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General Considerations and Physical Measurements.
All experiments were carried out in a UniLab MBraun inert atmosphere glove box under a dinitrogen gas
atmosphere. All glassware was oven-dried and cooled in an evacuated antechamber prior to use. Solvents
were dried and deoxygenated on a glass contour system (Pure Process Technology, LLC) and stored over
activated 3 A molecular sieves.
Electronic absorption spectroscopy was recorded in dry acetonitrile in 1-cm-path quartz cuvettes with either
Agilent Cary 60 UV-vis spectrophotometer or Agilent Cary 3500 Multicell UV-vis spectrophotometer.
Elemental analysis was performed on a PerkinElmer 2400 Series II CHNS/O Elemental Analyzer. NMR
studies were carried out on a Briiker 400 MHz or a Briiker 500 MHz spectrometer. 'H NMR was calibrated
by using the solvent acetonitrile as 1.940 ppm; *'P and °'V NMR were externally calibrated by H;PO4 and
VOCls, respectively, as 0 ppm. All the NMR spectra were recorded in d3-MeCN at room temperature unless
specifically noted. Electron paramagnetic resonance (EPR) studies were performed on a Brilker EMXplus
EPR spectrometer at 10 K using a J-Young EPR tube. EPR spectra were fitted and simulated by adopting
the EasySpin toolbox (version 6.0.5).
All electrochemical studies were conducted on a BioLogic SP-150 Potentiostat in a N,-filled glove box and
acquired with the EC-Lab software (v11.42). Glassy carbon disc (3 mm, CH Instruments, USA) was used
for cyclic voltammetry and open-circuit potential measurements as the working electrode, and a platinum
mesh was used for bulk electrolysis as the working electrode. A nonaqueous Ag/Ag" reference electrode
with 100 mM ["BusN]PFs and 10 mM AgNOs solution in acetonitrile (BASi, USA) and a platinum wire
were used as the reference and counter electrodes, respectively. All cyclic voltammetry (CV) analysis, open-
circuit potential (OCP) measurements, and bulk electrolysis experiments were carried out at room
temperature in acetonitrile and internally referenced to ferrocene (Fc™°) redox couple, unless specifically
noted.
Kinetic analysis. Pesudo-1¥-order reaction conditions were used to find the rate expression for the reaction
between ["BusN]4[PVW11040] (PVeutW11) and H2Azo. The loss of absorbance at 370 nm of PV,u W11 was
tracked to determine the rate expression, kops, Over time, through the following Equation S1:
Ar = Ajng + (Ag — Ajppekobs <t Eqn. S1
Where A, is the absorbance at a given time, t, in seconds; Aixr is the absorbance at the end of the reaction (t
= infinite); Ao is the absorbance at after organic PCET reagent injection; and kopbs is the observed 1%-order
rate constant (s"). Error was determined by calculating the standard deviation of kos between triplicate
trials.
Eyring analysis was performed in the similar manner to find the rate expression at varied temperatures from
—30 to 0 °C with the constant concentrations of 0.25 mM for PV¢,Wi1 and 2.5 mM for H,Azo. Experiments
were repeated in triplicate. The Eyring analysis results are plotted in In(kos/T) vs (1/T), as follows in
Equation S2. The Gibbs energy of activation is calculated by the following Equation S3.
kobs _ —AHY 1 Kk AS*
lTlTb= TXE-I_lnTB-l_T EquSZ
AG* = AH* — TAS* Eqn. S3
Where T is the temperature in Kelvin, AH* is the enthalpy of activation, R is gas constant, k is transmission
coefficient, kg is Boltzmann constant, / is Planck constant, AS* is the entropy of activation, AG* is the Gibbs
energy of activation.
Theoretical Considerations. All the density functional theory (DFT) calculations were conducted by
Gaussian 16 A.03 program package.' The initial guess of [PV.W1i] was taken from the crystal structure
MUWZIO by changing one W atom with V atom and removing all cations. The geometry was then
optimized at the MN15/Def2-SVP level of theory and no imaginary frequencies were found to ensure the
energy minima.>” Single point calculations at the same level of theory were performed on N, N+1, N-1
electron states of the cluster with respective (charge, multiplicity) combinations of (-4, 1), (-5, 2), (-3, 2).
Conceptual DFT (CDFT) calculations were conducted by Multiwfn 3.8(dev) software adopting single point
calculation output files with different electron states.*™
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Synthetic procedure.

