Supplementary Information (SI) for Chemical Science. This journal is © The Royal Society of Chemistry 2025

## **Supporting Information**

The scalable growth of high-performance nanostructured heterojunction photoanodes for applications in tandem photoelectrochemical-photovoltaic solar

## water splitting devices

Brian Tam,<sup>a,b\*</sup> Sebastian Pike,<sup>c</sup> Jenny Nelson<sup>b</sup> and Andreas Kafizas<sup>a,d</sup>

<sup>a</sup>Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City, London, W12 0BZ, U.K.

<sup>b</sup>Department of Physics, Imperial College London, South Kensington, London, SW7 2AZ, U.K.

<sup>c</sup>Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K.

<sup>d</sup>London Centre for Nanotechnology, Imperial College London, South Kensington, London, SW7 2AZ, U.K.



**Figure S1**: Photographs of representative  $WO_3$ ,  $BiVO_4$  and heterojunction thin films on FTOcoated glass. Samples with  $BiVO_4$  are photographed with a black check-mark underneath for contrast. Photograph of atmospheric-pressure CVD reactor with a total surface area of 5 cm x 16 cm.



**Figure S2:** a) UV-vis spectra of a 5 mM solution of  $V(acac)_3$  + BiPh<sub>3</sub> in 3:1 acetone:methanol over time. The  $V(acac)_3$  was stored in a N<sub>2</sub> filled glovebox, and the first spectrum was collected at '0' hours immediately following exposure to air and rapid solvation in the prepared solution. The solution changes colour from yellow to green over several hours before changing further to orange after two days. b) Plot showing the absorption at specific wavelengths over time. The

peak at 760 nm is indicative of the growth of V(IV) species (e.g.  $VO(acac)_2$ ). This reaches the approximate extinction coefficient expected for ~5 mM  $VO(acac)_2$ , suggesting a significant oxidation to V(IV) occurs within one day. Furthermore, the intensity at 475 nm and 550 nm display the consumption of V(III) over the first six hours which is then outweighed by growth of V(V) species which also absorb in this region (N.B.  $VO(acac)_2$  has negligible extinction coefficient at 475 nm). Under these conditions, significant V(IV) is produced within a few hours of exposure to air, further oxidation to V(V) compounds occurs after ~5h exposure to air.

Note that the solution environment is important for the kinetics of this process, with MeOH important for rapid oxidation.  $V(acac)_3$  dissolved in CHCl<sub>3</sub> (orange solution) reacts slowly under air (days) to generate  $VO(acac)_2$  & acac-H (green solution), confirmed by X-ray crystallography of the blue/green crystals grown from this solution. Similar colour changes are observed in acetone solution. Addition of MeOH to green partially oxidised solutions results in a rapid colour change to brown/orange indicating methanol enables the second oxidation to V(V) species.



**Figure S3:** XRD patterns for BiVO<sub>4</sub> films grown on FTO-coated glass by AACVD at a range of temperatures at which a) the films are as deposited, and b) the films are subsequently annealed at 500°C for 2 hours in air. The vanadium precursor was aged for 1 month and subsequently a minute amount of  $Bi_2VO_5$  is present in all samples measured.

In Figure S3a, the samples deposited at lower temperatures of 250°C and 300°C only show the (110) (101) (200) (211) (220) (310) & (301) diffraction peaks for the FTO substrate (PDF no. 01-071-0652), in agreement with the low levels of decomposition observed in the TGA-MS profiles of the Bi(Ph)<sub>3</sub> and V(acac)<sub>3</sub> precursors. Samples deposited at higher temperatures of 350°C, 400°C and 450°C show the (002) (011) (112) (004) (200) (020) (211) (015) (204) (024) (220) (116) & (132) peaks largely corresponding to polycrystalline BiVO<sub>4</sub> (PDF no. 01-090-8670) and a minority of peaks (111) (200) & (313) of Bi<sub>2</sub>VO<sub>5</sub> (PDF no. 01-086-1181). In Figure S3b, the XRD patterns of all samples have the full breadth of peaks corresponding to BiVO<sub>4</sub>, although the samples deposited at 300°C and 350°C also have large peaks corresponding to Bi<sub>2</sub>VO<sub>5</sub> (002) plane. At higher temperatures there are also increasing proportions of the Bi<sub>2</sub>VO<sub>5</sub> (200) plane.

