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1. Methods
a) Detailed DVR-FBR method

To construct the PES (and DMS) for DVR calculation, single-point energy (and dipole)
calculations at grid points generated by the Gauss—Hermite quadrature were performed along the
selected vibrational modes; we use 7 grid points for CH and OH(OD) stretching modes, and 5 grid
points for all the other vibrational modes. To improve efficiency, the 3-mode representation (3MR)

scheme was adopted to describe the PES as follows:!

V(99 qir ) = VO + T8V D (q) + 2,4V D(q5,q;) + Z: AV (qi, 95, qx)-

Here, V©@ is the potential energy at the equilibrium point, AV is the change in energy within a
single normal mode, AV® is the contribution from anharmonic couplings between two modes, and
so on. Note that we truncated this expression at AV®, so any interaction among four and more
modes is neglected. Furthermore, a mixed-level scheme has been used to balance accuracy and
computational efficiency. Under this scheme, the most essential terms, V© to AV® for CH and
OH(OD) stretching modes, were calculated at the DLPNO-CCSD(T)/aug-cc-pVTZ level, and all
the other terms were described by RI-MP2/aug-cc-pVTZ. The single point calculations for PES
and DMS were performed with the ORCA program package.? Since DLPNO-CCSD(T)/aug-cc-
pVTZ is not applicable to I, we only simulated complexes with X~ = CI~, Br".

The total grid points are more than three million for each case; although the 3MR
approximation allows us to largely reduce the number of single point calculations, the size of the
Hamiltonian does not change, thus it is still quite large to diagonalize it directly even using sparse
matrix diagonalization techniques. To solve the Hamiltonian of this size, we recast the DVR
Hamiltonian in the Finite Basis Representation (FBR),® which is easier to be truncated to a
diagonalizable size. Here, we only briefly describe the method, since the method details have been

reported previously.* The basic idea of FBR is to express the basis wavefunctions |Ai,Bj, ...,Ck)

as direct product of eigenvectors of several lower-dimensional DVR Hamiltonians A, A, ... and

—

A

Ay, By, ..., Cy) = |A)|B;) ... 1Ck)



where |4;), |B;), ... and |C.) stand for the eigenstates of A, H, ... and H, respectively. We used
all FBR basis wavefunction whose energy is less than 15000 cm™ relative to the ground state FBR
basis, and we ignore any coupling between states over 12000 cm. With these FBR basis sets, we
then expand the FBR Hamiltonian and diagonalized it to obtain the final eigenstate with sparse

matrix diagonalization routines in SciPy.>

b) Detailed EDA

The bonding energy AE, .4 IS then decomposed by EDA into several physically meaningful
contributions that enable characterization of the chemical bond. Firstly, the bonding energy AEyona
spilt into the preparation energy AE,,., and interaction energy AE;,.. The preparation energy
AE,,.p, describes the deformation of the fragments from their optimized isolated structures to the

structures in the system.

AEpona = AEprep + AEn; (1)

The interaction comprises an electronic AE;,;(elec) and a dispersion contribution AE;,,;(disp)

representing the difference in dispersion energy between the system and its fragments.

AEi: = AEint(elec) + AEint(diSp) (2)

Finally, the electronic contribution AE;,;(elec) can be split up into three terms. The first term
quasiclassical electrostatic contribution AE, ;¢4 corresponds to Coulomb interaction the charge
density of fragments and the nuclei of the other fragment. The repulsion resulting from
antisymmetrization and normalization of the resulting product wave function is called Pauli
repulsion AEp,,,; and the attractive orbital contribution AE,,, encompass all orbital relaxation

effects, such as charge transfer and polarization.

AEint(elec) = AE¢istar + AEpguii + AEorp (3)



The orbital contributions can be further decomposed using the Natural Orbital for Chemical
Valence (NOCV) extension®. The resulting NOCV deformation densities reveal the charge flow
during bond formation, with the associated energy contributions indicating their significance, and
the eigenvalues serving as a measure of the charge transfer. This method helps identify the orbitals

involved.

Structures were optimized and subjected to EDA calculation with the Amsterdam Modeling
Suite (AMS, version 2021.105).” To ensure use of the most optimal conformer for the EDA
calculation, a conformer search using CREST® was conducted. The energetically most stable
conformers were subsequently reoptimized by DFT-based methods and the resulting best
conformer chosen for the EDA. All DFT calculations were performed with the B3LYP functional®
and the all-electron basis set TZP.X® Additionally, the DFT-D3 dispersion correction with the
Becke-Johnson damping function®! was used. Scalar relativistic effects were treated by the zeroth
order regular approximation.? The numerical quality was set to “very good” which governs the
density fitting and numerical integration. This numerical quality corresponds to 10~°E;, as SCF
convergence criterion. For the geometry optimization, this corresponded to the energy criterion of