The syntheses of ["BusN]4[PVYW"!104] (PVeurWn) and ["BusNJ[VYWY12040] (ViaWi2) adopted the
procedure from ref. 7%,

PVouWn: '"H NMR (400 MHz, CD;CN), § = 3.15 (32H), 1.64 (32H), 1.40 (32H), 0.99 (48H). *'P NMR
(400 MHz, CD3CN), § =-9.99 ppm. °'V NMR (500 MHz, CD;CN), & = -552.63 ppm.

ViaW12: 'TH NMR (500 MHz, CD;CN), § = 3.12 (24H), 1.63 (24H), 1.39 (24H), 0.99 (36H). °'V NMR (500
MHz, CDs;CN), 6 =-579.12 ppm.

Synthesis of ["BusN]s[PVYW"'1040] (1€"-PVouW11)

A 20-mL scintillation vial was charged with ["BusN]a[PVYW"!1040] (PVeutW1, 0.100 g, 0.027 mmol) and
["BuwN]BH,4 (0.0077 g, 0.030 mmol) dissolved in ~4 mL acetonitrile. The reaction mixture was stirred at
50 °C for >3 hrs to afford a deep purple solution. The solution was then concentrated under reduced pressure
(~10 %), followed by washing with diethyl ether (5x3 mL). The purple powder was then filtered and dried
under vacuum. Yield = 0.104 g, 97.9% based on PV,uW11. 'H NMR (400 MHz, CD;CN), § = 3.18 (40H),
1.65 (40H), 1.41 (40H), 0.98 (60H). *'P NMR (400 MHz, CD;CN), & =-12.50 ppm. *'V NMR (500 MHz,
CD3;CN), 6 =-555.39 ppm. Anal. Caled. for PVW11040CsoHi30Ns: C, 24.29%; H, 4.59%; N, 1.77%; found:
C, 23.419%; H: 4.403%; N, 1.764%.

Synthesis of ["BusN]s[PVVW"Y!;,(OH)O30] (1e /1TH*-PV 0u¢Wi1)

A 20-mL scintillation vial was charged with ["BusN]4a[PVYW""1,040] (PVeuWi1, 0.100 g, 0.027 mmol) and
hydrazobenzene (H,Azo, 0.003 g, 0.016 mmol) dissolved in ~4 mL acetonitrile. The reaction mixture was
stirred at 50 °C for >2 hrs to afford a deep purple solution. The reaction mixture was then dried under
reduced pressure, followed by washing with diethyl ether (3x6 mL) until colorless to remove residual
azobenzene. The purple powder was then filtered and dried under vacuum. Yield = 0.949 g, 94.8% based
on PVeuWr. '"H NMR (400 MHz, CD;CN), & = 3.14 (32H), 1.64 (32H), 1.40 (32H), 0.99 (48H). Anal.
Calcd. for PVW/1040CssH145N4: C, 20.69%; H, 3.93%; N, 1.51%; found: C, 20.516%; H: 3.714%; N,
1.362%.

Note: the usage of 5,10-dihydrophenazine (H.Phen) also leads to the formation of 1e /TH'-PVuWi1; to
push the reaction to completion, a slight overdose of H Azo or H,Phen is adopted. The by-product from
Hsazo is easy to remove by thoroughly washing with diethyl ether, while it is difficult to remove all the
byproducts from H>Phen due to the solubility constraints. As such, we recommend using H>Azo as the H-
atom donor for bulk synthesis.

Synthesis of ["BusNJJ[VVWY1,040] (1€™-ViaW12).

The procedure is same as for 1 -PV W, except for the starting materials ["BusN]a[V' WY 1,040] (ViaWi2,
0.100 g, 0.028 mmol) and ["BusN]BH4 (0.0077 g, 0.030 mmol). The pale green powder was collected with
the yield of 0.074 g, 69.4% based on VisWy2. 'H NMR (500 MHz, CD;CN), & = 3.14 (32H), 1.64 (32H),
1.40 (32H), 0.99 (48H). Anal. Calcd. for VW12040CssH144N4: C, 19.88%; H, 3.75%; N, 1.45%; found: C,
20.068%; H: 3.591%; N, 1.344%.
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Figure S7. Cyclic voltammograms of 1 mM PV,,Wy obtained in acetonitrile in the presence of 6 mM
various organic acids with the scan rate of 100 mV/s, using 0.1 M ["BusN]PFg as the supporting electrolyte.
Ferrocene is used for each measurement as the internal standard. The corresponding acids are listed in Table
S1. The breaks in the CVs denote the separation of the V-based and W-based redox events. The rationale
behind separating these redox peaks lies in our motivation to refine the consequence of H-atom uptake on
each of these electrochemical signatures.

