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1. Generation of Atomic Coordinates for OMG CRUs

The atomic coordinates of the OMG constitutional repeating units (CRUs)1 were generated for

monomer-level property calculations with their 3D molecular geometries. The OMG CRUs2

were represented by SMILES strings3 with asterisk symbols denoting repeating units (e.g., *CC*

for polyethylene). The OMG CRUs were terminated with methyl groups to replace asterisks for

atomistic calculations. While the atomistic calculations of several monomer units (e.g., trimer)

can be considered for enhanced polymer property estimation,4,5 we focused on single OMG

monomer unit calculations to mitigate a computational cost. First, a set of up to 30 OMG CRU

diverse conformers was generated using a genetic algorithm implemented in OpenBabel6 max-

imizing a diversity score estimated through root-mean-square deviation (RMSD) of atomic po-

sitions between conformers. The geometries of these OMG CRU conformers were then opti-

mized using Universal Force Field (UFF).7 Out of the 30 conformers, up to 15 conformers with

low UFF energy were selected and further optimized with a semi-empirical quantum chem-

ical method, GFN2-xTB (XTB2).8 In geometry optimization with XTB2, the implicit solvation

(domain decomposition conductor-like screening model9) was employed to solvate OMG CRU

conformers with toluene of a dielectric constant (ϵ = 2.4) similar to conventional polymers at

room temperature.10 After the geometry optimizations of 15 conformers with XTB2, up to 5

distinct conformers with low XTB2 energy were chosen for monomer-level property calcula-

tions. Especially, the RMSD and energy criteria from Grimme11 was adopted to select up to 5

distinct, low XTB2 energy conformers with adjacency matrices consistent with original OMG

CRUs. These 5 distinct, low XTB2 energy conformers were anticipated to have low DFT single-

point energies, thereby contributing a large Boltzmann weight for subsequent analysis of OMG

CRU properties at room temperature. With DFT single-point energies, we obtained Boltzmann

averaged values for monomer-level properties (mean values for Flory-Huggins χ parameters).
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2. Mathematical Definitions for Geometry Descriptors

The following geometry descriptors were computed using RDKit12 applied to the optimized

XTB2 geometries of OMG CRUs.

(1) Ashpericity (ΩA)

ΩA is defined13 from a gyration tensor Smn .

Smn = 1

M

A∑
i=1

(ri ,m − rC M ,m)(ri ,n − rC M ,n) mi

ΩA = 1

2

(t3 − t1)2 + (t1 − t2)2 + (t2 − t3)2

(t1 + t2 + t3)2

where M is the total mass of a molecule including hydrogen, A is the total number of atoms in

a molecule, ri ,m is the m component of an atom i in a molecule (e.g., m = 1 corresponds to the

x component), rC M is the center of mass position of a molecule, mi is the mass of the atom i ,

and ti is the i -th diagonal component of the diagonalized gyration tensor Smn .
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(2) Eccenctricity (ϵ)

ϵ is defined14 from principal moments of inertia tensor.

I =


Ixx Ix y Ixz

Iy x Iy y Iy z

Izx Iz y Izz


Ixx =

A∑
i=1

(y2
i + z2

i ) mi

Iy y =
A∑

i=1
(x2

i + z2
i ) mi

Izz =
A∑

i=1
(x2

i + y2
i ) mi

Ix y = Iy x =−
A∑

i=1
xi yi mi

Iy z = Iz y =−
A∑

i=1
yi zi mi

Izx = Ixz =−
A∑

i=1
zi xi mi

I A ≤ IB ≤ IC

where an inertia tensor is calculated with the reference point of the center of mass of a molecule.

I A, IB , and IC are principal moments of inertia obtained by diagonalizing the inertia tensor. ϵ is

defined as

ϵ=
√

I 2
C − I 2

A

IC

0 ≤ ϵ≤ 1
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(3) Inertial shape factor (SI)

SI is defined15 from principal moments of inertia.

SI = IB

I A IC

(4) Radius of gyration (Rg)

Rg is defined14 from a gyration tensor Smn .

R2
g = Tr(Smn)

(5) Spherocity (ΩS)

ΩS is defined15 from the eigenvalues of the covariance matrix of the atomic coordinates (a

gyration tensor without mass weights).