3 - 1073E, and the gradient criterion of 1073E, A~



2. Mass spectra

a) NaX, HFIP/HFIP-d;
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Figure S1 — Quadrupole mass spectra obtained from 0.5 mM NaX and 0.5 mM HFIP solutions in
MeOH/H>0 (1:2, v/v) with and without inducing H/D exchange a) NaCl, b) NaBr; c) Nal. Stick
spectra (blue) represent theoretical isotopic distribution for selected complexes, based on the halide
isotopes natural abundance. Exact mass values were used to calibrate the spectra applying a linear
regression with at least 7 points in the range from 30 to 500 m/z.



b) NaX, i-PrOH/ i-PrOD

2) i P
= M
c
(@)] 2
9 }
c 1
Re) !
30 40 50 60 70 80 90 100 110 120 130 140 150 160
m/z
b) [Br,(i-PrOD)]
i [_B[r',(i—PrOD)(Dzo)]
- X Br),,Na*]
. Br(to)] M M ¥ (Br:
= [Br] il - ol N
S ¥ [Br,(--PrOH),] ;
‘» : | '_;_ _______________________________ i
c " ) i
Q ! [Br,(H,0),,] [?r',(’-PFOH)(Hzo)] e
: : m=r1|- -------- T |§I : : (Br-)Z'Na+] : :
A L L . L AN
70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
m/z
c) [I", D,0]
[ [, (D,0),]
5 I8 )
C . f
D r : .
n [I, H,0l, :
c [I, i-PrOH];
gl
[, (H,0),]

; : A e s A =
100 110 120 130 140 150 160 170 180 190
m/z
Figure S2 — Quadrupole mass spectra obtained from 0.1 mM NaX solutions in H>O/i-PrOH (1:10,

v/v). a) NaCl; b) NaBr; c) Nal. For the spectrum of deuterated species solutions were prepared with
same salt concentration in D20/ i-PrOD and D.SO4. Exact mass values were used to calibrate the

spectra applying a linear regression with at least 7 points in the range from 30 to 500 m/z.



3. Calculated vibrational spectra

3.1 Comparison of X"(HFIP) isomers: antiperiplanar (AP) vs synperiplanar (SP)
a) CI"(HFIP) and CI"(HFIP-dy)
i) DVR-FBR, OH/OD stretching vibrational transition spectral region
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Figure S3 DVR-FBR/RI-MP2+DLPNO-CCSD(T)/aug-cc-pVTZ spectra of the AP (top panel) and
the SP isomer (see Figure 2 in the main text for geometries) of CI"(HFIP) (left) and CI"(HFIP-d.)
(right) compared to the IRPD spectrum of the corresponding D»-tagged complex. See Table 4 (main
text) for band positions, vibrational frequencies and assignments. DVR-FBR spectra were

convoluted using a Gaussian line-shape function with a FWHM of 8 cm™.



b) Br (HFIP) and Br (HFIP-d)
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Figure S4 Unscaled harmonic MP2/aug-cc-pVTZ IR spectra of the AP (top panel) and the SP
isomer (see Figure 2 for geometries) of Br (HFIP) (left) and Br (HFIP-d1) (right) compared to the
IRPD spectrum of the corresponding D>-tagged complex. See Tables 1, 3 and 4 (Main text) for
band positions, harmonic vibrational frequencies and assignments. The harmonic spectra were

convoluted using a Gaussian line-shape function with a FWHM of 8 cm™.



i) DVR-FBR, OH/OD stretching vibrational transition spectral region
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Figure S5 DVR-FBR/RI-MP2+DLPNO-CCSD(T)/aug-cc-pVTZ spectra of the AP (top panel) and

the SP isomer (see Figure 2 for geometries) of Br (HFIP) (left) and Br (HFIP-d,) (right) compared

to the IRPD spectrum of the corresponding D.-tagged complex in the OH/OD stretching region.

See Table 4 (Main text) for band positions, vibrational frequencies and assignments. DVR-FBR

spectra were convoluted using a Gaussian line-shape function with a FWHM of 8 cm™.
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¢) I(HFIP) and I"(HFIP-dy)
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Figure S6 Unscaled harmonic MP2/aug-cc-pVTZ IR spectra of the AP (top panel) and the SP
isomer (see Figure 2, main text, for geometries) of I"(HFIP) (left) and I"(HFIP-d.) (right) compared
to the IRPD spectrum of the corresponding D»-tagged complex. See Table 3 (main text) for band
positions, harmonic vibrational frequencies and assignments. The harmonic spectra were