Note: the errors in pK, and resulting BDFE are predicted by linear regression analysis in adoption of 95%
confidence level of the calculated confidence intervals.
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Table S1. pK. values of various organic acids in acetonitrile.

Acid Abbreviation pKa(MeCN)  Ref.
Acetonitrile MeCN 39.5 910
Diphenylamine Ph,NH 343 o:11
Indole 32.57 12
3-Trifluoromethyl-Phenol 3-CF3-Phenol 26.5 12
4-Trifluoromethyl-Phenol 4-CF3-Phenol 25.5 12
1,1,3,3-Tetramethylguanidinium tetrafluoroborate TMGH" 23.35 13
Benzoic acid 21.5 14
Trimethylammonium chloride MesNH" 17.61 1
Trimethylphosphonium tetrafluoroborate MesPH" 15.48 1
4-Methoxyl-Pyridium tetrafluoroborate 4-MeO-PyrH" 14.24 13
2,6-Lutidinium tetrafluoroborate 2,6-LutH" 14.16 13
Pyridium tetrafluoroborate PyrH" 12.53 1
N,N-Dimethylanilinium tetrafluoroborate DMAH" 11.47 1
Anilinium tetrafluoroborate Anilinium" 10.64 1
Pyrazinium tetrafluoroborate Pyrazinium” 7.74 1
2-Chloro-Pyridium tetrafluoroborate 2-Cl-PyrH" 6.79 1
Diphenylammonium tetrafluoroborate PhoNH," 5.98 B
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showing the complete conversion to phenazine. The blue circles represent the ["BusN]" cations in the cluster,
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Figure S9. Electronic absorption spectra of (black) fully-oxidized cluster PV W1 and after (red) chemical
reduction by ["BusN]BH4 or (blue) bulk electrolysis at —0.5 V. All spectra are recorded in MeCN at room
temperature.
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Figure S13. (Black) Experimental and (red) simulated electronic paramagnetic resonance (EPR) spectra of
le -PV,uW1. Simulation parameters: g = [1.96666, 1.96942, 1.91502]; g-strain = [0.0100439, 0.0102156];
Hyperfine tensor = [166.761, 177.671, 500.301].
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Figure S14. (Black) Experimental and (red) simulated electronic paramagnetic resonance (EPR) spectra of
1¢ /1TH"-PV,,W1i. Simulation parameters: g = [1.96909, 1.96967, 1.91366]; g-strain = [0.01139688,
0.0163894]; Hyperfine tensor = [183.444, 171.169, 509.709].

Note: Comparing to the experimental EPR spectrum of 1€ -PVu, W1y, it is noted that shoulder peaks exist
with the hyperfine coupling peaks around 380 to 420 mT in 1le /TH"-PV,uWn. We attribute the existence
of; shoulder peaks to the partial electron delocalization over V'V—Oy, bond upon the protonation of bridging
O ligand.
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Ag/AgNOs reference electrode in MeCN with 50 mM 4-methoxypyridine/4-methoxypuridium
tetrafluoroborate (4-MeO-Pyr/4-MeO-PyrH") buffer and 0.1 M ["BusN]PFs supporting electrolyte. Three
traces represent three independent measurements. The measurement is pre-equilibrated in the presence of
0.5 mM cluster 1 and 0.25 mM cluster 2; each step represents the injection of 100 pL 2.5 mM cluster 2
stock solution. For black and blue traces, 1€ /1H"-PV,uW1i is cluster 1; for red trace, PVouWi1 is cluster
1.
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average slope, E°x/xus, and resulting BDFE(O—H) are from the standard errors obtained from three parallel

experiments.
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Figure S17. Electronic absorption spectra of 0.5 mM PV,.W; after adding half equivalent of H,Phen.
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Figure S18. Normalized absorbance trace over time of 0.25 mM PV,,Wi after the addition of 2.5 mM
(green) HoPhen or (orange) HoAzo at —30 °C. The monitored wavelengths are 424 and 370 nm for the
addition of H,Phen and H»>Azo, respectively. The discrepancy in the absorbance change of PV.uWin
towards HoPhen and H,Azo originates from the different monitored wavelengths to avoid the overlapped
absorption. The full electronic absorption spectra are shown in Figure 5a, S17.
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Figure S19. '"H-NMR spectrum of PV,uWi after adding half equivalent of hydrazobenzene (H,Azo),
showing the complete conversion to azobenzene. The blue circles represent the ["BusN]" cations in the
cluster, the black triangles are diethyl ether, and the asterisk is the trace unidentified impurity.
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Figure S20. Plot of absorbance at 370 nm over time for the reactions between 0.25 mM PV, Wy and 2.5
mM H,Azo under pseudo-1%-order condition in MeCN at —30 °C with (gray) raw data and (red) fitting
curve, along with fir-derived kobs and R? parameters.