|                                         | Work          | C1s peak      | Work function | C1s peak      |
|-----------------------------------------|---------------|---------------|---------------|---------------|
|                                         | function      | height before | after twice   | height after  |
|                                         | before        | etching       | etching (eV)^ | twice etching |
|                                         | etching (eV)^ | (counts)*     |               | (counts)*     |
| WO <sub>3</sub> spot 1                  | 4.3 (4.28)    | 5500          | 5.3 (5.26)    | Noise, <500   |
| WO <sub>3</sub> spot 2                  | 4.5 (4.45)    | 5500          | 4.5 (4.50)    | 3000          |
| WO <sub>3</sub> spot 3                  | 4.3 (4.34)    | 5500          | 4.7 (4.67)    | 2000          |
| WO <sub>3</sub> spot 4                  | 4.3 (4.34)    | 5500          | 4.7 (4.66)    | 2000          |
| Average WO <sub>3</sub>                 | 4.3           |               | 4.8           |               |
| BiVO <sub>4</sub> spot 1                | 4.4 (4.42)    | 4500          | 4.9 (4.86)    | Noise, <500   |
| BiVO <sub>4</sub> spot 2                | 4.6 (4.55)    | 4500          | 4.7 (4.72)    | 1000          |
| Average BiVO <sub>4</sub>               | 4.5           |               | 4.8           |               |
| BiVO <sub>4</sub> -WO <sub>3</sub> spot | 4.5 (4.53)    | 3000          | 4.6 (4.63)    | 1000          |
| 1                                       |               |               |               |               |
| BiVO <sub>4</sub> -WO <sub>3</sub> spot | 4.5 (4.45)    | 3500          | 4.6 (4.59)    | 1500          |
| 2                                       |               |               |               |               |
| Average<br>BiVO₄-WO₃                    | 4.5           |               | 4.6           |               |

## Table S1: XPS work function measurements

\*C1s scans – Mode: CAE, Pass Energy: 20 eV, Number of scans: 2, Dwell Time: 50 ms, Energy Step Size: 0.1 eV, 191 Energy Channels

<sup>^</sup>Work function Cut off scans – Mode: CAE, Pass Energy: 10 eV, Number of Scans: 1, Dwell Time: 75 ms, Energy Step Size: 0.050 eV, 121 Energy Channels



**Elemental ID and Quantification** 

| Name                                | Peak BE | FWHM eV | Area (P) CPS.eV | Atomic % |
|-------------------------------------|---------|---------|-----------------|----------|
| W 4f <sub>7/2</sub> W <sup>6+</sup> | 35.92   | 1.09    | 194321.37       | 25.43    |
| W 4f <sub>7/2</sub> W <sup>5+</sup> | 34.77   | 1.14    | 13386.16        | 1.75     |
| 0 1s 0-W                            | 530.58  | 1.26    | 188333.22       | 72.82    |