convoluted using a Gaussian line-shape function with a FWHM of 8 cm™.
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3.2 X°(HFIP), SP: Harmonic vs. VPT2 vs DVR-FBR predicted spectra
a) CI"(HFIP) and CI"(HFIP-d;)
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Figure S7 IRPD spectra of D>-tagged CI"(HFIP) and CI"(HFIP-d1), calculated harmonic MP2/aug-
cc-pVDZ, anharmonic VPT2/MP2/aug-cc-pVDZ and anharmonic DVR-FBR/RI-MP2+DLPNO-
CCSD(T)/aug-cc-pVTZ spectra of corresponding (unttaged) SP complexes. The simulated spectra

were convoluted using a Gaussian line-shape function with a FWHM of 8 cm™.
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b) Br (HFIP) and Br (HFIP-d1)
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Figure S8 IRPD spectra of D>-tagged Br"(HFIP) and Br (HFIP(-d1) complexes and corresponding
harmonic, VPT2/MP2/aug-cc-pVDZ and DVR-FBR/ri-MP2/aug-cc-pVTZ spectra of untagged SP

complexes. The simulated spectra were convoluted using a Gaussian line-shape function with a

FWHM of 8 cm™.
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c) I"(HFIP) and I"(HFIP-d\)
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Figure S9 IRPD spectra of D.-tagged I"(HFIP) and I"(HFIP-d:) and calculated harmonic and
VPT2/MP2-aug-cc-pVDZ spectra of corresponding untagged SP complexes. The simulated spectra

were convoluted using a Gaussian line-shape function with a FWHM of 8 cm™.
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3.3 IPRD vs Harmonic Spectra of X(i-PrOH) and X“(i-PrOD)
a) CI7(i-PrOH) and CI~(i-PrOD)
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Figure S10 - IRPD Spectra of D,-tagged CI™(i-PrOH) and CI7(i-PrOH(D) compared to unscaled
harmonic MP2/aug-cc-pVTZ spectra of corresponding SC and AP untagged complexes, ZPE
corrected relative energy of complexes shown in kJ mol™. The simulated spectra were convoluted

using a Gaussian line-shape function with a FWHM of 8 cm™.

Table S1 Band labels, IRPD band positions, harmonic MP2/aug-cc-pVTZ vibrational frequencies
(in cm™) and band assignments of the fundamental transitions in the CH/OH(D) stretching region.
Values for the corresponding deuterated isotopologue are given in parentheses. If no value is given

in parenthesis assume values are identical to the value obtained for the H-isotopologue.

Label Band Position Harm. Freq. Assignment
3020(3021),
h 2832 — 2997 3036, 3051,
% (M) (2985-2839)  3122,3133, /X Vew 1XVop
3149, 3156
g1 (h2) 3091 (2302) 3271 (2383) vor (Vop)
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b) Br (i-PrOH) and Br (i-PrOD)
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Figure S11 - IRPD spectra of D,-tagged Br(i-PrOH) and Br (i-PrOD) compared to harmonic
MP2/aug-cc-pVTZ spectra of corresponding SC and AP untagged complexes. ZPE corrected
relative energy of complexes shown in kJ mol™. The simulated spectra were convoluted using a

Gaussian line-shape function with a FWHM of 8 cm™.

Table S2 - Band labels, IRPD band positions, harmonic MP2/aug-cc-pVTZ vibrational frequencies
(in cm) and band assignments of the fundamental transitions in the CH/OH(D) stretching region.
Values for the corresponding deuterated isotopologue are given in parentheses. If no value is given

in parenthesis it is identical to the value obtained for the H-isotopologue.

Label Band Position Harm. Freq. Assignment
_ 3027, 3038,
Ja 2810-2988 3052, 3124, ;
X VcH, V
(ks) (2852-2991) 3140, 3150, CH» 7bp
3154
J3 (Ka) 3207 (2393) 3365 (2450) vou (Vop)
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c) I" (i-PrOH) and I
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Figure S12 - IRPD Spectra of D,-tagged I"(i-PrOH) and I"(i-PrOD) compared to harmonic /MP2-
aug-cc-pVTZ spectra of corresponding untagged SC and AP complexes. ZPE corrected relative

energy of complexes shown in kJ mol™. The simulated spectra were convoluted using a Gaussian

line-shape function with a FWHM of 8 cm™,

Table S3 Band labels, IRPD band positions, harmonic MP2/aug-cc-pVTZ vibrational frequencies

(in cm) and band assignments of the fundamental transitions in the CH/OH(D) stretching region.

Values for the corresponding deuterated isotopologue are given in parentheses.