12 12 Tq
o
1.0 1.0 1.0
208 208 2081
= = =
2 2 2
2 2 2
£06 06 £06
044 Kgps =0.101 s 0.4+ Koo =0.104 571 04 Kops =0.092 8"
R?=0.9941 R? = 0.9905 R?=0.9956
024 024 02
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160
Time (s) Time (s)

Time (s)
Figure S21. Plot of absorbance at 370 nm over time for the reactions between 0.25 mM PV, Wy and 3
mM H,Azo under pseudo-1%-order condition in MeCN at —30 °C with (gray) raw data and (red) fitting
curve, along with fir-derived kobs and R? parameters.
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Figure S22. Plot of absorbance at 370 nm over time for the reactions between 0.25 mM PV, Wi and 4
mM H,Azo under pseudo-1%-order condition in MeCN at —30 °C with (gray) raw data and (red) fitting
curve, along with fir-derived kobs and R? parameters.
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Figure S23. Plot of absorbance at 370 nm over time for the reactions between 0.25 mM PV, Wy and 5
mM H,Azo under pseudo-1%-order condition in MeCN at —30 °C with (gray) raw data and (red) fitting
curve, along with fir-derived kobs and R? parameters.
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Figure S24. Plot of absorbance at 370 nm over time for the reactions between 0.25 mM PV, Wy and 2.5
mM H,Azo under pseudo-1%-order condition in MeCN at —20 °C with (gray) raw data and (red) fitting
curve, along with fir-derived kobs and R? parameters.
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Figure S25. Plot of absorbance at 370 nm over time for the reactions between 0.25 mM PV, Wy and 2.5
mM H,Azo under pseudo-1%-order condition in MeCN at —10 °C with (gray) raw data and (red) fitting
curve, along with fir-derived kobs and R? parameters.
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Figure S26. Plot of absorbance at 370 nm over time for the reactions between 0.25 mM PV, Wy and 2.5
mM H,Azo under pseudo-1*-order condition in MeCN at 0 °C with (gray) raw data and (red) fitting curve,
along with fir-derived kobs and R* parameters.
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Figure S27. Electronic absorption spectra of (blue) 0.1 mM 2,4,6-'BusPhO’ radical in acetonitrile and
(yellow) after the addition of one equivalent of 1e /TH'-PV,u W11, showing the disappearance of 2,4,6-
‘BusPhO’ radical and emergence of fully-oxidized PV ouW.
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Figure S28. NMR spectrum of stoichiometric mixture of 2,4,6-'BusPhO’ radical and 1e /TH*-PV oW1 in
CD;CN, showing the existence of ~OH signal of 2,4,6-'BusPhOH.
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Figure S29. Cyclic voltammograms of 1 mM VWi, obtained in acetonitrile in the presence of 4 mM
various organic acids with the scan rate of 100 mV/s, using 0.1 M ["BusN]PFjs as the supporting electrolyte.
Ferrocene is used for each measurement as the internal standard. The corresponding acids are listed in Table
S1.
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Figure S30. Cyclic voltammograms of 1 mM 1,4-dihydroxynaphthalene (H>NQ) in acetonitrile with the
scan rate of 100 mV/s, using 0.1 M ["BusN]PFs as the supporting electrolyte.
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Figure S31. 'H NMR spectra of the mixture of (upper) ViaWi2 and half equivalent of 1,4-
dihydroxynaphthalene (H>NQ) and (lower) PV oW1 and HoNQ in CD;CN. The yellow- and green-shaded
areas represent the HoNQ and dehydrogenated product 1,4-naphthoquinone (NQ), respectively.
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Figure S32. Electronic absorption spectra of 0.5 mM Vi, Wy, after adding half equivalent of HNQ.
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Figure S33. Electronic absorption spectra of 0.5 mM PV, W after adding half equivalent of HoNQ.
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Figure S34. Illustration of atom numbers of PV,.Wn in conceptual density functional theory (CDFT)
calculation.

S22



Table S2. Conceptual density functional theory (CDFT) results for PVouWi.

Electrophilicity Nucleophilicity Local hypfr'
Atom index (e*eV) index (e*eV) softness,  (r)
(e/Hartree?)