**Figure S4:** XPS peak fitting of  $WO_3$  on FTO, a) survey scan, b) W peaks, c) O peaks, and elemental quantification

| Ref. | Name                                   | Peak BE               | Height<br>CPS | Height<br>Ratio | Area<br>CPS.eV | Area<br>Ratio | FWHM<br>fit param<br>(eV) | L/G Mix<br>(%)<br>Convolve | Tail Mix<br>(%) | Tail<br>Height<br>(%) | Tail<br>Exponent |
|------|----------------------------------------|-----------------------|---------------|-----------------|----------------|---------------|---------------------------|----------------------------|-----------------|-----------------------|------------------|
| А    | W 4f <sub>7/2</sub><br>WO <sub>3</sub> | 35.92                 | 160473.2<br>5 | 1               | 193985.45      | 1             | 1.09                      | 19.5                       | 100             | 0                     | 0                |
|      |                                        |                       |               |                 |                |               | 0.5 : 3.5                 | fixed                      | fixed           | fixed                 | fixed            |
| В    | W 4f <sub>5/2</sub><br>WO <sub>3</sub> | 38.06                 | 120354.9<br>4 | 0.75            | 145489.09      | 0.75          | 1.09                      | 19.5                       | 100             | 0                     | 0                |
|      |                                        | A+2.17<br>(+0.2 -0.1) | A*0.75        |                 |                |               | A*1                       | A*1                        | A*1             | A*1                   | A*1              |
| С    | W4f Sat                                | 41.76                 | 6864.39       | 0.04            | 12929.04       | 0.07          | 1.69                      | 20                         | 100             | 0                     | 0                |
|      |                                        |                       |               |                 |                |               | 0.5 : 3.5                 | fixed                      | fixed           | fixed                 | fixed            |
| D    | W 4f <sub>7/2</sub><br>WO <sub>2</sub> | 34.8                  | 10740.56      | 0.07            | 13587.81       | 0.07          | 1.14                      | 19.5                       | 100             | 0                     | 0                |
|      |                                        |                       |               |                 |                |               | A*1<br>(±0.05)            | A*1                        | fixed           | fixed                 | fixed            |
| E    | W 4f <sub>5/2</sub><br>WO <sub>2</sub> | 36.87                 | 8055.42       | 0.05            | 10190.85       | 0.05          | 1.14                      | 19.5                       | 100             | 0                     | 0                |
|      |                                        | D+2.17<br>(+0.2 -0.1) | D*0.75        |                 |                |               | D*1                       | D*1                        | D*1             | D*1                   | D*1              |
| Ref. | Name                                   | Peak BE               | Height<br>CPS | Height<br>Ratio | Area<br>CPS.eV | Area<br>Ratio | FWHM<br>fit param<br>(eV) | L/G Mix<br>(%)<br>Convolve | Tail Mix<br>(%) | Tail<br>Height<br>(%) | Tail<br>Exponent |
| N    | O1s<br>O-W                             | 530.58                | 133777.3<br>5 | 1               | 188333.22      | 1             | 1.26                      | 20                         | 100             | 0                     | 0                |
|      |                                        |                       |               |                 |                |               | 0.5 : 3.5                 | fixed                      | fixed           | fixed                 | fixed            |
| 0    | 01s 0-C,<br>0-H                        | 532.98                | 24392.61      | 0.18            | 39117.12       | 0.21          | 1.51                      | 10                         | 100             | 0                     | 0                |
|      |                                        |                       |               |                 |                |               | 0.5 : 3.5                 | 0.461806                   | fixed           | fixed                 | fixed            |
| Р    | 01s 0=C,                               | 531.45                | 41021.53      | 0.31            | 57750.56       | 0.31          | 1.26                      | 20                         | 100             | 0                     | 0                |