Label Band Position Harm. Freq. Assignment
3036, 3041,
ls, (M) 2845 — 2993 3054, 3128, o 1x
3.\ (2843 -2988) 3142, 3153, Verr 2% Vpp
3154
[> (M2) 3315 (2463) 3460 (2520) vou (Vop)
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4. Tag Effect
a) IRPD Br (HFIP) - Hz vs D3 tag
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Figure S13: IRPD spectra of D»- (top, red) and Hz- (bottom, blue) tagged Br (HFIP) complexes,

and difference spectrum (middle, gray). Highlighted in red are two possible positions of the DD

stretch.
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b) Calculated tag effect
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Figure S14: MP2/aug-cc-pVTZ harmonic IR spectra of untagged and H»-tagged CI"(HFIP) low-energy isomers (relative energy in
brackets in kJ mol™ ) Tag-induced frequency shift (in cm™) of the OH stretching transition indicated.
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5. Comparison between EDA results and BSSE corrected MP2 dissociation energies
Table S4 Comparison of “dissociation energies” obtained using EDA (Enond) Or MP2/aTZ
complexation energy after Counterpoise Correction

X"-H20 X -HFIP X"-i-PrOH

X CI Br- I~ CI Br- I~ CI Br- I~

AEprep +3 +2 +2 +23 +19 +16 +1 +3 +3
Deformation. +2 +2 +1 +20 +17 +15 +4 +3 +3
Ebond -71 -60 -51 -147  -123  -101 -90 -67 -54
AECompIex(CP) -54 -46 -38 -124 -110 -94 -69 -52 -49
d(xX™ -H)

B3LYP 213 233 264 192 214 242 215 235 261
d(xX™ -H)

MP2/a-T7 212 229 256 192 211 235 207 234 250

[a] Energies in kJ mol™* and bond length in pm.
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6. 5. Energy Decomposition Analysis
a) Br (HM)
Table S5 EDA results of hydrogen bonds between H»O, HFIP, i-PrOH and the Br™ anion

Bromide
H20 HFIP i-PrOH

AEint -62 -142 -70
AEint(disp)! -4 (6%) -10 (7%) 11 (16%)
AEin(elec)l! -58  (94%) -132  (93%) 59 (84%)
AEpayii +46 +96 +67
AEeistatl -69  (67%) -149  (65%) 75 (59%)
AEgrple] .34 (33%) 79 (35%) 52 (41%)
AE1(Br—H-0)[1 24 (73%) -49  (62%) 26 (53%)
AE(Br—H-C) -7 (9%) -6 (12%)
AE3(Br—H-CId) -4 (8%)
AEprep +2 +19 +3
Ebond -60 -123 -67

d(Br~ — H) 2.33 2.14 2.35

[a] Energies in kJ mol-1 and bond length in A.

[b] Percentage values give the relative contributions of dispersion and
electronic effects to AEint.

[c] Percentage values give the relative contributions to the attractive EDA
terms AEeistat and AEorb.

[d] Percentage values give the relative contributions of the NOCV to AEom



b) I"(HM)
Table S6 EDA results of hydrogen bonds between H>O, HFIP, i-PrOH and the I” anion

lodide
H20 HFIP i-PrOH

AEint -49 -117 57
AEin(disp)[®! -5 (10%) -12 (10%) 11 (19%)
AEin(elec)l -44  (90%) -105  (90%) 46 (81%)
AEpauii +34 +82 +50
AEgistal 56 (71%) -125 (67%) 61 (64%)
AEgrl°] 23 (29%) -62  (33%) 35 (36%)
AE1(I'—»H-0) [ -17  (74%) -41 (66%) 21 (60%)
AEy(F—H-C) -6 (10%) -3 (9%)
AE3(I'—H-Cl) -3 (9%)
AEqprep +2 +16 +3
Ebond -51 -101 -54

d(Br~ — H) 2.64 2.42 2.61

[a] Energies in ki mol-1 and bond length in A.

[b] Percentage values give the relative contributions of dispersion and
electronic effects to AEint.

[c] Percentage values give the relative contributions to the attractive EDA
terms AEeistat and AEorb.

[d] Percentage values give the relative contributions of the NOCV to AEom

All NOCVs have a similar shape to those in the main paper for Chloride (Figure 6).



7. Anion Proton Affinity

-APA = PAM") - PA(X))

X" (HM) — HX + M

Eql

1)

Table S7 — Difference from experimental anion proton affinities as defined in Eq 1 from ref'® with

values from ref'* and ZPE corrected MP2/aug-cc-pVTZ energy difference (enthalpy) for reaction

(1)
X/ -APA AH AH
Solvent (HM) rri(zpPe) rH(zpE)
i- i- HFIP- -
HO HFIP 0, HO HFIP Lo DO % Prob
Ccr 227 48 174 227 47 176 231 50 179
Br~ 269 90 216 262 81 211 266 85 214
I~ 307 128 254 300 119 249 305 124 253

[a] reaction enthalpy calculated from zero-point energy corrected electronic energies, values

presented in kJ mol*
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Figure S15 Shift relative to free OH (Av,y, solid) or free OD (Av,p, hollow) vs APA for X (HM)

complexes, X~ = CI, Br", I, HM = HFIP (circles, black), isopropanol (squares, red), and water

(triangles, blue).
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