(V) 0.143 0.091 2.67
2(W)  0.030 0.199 0.25
3(W) 0.030 0.152 0.33
4W)  0.032 0.151 0.36
5(W)  0.032 0.186 0.30
6(W)  0.012 0.117 0.03
7(W)  0.011 0.112 0.01
8(W)  0.016 0.151 0.05
9(W) 0.016 0.122 0.10
10(W) 0.012 0.118 0.03
11(W) 0.012 0.131 0.01
12(W) 0.012 0.134 0.00
13(P) -0.001 -0.021 0.02
14(0) 0.105 0.356 1.43
15(0) -0.004 0.666 -1.27
16(0) 0.010 0.861 -1.35
17(0)  -0.004 0.035 -0.14
18(0) 0.010 0.118 -0.02
19(0)  -0.007 -0.048 -0.05
20(0)  0.030 0.385 -0.10
21(0) 0.015 0.179 -0.03
22(0)  0.008 0.094 -0.02
23(0)  0.007 0.562 -0.86
24(0)  -0.001 -0.034 0.05
25(0) 0.030 0.293 0.07
26(0) 0.034 0.311 0.11
27(0) 0.034 0.390 -0.03
28(0)  0.023 0.265 -0.01
29(0) 0.022 0.259 -0.04
30(0) 0.001 0.437 -0.75
31(0) 0.010 0.147 -0.06
32(0) 0.008 0.123 -0.06
33(0) 0.003 0.058 -0.04
34(0) 0.003 0.054 -0.04
35(0) 0.008 0.115 -0.05
36(0) 0.008 0.119 -0.05
37(0) 0.021 0.200 0.05
38(0) 0.002 0.041 -0.04
39(0) 0.003 0.047 -0.03
40(0) 0.025 0.352 -0.14
41(0) 0.025 0.269 0.01
42(0) 0.022 0.263 -0.03
43(0)  0.006 0.112 -0.08
44(0)  0.007 0.136 -0.10
45(0)  0.007 0.106 -0.05
46(0) 0.010 0.159 -0.08
47(0)  0.001 0.082 -0.12
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48(0) 0.003 0.056 -0.05
49(0)  0.006 0.100 -0.06
50(0) -0.001 0.008 -0.03
51(0) 0.002 0.013 0.01

52(0) 0.022 0.274 -0.05
53(0) 0.023 0.292 -0.06

S24



References

L.

AT ol N

8.
9.

10.
11.
12.
13.

14.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G.
Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino,
B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L.
Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T.
Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M.
Ehara, K. Toyato, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai,
T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd,
E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M.
Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B.
Foresman and D. J. Fox, Gaussian 16, 2016.

H. S. Yu, X. He, S. L. Li and D. G. Truhlar, Chem. Sci., 2016, 7, 5032-5051.

F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.

T. Lu, J. Chem. Phys., 2024, 161, 082503.

T. Lu and F. Chen, J. Comput. Chem., 2012, 33, 580-592.

T. Luand Q. Chen, in Conceptual Density Functional Theory: Towards a New Chemical Reactivity
Theory, Volume 2, WILEY-VCH GmbH: Weinheim, 2022, pp. 631-647.

S. D. Ponja, S. Sathasivam, H. O. Davies, 1. P. Parkin and C. J. Carmalt, ChemPlusChem, 2016,
81, 307-314.

S. Himeno, M. Takamoto, A. Higuchi and M. Maekawa, Inorg. Chim. Acta, 2003, 348, 57—62.
H.-Z. Yu, Y.-M. Yang, L. Zhang, Z.-M. Dang and G.-H. Hu, J. Phys. Chem. A, 2014, 118, 606—
622.

F. G. Bordwell, J. C. Branca, J. E. Bares and R. Filler, J. Org. Chem., 1988, 53, 780—782.

F. Maran, D. Celadon, M. G. Severin and E. Vianello, J. Am. Chem. Soc., 1991, 113, 9320-9329.
A. Kiitt, S. Tshepelevitsh, J. Saame, M. Lokov, 1. Kaljurand, S. Selberg and 1. Leito, Eur. J. Org.
Chem., 2021, 2021, 1407-1419.

S. Tshepelevitsh, A. Kiitt, M. Lokov, 1. Kaljurand, J. Saame, A. Heering, P. G. Plieger, R. Vianello
and I. Leito, Eur. J. Org. Chem., 2019, 2019, 6735-6748.

M. Vallaro, G. Ermondi, J. Saame, I. Leito and G. Caron, Bioorg. Med. Chem., 2023, 81, 117203.

S25