Table S2: XPS peak fit parameters for  $WO_3$  on FTO

|      | O surf        |                    |               |                 |                |               |                           |                            |                 |                       |                  |
|------|---------------|--------------------|---------------|-----------------|----------------|---------------|---------------------------|----------------------------|-----------------|-----------------------|------------------|
|      |               |                    |               |                 |                |               | N*1                       | N*1                        | fixed           | fixed                 | fixed            |
| Ref. | Name          | Peak BE            | Height<br>CPS | Height<br>Ratio | Area<br>CPS.eV | Area<br>Ratio | FWHM<br>fit param<br>(eV) | L/G Mix<br>(%)<br>Convolve | Tail Mix<br>(%) | Tail<br>Height<br>(%) | Tail<br>Exponent |
| F    | C1s C-C       | 285.12             | 7021.83       | 1               | 11513.82       | 1             | 1.47                      | 20                         | 100             | 0                     | 0                |
|      |               |                    |               |                 |                |               | 0.5 : 3.5                 | fixed                      | fixed           | fixed                 | fixed            |
| G    | C1s C-O       | 286.19             | 982.19        | 0.14            | 1610.52        | 0.14          | 1.47                      | 20                         | 100             | 0                     | 0                |
|      |               | 285.99 :<br>286.19 |               |                 |                |               | F*1                       | F*1                        | fixed           | fixed                 | fixed            |
| Н    | C1s C=O       | 287.15             | 609.46        | 0.09            | 999.35         | 0.09          | 1.47                      | 20                         | 100             | 0                     | 0                |
|      |               |                    |               |                 |                |               | F*1                       | F*1                        | fixed           | fixed                 | fixed            |
| I    | C1s O-C-<br>O | 288.82             | 1001.63       | 0.14            | 1642.4         | 0.14          | 1.47                      | 20                         | 100             | 0                     | 0                |
|      |               |                    |               |                 |                |               | F*1                       | F*1                        | fixed           | fixed                 | fixed            |

Binding energy in table referenced to adventitious C1s, C-C peak at 285.12 eV, subtract by 0.32 eV to obtain binding energy referenced to 284.8 eV.



| Name       | Peak BE | FWHM eV | Area (P) CPS.eV | Atomic % | Q |
|------------|---------|---------|-----------------|----------|---|
| Bi4f7 Bi3+ | 159.31  | 1.01    | 408915.94       | 14.24    | 1 |
| O1s O-M    | 530.09  | 1.11    | 199867.86       | 66.50    | 1 |
| V2p3 V5+   | 517.10  | 0.92    | 77515.87        | 12.02    | 1 |
| V2p3 V4+   | 516.60  | 0.92    | 37275.41        | 5.78     | 1 |
| V2p3 V3+   | 515.70  | 0.92    | 9410.36         | 1.46     | 1 |

**Figure S5:** XPS peak fitting of  $BiVO_4$  on FTO, a) survey scan, b) Bi peaks, c) O & V peaks, and elemental quantification

Table S3: XPS peak fit parameters for  $BiVO_4$  on FTO

| Ref. | Name                           | Peak BE                   | Height CPS | Height<br>Ratio | Area<br>CPS.eV | Area<br>Ratio | FWHM<br>fit                  | L/G Mix (%)<br>Convolve | Tail<br>Mix (%) | Tail<br>Height        | Tail<br>Exponent |
|------|--------------------------------|---------------------------|------------|-----------------|----------------|---------------|------------------------------|-------------------------|-----------------|-----------------------|------------------|
|      |                                |                           |            |                 |                |               | param<br>(eV)                |                         |                 | (%)                   |                  |
| A    | Bi 4f <sub>7/2</sub><br>Scan A | 159.31                    | 360753.1   | 1               | 408915.9       | 1             | 1.01                         | 22.13                   | 100             | 0                     | 0                |
|      |                                |                           |            |                 |                |               | 0.5 : 3.5                    | 0.461806                | fixed           | fixed                 | fixed            |
| В    | Bi 4f <sub>5/2</sub><br>Scan A | 164.62                    | 274172.3   | 0.76            | 310776.1       | 0.76          | 1.01                         | 22.13                   | 100             | 0                     | 0                |
|      |                                | A+5.30<br>(+0.3 -<br>0.2) | A*0.76     |                 |                |               | A*1                          | A*1                     | A*1             | A*1                   | A*1              |
| Ref. | Name                           | Peak BE                   | Height CPS | Height<br>Ratio | Area<br>CPS.eV | Area<br>Ratio | FWHM<br>fit<br>param<br>(eV) | L/G Mix (%)<br>Convolve | Tail<br>Mix (%) | Tail<br>Height<br>(%) | Tail<br>Exponent |
| Р    | 0 1s O-<br>W                   | 530.09                    | 161436.9   | 1               | 199867.9       | 1             | 1.11                         | 20                      | 100             | 0                     | 0                |
|      |                                |                           |            |                 |                |               | 0.5 : 3.5                    | fixed                   | fixed           | fixed                 | fixed            |
| Q    | 0 1s 0-<br>C, 0-H              | 532.45                    | 14827.16   | 0.09            | 28127.25       | 0.14          | 1.78                         | 10                      | 100             | 0                     | 0                |
|      |                                |                           |            |                 |                |               | 0.5 : 3.5                    | 0.461806                | fixed           | fixed                 | fixed            |
| R    | 0 1s<br>0=C, 0<br>surf         | 531.01                    | 18117.12   | 0.11            | 22430          | 0.11          | 1.11                         | 20                      | 100             | 0                     | 0                |
|      |                                |                           |            |                 |                |               | P*1                          | P*1                     | fixed           | fixed                 | fixed            |
| S    | V 2p <sub>3/2</sub><br>Scan A  | 517.1                     | 65675.36   | 0.41            | 77515.87       | 0.39          | 0.91                         | 48.44                   | 100             | 0                     | 0                |
|      |                                |                           |            |                 |                |               | 0.5 : 3.5                    | 0.461806                | fixed           | fixed                 | fixed            |
| Т    | V 2p <sub>3/2</sub>            | 516.6                     | 31581.61   | 0.2             | 37275.41       | 0.19          | 0.91                         | 48.44                   | 100             | 0                     | 0                |

