Innovative Synergistic Control of Electric Fields and Zn²⁺ Dynamics for Revolutionizing Zinc Metal Battery Stability

Shengqiang Zhang¹, Chengxin Liu², Yangyang Wang², Ao Xu², Chunxia Chen², Xiaojie Liu²*

¹ School of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China

² Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China

E-mail address: xiaojie.liu@nwu.edu.cn (X. Liu)

Experimental section

Synthesis of Si@HMCS

Firstly, 0.2 g of silicon powder was oxidized in a muffle furnace at 650 °C for 2 h to obtain Si@SiO₂. The prepared Si@SiO₂ was added to the mixed solution including deionized water (10 mL), anhydrous ethanol (60 mL), and ammonia solution (4 mL), and 4 ml of TEOS was added to the solution after stirring for 3 minutes. Then, a solution containing formaldehyde (0.56 mL) and resorcinol (0.42 g) was added above solution and continued to stir for 48 hours. Finally, Si@SiO₂@C was obtained by annealing Si@SiO₂@RF at 600 °C for 5 h under an argon atmosphere. Typically, Si@SiO₂@C was etched by using hydrofluoric acid solution to obtain Si@HMCS.

Synthesis of F-Si@HMCS

To synthesize F-Si@HMCS, Si@HMCS powder and NH₄F particles were placed in a tubular furnace, positioned downstream and upstream, respectively, at a mass ratio of 5:1. The mixture was then annealed at 300 °C for two hours under an N₂ atmosphere to complete the process.

Synthesis of α-MnO₂

0.3 g manganese sulfate and 0.23 g potassium permanganate were separately dissolved in 15 mL ultra-pure water, stirred until completely dissolved, transferred to a hydrothermal kettle, hydrothermal reaction at 160 °C for 14 h, and then the reaction products were centrifugally washed and dried to obtain pure phase α -MnO₂.

Structural Characterization

The crystalline structure and morphology of samples were analyzed by using X-ray powder diffraction (XRD, Bruker D8 ADVANCE), Scanning electron microscopy (SEM, accelerating voltage: 30 kV, Hitachi SU8010) and Transmission electron microscopy (TEM, Talos F200X, matching with STEM, and EDS mapping). X-ray photoelectron spectroscopy (XPS, PHI5000 VersaProbeIII) was utilized to dissect chemistry states of samples. The specific surface area and pore size distribution of samples were obtained using Brunauer-Emmett-Teller (BET) and calculated using Barrette-Joynere-Halenda (BJH) method. Raman spectroscopy was employed with an

excitation wavelength of 532 nm.

Electrochemical testing

CR2025 coin cells were assembled using a glass fiber filter (GF-A, Whatman) as the separator in air to measure the electrochemical performance of samples. The Zn plating/stripping performance was studied in F-Si@HMCS@Zn/F-Si@HMCS@Zn (or bare Zn, Si@HMCS@Zn/Si@HMCS@Zn) symmetric cells. Asymmetrical cells used Cu foil as the cathode and F-Si@HMCS@Zn (or bare Zn, Si@HMCS@Zn) as the anode to analyze the nucleation process and Coulombic efficiency. The aqueous solution of 2 M ZnSO₄+0.1 M MnSO₄ was used as the electrolyte. The full cells were assembled using MnO₂ as the cathodes and the F-Si@HMCS@Zn (or bare Zn, Si@HMCS@Zn) as the anode in the voltage range of 1.0–1.8 V vs. Zn/Zn²⁺ and 0.35–1.4 V vs. Zn/Zn²⁺, respectively. Electrochemical workstation (Chen hua, CHI660E, Shanghai) was used record the LSV, CV, and EIS datas. LSV measurements F-Si@HMCS@Zn (or bare Zn, Si@HMCS@Zn) as the working the counter electrode with the SCE reference electrode in 1 M Na₂SO₄. The CV measurement was carried out at different scan rates with the voltage range from 1.0 to 1.8 V for Zn//MnO₂ cells. The EIS test was employed in the frequency range of 10⁻²–10⁶ Hz.

