- Sun, X.; Zheng, K. Electrochemical halogen-atom transfer alkylation via αaminoalkyl radical activation of alkyl iodides. *Nat. Commun.* 2023, 14(1), 6825.
- Wu, J.; Yang, X.; He, Z.; Mao, X.; Hatton, T. A.; Jamison, T. F. Continuous Flow Synthesis of Ketones from Carbon Dioxide and Organolithium or Grignard Reagents. *Angew. Chem. Int. Ed.* 2014, 53(32), 8416-8420.
- Crawford, J. J.; Henderson, K. W.; Kerr, W. J. Direct and Efficient One-Pot Preparation of Ketones from Aldehydes Using *N-tert*-Butylphenylsulfinimidoyl Chloride. Org. Lett. 2006, 8(22), 5073-5076.
- 10. Eberhart, A. J.; Procter, D. J. Nucleophilic ortho-Propargylation of Aryl

Sulfoxides: An Interrupted Pummerer/allenyl thio-Claisen Rearrangement Sequence. *Angew. Chem. Int. Ed.* **2013**, *52*(14), 4008-4011.

- Choi, H.; Lee, C.; Park, E.; Lee, K. M.; Shin, D.; Jun, H. Design, Synthesis, and Effects of Novel Phenylpyrimidines as Glucagon Receptor Antagonists. *Bioorgan. Med. Chem.* 2018, 26(21), 5701-5710.
- Liu, C.; Zhang, Z.; Zhao, L. L.; Bertrand, G.; Yan, X. Mesoionic Carbene-Catalyzed Formyl Alkylation of Aldehydes. *Angew. Chem. Int. Ed.* 2023, 62(24), e202303478.
- Miao, L.; DiMaggio, S.; Trudell, M. Hydroxyarylketones via Ring-Opening of Lactones with Aryllithium Reagents: An Expedient Synthesis of (±)-Anabasamine. *Synth.* 2010, 2010(01), 91-97.
- Zhong, W.; Xu, W.; Yang, Q.; Kato, T.; Liu, Y.; Maruoka, K. A New Approach for the Copper-Catalyzed Functionalization of Alkyl Hydroperoxides with Organosilicon Compounds via in-Situ-Generated Alkylsilyl Peroxides. *Tetrahedron.* 2022, 112, 132627.
- Zhao, H.; Fan, X.; Yu, J.; Zhu, C. Silver-Catalyzed Ring-Opening Strategy for the Synthesis of β- And γ-Fluorinated Ketones. J. Am. Chem. Soc. 2015, 137(10), 3490-3493.
- Xu, L.; Liu, X.; Alvey, G. R.; Shatskiy, A.; Liu, J.; Kärkäs, M. D.; Wang, X. Silver-Catalyzed Controlled Intermolecular Cross-Coupling of Silyl Enol Ethers: Scalable Access to 1,4-Diketones. *Org. Lett.* 2022, *24*(25), 4513-4518.
- Gao, F.; Liao, Z.; Ye, Y.; Yu, Q.; Yang, C.; Luo, Q.; Du, F.; Pan, B.; Zhong, W.; Liang, W. Photomediated Hydro(deutero)acylation of Olefins by Decarboxylative Addition of α-Oxocarboxylic Acids. *J. Org. Chem.* **2024**, *89*(4), 2741-2747.
- Alcaide, B.; Almendros, P.; Quirós, M. T.; López, R.; Menéndez, M. I.; Sochacka-Ćwikła, A. Unveiling the Reactivity of Propargylic Hydroperoxides under Gold Catalysis. J. Am. Chem. Soc. 2013, 135(2), 898-905.
- Ji, P.; Liu, Y.; Xu, J.; Luo, W.; Liu, Q.; Guo, C. Transition-Metal-Free Oxidative Decarboxylative Cross Coupling of α,β-Unsaturated Carboxylic Acids with Cyclic Ethers under Air Conditions: Mild Synthesis of α-Oxyalkyl Ketones. *J. Org. Chem.*

2017, *82*(6), 2965-2971.