|   | Scan B |        |         |      |         |      |      |     |       |       |       |       |   |
|---|--------|--------|---------|------|---------|------|------|-----|-------|-------|-------|-------|---|
|   |        | S-0.70 |         |      |         |      | S*1  | S*1 |       | fixed | fixed | fixed |   |
|   |        | (±0.2) |         |      |         |      |      |     |       |       |       |       |   |
| U | V 2p   | 515.7  | 7972.94 | 0.05 | 9410.36 | 0.05 | 0.91 |     | 48.44 | 100   | 0     |       | D |
|   | Scan C |        |         |      |         |      |      |     |       |       |       |       |   |
|   |        | T-0.70 |         |      |         |      | S*1  | S*1 |       | fixed | fixed | fixed |   |
|   |        | (±0.2) |         |      |         |      |      |     |       |       |       |       |   |

Binding energy in table referenced to adventitious C1s, C-C peak at 285.12 eV, subtract by 0.32 eV to obtain binding energy referenced to 284.8 eV.



**Figure S6:** UV-visible spectroscopy comparing, a) transmittance, and b) total reflectance of representative samples.



**Figure S7:** Tauc plots derived from UV-visible spectroscopy data comparing, a) flat  $WO_3$  on FTO, and b) BiVO<sub>4</sub> on FTO



**Figure S8.** Normalised emission for the AM1.5G solar spectrum from NREL and the spectrum of the 75 W xenon lamp used in the laboratory with a KG3 (short-pass, heat protection) filter measured with an Ocean Optics spectrometer.



**Figure S9:** Top-down and side-on SEM images of BiVO<sub>4</sub>-coated nanoneedles (roughly 500-600 nm in thickness) on FTO-coated glass (400 nm in thickness) after long-term photo(electro)chemical testing

Modelling a PV-PEC system: a dual c-Si PV solar cell placed behind a  $BiVO_4$ -coated  $WO_3$  photoanode-based PEC module.



Figure S10: Measured transmittance spectra of PEC photoanodes used in Figure 11b

## Code for simulating the dual crystalline-Si PV solar cell

The MATLAB code and supporting functions for simulating the PV J-V curves are readily available on Github at <u>https://github.com/bsmtam/PV-JV</u>.

Table of Contents figure:



 $WO_3$ / BiVO\_4 heterojunction layer space systematically explored using chemical vapour deposition synthesis to map and identify samples of highest performance for solar water splitting applications.