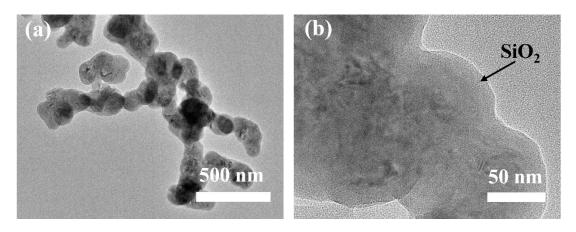
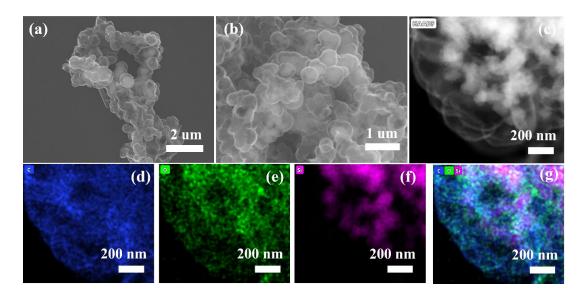
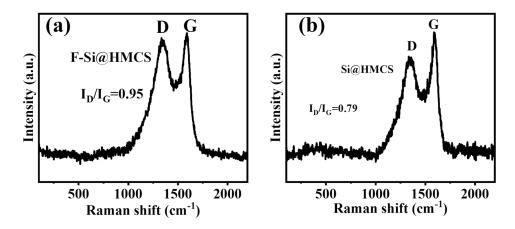
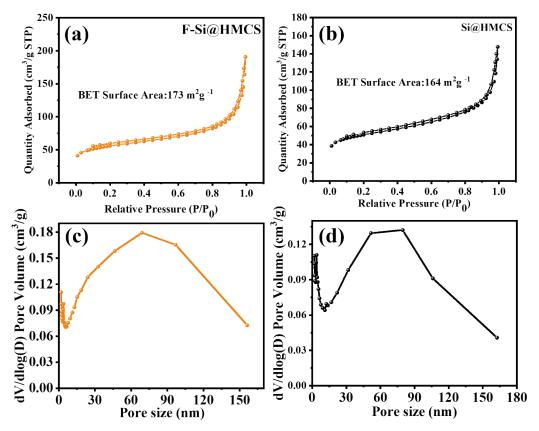
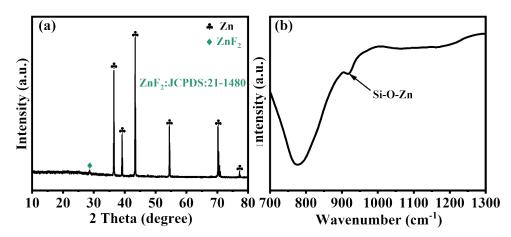
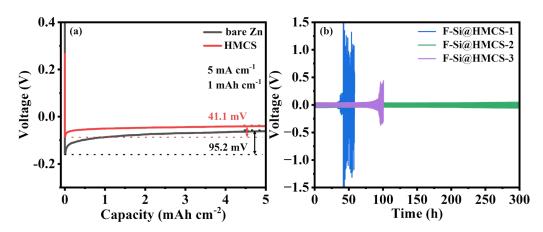
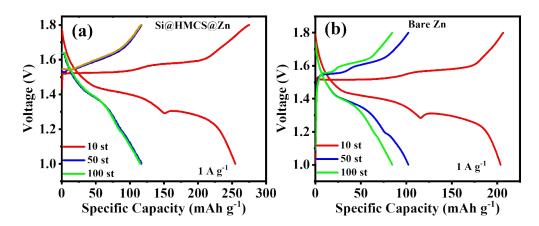



Fig. S1 (a-b) TEM images of silicon powder after oxidation.