- Bouquin, M.; Jaroschik, F.; Taillefer, M. Versatile and Base-Free Copper-Catalyzed α-Arylations of Aromatic Ketones Using Diaryliodonium Salts. *Tetrahedron Lett.* 2021, 75, 153208.
- Li, Q. Z.; Zeng, R.; Xu, P. S.; Jin, X. H.; Xie, C.; Yang, Q. C.; Zhang, X.; Li, J. L. Direct Acylation of Unactivated Alkyl Halides with Aldehydes through N-Heterocyclic Carbene Organocatalysis. *Angew. Chem. Int. Ed.* 2023, 62(40), e202309572.
- Aretz, C. D.; Escobedo, H.; Cowen, B. J. Cyclopentane Formation from Flexible Precursors Using Samarium(II) Reagents. *Eur. J. Org. Chem.* 2018, 2018(16), 1880-1884.
- Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. *Theor. Chem. Acc.* 2008, *120*, 215-241.
- Petersson, G. A.; Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. *J. Chem. Phy.* 1991, 94, 6081-6090.
- 25. Zhao, Y.; Schultz, N. E.; Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. *J. Chem. Theory Comput.* 2006, *2*, 364-382.
- 26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;

Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 rev. C.01.

- Liakos, D. G.; Guo, Y.; Neese, F. Comprehensive benchmark results for the domain based local pair natural orbital coupled cluster method (dlpno-ccsd (t)) for closed-and open-shell systems. *J. Phys. Chem. A* 2019, *124*, 90-100.
- 28. Papajak, E.; Leverentz, H. R.; Zheng, J.; Truhlar, D. G. Efficient diffuse basis sets: Cc-pv x z+ and maug-cc-pv x z. J. Chem. Theory Comput. **2009**, *5*, 1197-1202.
- Neese, F. The orca quantum chemistry program package. WIREs Comput Mol Sci 2012, 2, 73-78.

9. NMR Spectra

Figure S2 $^{13}C\{^{1}H\}$ NMR (25 °C, 101 MHz, CDCl₃) of 3ae

Figure S4 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 3ak

Figure S6 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 3ap

Figure S8 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 3aq

Figure S10 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 3ar

Figure S12 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 3at

Figure S14 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 3cu

Figure S16 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 3aad

Figure S18 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4aa

Figure S20 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4ba

Figure S22 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4ca

Figure S24 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4da

Figure S26 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4fa

00000 200000 00000 00000 1.00H 1.000 1.14 ™ 1.14 ™ 2.00-≢ 1.04 ₹ 200000 6 fl (ppm) 14 13 12 -1 11 5

Figure S27 ¹⁹F NMR (25 °C, 376 MHz, CDCl₃) of 4fa

Figure S28 $^1\mathrm{H}$ NMR (25 °C, 400 MHz, CDCl₃) of 4ab

Figure S30 ¹H NMR (25 °C, 400 MHz, CDCl₃) of 4ah

Figure S32 ¹H NMR (25 °C, 400 MHz, CDCl₃) of 4av

Figure S34 ¹H NMR (25 °C, 400 MHz, CDCl₃) of 4aw

Figure S36 ¹H NMR (25 °C, 400 MHz, CDCl₃) of 4ax

Figure S38 ¹H NMR (25 °C, 400 MHz, CDCl₃) of 4ay

Figure S40 ¹H NMR (25 °C, 400 MHz, CDCl₃) of 4aaa

Figure S42 ¹H NMR (25 °C, 400 MHz, CDCl₃) of 4aab

Figure S44 ¹⁹F NMR (25 °C, 376 MHz, CDCl₃) of 4aab

Figure S46 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4ao

Figure S48 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4al

Figure S50 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4am

Figure S52 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4aac

Figure S54 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4ap

Figure S56 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4aq

Figure S58 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4ar

Figure S60 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4at

Figure S62 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 4cu

Figure S64 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 5ac

Figure S66 ¹³C{¹H} NMR (25 °C, 101 MHz, CDCl₃) of 5ad