Fig. S2 (a-b) TEM images of Si@HMCS. (c-g) The elemental mapping images of Si@HMCS.


Fig. S3 Raman spectra of (a) F-Si@HMCS; (b) Si@HMCS.


Fig. S4 The N₂ adsorption/desorption isotherm of (a) F-Si@HMCS and (b) Si@HMCS. The corresponding pore-size distribution of (c) F-Si@HMCS and (d) Si@HMCS.

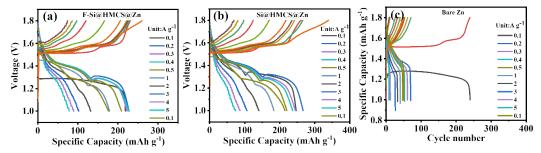

 $\begin{tabular}{ll} \textbf{Fig. S5} (a) XRD pattern of F-Si@HMCS@Zn electrode, (b) FTIR spectra of F-Si@HMCS@Zn electrode \\ \end{tabular}$

Fig. S6 (a) Nucleation overpotentials on HMCS@Zn and bare Zn at current density of 5 mA cm⁻². (b) Long-term cycling performance of F-Si@HMCS-1@Zn, F-Si@HMCS-2@Zn and F-Si@HMCS-3@Zn symmetric cells at current density of 5 mA cm⁻²

Fig. S7 The charge-discharge curves of (a) Si@HMCS@Zn//MnO $_2$ and (b) bare Zn//MnO $_2$ after 10, 50, and 100 cycles at 1 A g^{-1}

 $\label{eq:Fig.S8} \textbf{Fig. S8} \quad \text{charge-discharge} \quad \text{profiles} \quad \text{of} \quad \text{(a)} \quad \text{F-Si@HMCS@Zn//MnO}_2, \quad \text{(b)} \\ \text{Si@HMCS@Zn//MnO}_2, \quad \text{(c)} \quad \text{bare} \quad \text{Zn//MnO}_2 \quad \text{at} \quad \text{different} \quad \text{current} \quad \text{densities}.$

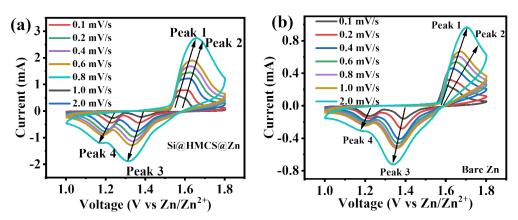
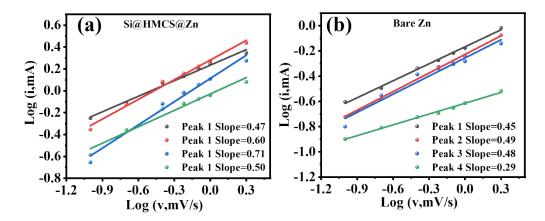
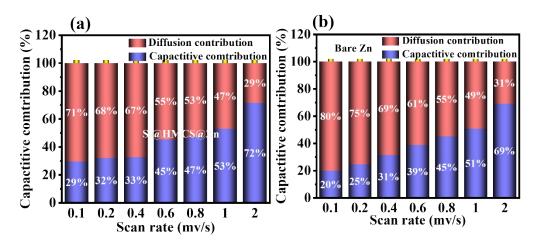




Fig. S9 CV curve of (a) Si@HMCS@Zn//MnO $_2$ and (b) bare Zn//MnO $_2$ batteries at different scan rates

Fig. S10 Fit plot of log(i) vs. log(v) in peaks 1, 2, and 3 and 4 for (a) Si@HMCS@Zn//MnO₂ and (b) bare Zn//MnO₂ batteries

Fig. S11 Pseudocapacitive contribution plots at different scan rates for (a) $Si@HMCS@Zn/MnO_2$, (b) bare Zn