λmn = 1

N

A∑
i=1

(ri ,m − rcenter,m)(ri ,n − rcenter,n)

ΩS = 3λ1

λ1 +λ2 +λ3

λ1 ≤λ2 ≤λ3

where N is the total number of atoms in a molecule including hydrogen, rcenter is the center

position of a molecule, and λi is the i -th diagonal component of the diagonalized covariance

matrix λmn .
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3. Experimental Correlation of Mean Squared End-to-End Distance per

Mass of Polymers in the Melt and Glass Transition Temperature withΦ in-

dex.

Figure S1: (a) Leave-one-out cross-validation (LOOCV) linear regression for experimental
〈h2〉0 /M of polymers in the melt. The 〈h2〉0 /M was predicted with linear regression fromΦmon

andΦbb. (b) The correlation between experimental glass transition temperatures andΦ index
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The Phi (Φ) index showed a positive linear correlation with a computational molecular confor-

mational entropy predicted with a group additive fashion.16 The Φ index estimates molecular

flexibility by counting the number of length-1 and length-2 paths in a 2D molecular graph with-

out hydrogen. Additionally, theΦ index was normalized by the number of atoms (not including

hydrogen) in OMG CRUs because theΦ index tends to increase with the number of atoms.

Figure S1a shows the leave-one-out cross-validation (LOOCV) linear regression for the ex-

perimental 〈h2〉0 /M of polymers in the melt. We used experimental 〈h2〉0 /M values mea-

sured at 413K for polymers in the melt from the literature.17 We manually processed SMILES

strings3 for polymer constitutional repeating units1 (CRUs) in the literature17 and obtained 21

〈h2〉0 /M values for polymers that had no ambiguity in calculating Φmon and Φbb from poly-

mer CRUs. TheΦmon values were prepared using RDKit12 by calculating the molecular flexibil-

ity Phi (Φ) index followed by a normalization with the number of heavy atoms in a molecule.

Additionally, we applied our own program to remove the side chains deeper than length-1 in

a molecule and estimated normalized molecular flexibility for the backbone Φbb. The pro-

cessed experimental 〈h2〉0 /M values and Python implementation of Φ estimation is available

at https://github.com/TheJacksonLab/OMG_PhysicalProperties.

Figure S1b shows the correlation between experimental glass transition temperatures and

Φmon. The experimental glass transition temperatures were obtained from in the Bicerano

Handbook.18,19 The strong negative linear correlation (ρ ≈−0.76) indicates that Φmon can cap-

ture the chain stiffness.20

4. DFT Calculations

The electronic properties were calculated with DFT single-point calculations implemented in

Orca21 (functional: revPBE-D3/ basis set: def2-SVP) performed on optimized geometries for

OMG CRUs. In DFT calculations, the revPBE-D3 functional was adopted due to its high accu-

racy among generalized gradient approximation (GGA) functionals.22,23 We also used the im-

plicit solvation (CPCM24) for toluene as a solvent having a dielectric constant (ϵ = 2.4) similar
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to that of conventional polymers at room temperature.10 The same functional, basis set, and

solvation as in the electronic property calculations are used in TD-DFT calculations.

5. Prediction of Experimental Flory-Huggins χ Parameters of Polymer So-

lutions

Figure S2: Predictions for experimental Flory-Huggins χ parameters for polymer solutions (vol-
ume fraction φpolymer ≥ 0.2) with color representing three different solvents of water (ϵ= 80.4),
ethanol (ϵ= 24.3), and chloroform (ϵ= 4.9).

Flory-Huggins χ interaction parameters for OMG CRUs were calculated with three different

solvents of varying dielectric constants: water (ϵ = 80.4), ethanol (ϵ = 24.3), and chloroform

(ϵ = 4.9). Flory-Huggins χ interaction parameters describe thermodynamics of binary mix-

ture.25–28 Flory-Huggins χ interaction parameters of a polymer solution can be predicted us-

ing analytical functional forms of χ(φ,T) with the dependency of a polymer volume fraction

(φ) and temperature (T).29–32 However, these analytical functions require experimental data to

fit adjustable parameters for a specific polymer solution. Alternatively, Flory-Huggins χ pa-

rameters can be calculated from activity coefficients of solute and solvent molecules obtained

from COSMO-SAC calculations33 applied to σ-profiles34 describing the distribution of the sur-
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face screening charges of a molecule. Activity coefficients of solute and solvent molecules ob-

tained from COSMO-SAC33 can be used to calculate a chemical potential difference during mix-

ing, thereby estimating Flory-Huggins χ parameters.35 Similarly, Yoshida et al.5 demonstrated

that experimental χ values can be predicted (R2 ≈ 0.62) with COSMO-RS calculations.36 The

COSMO-SAC calculations rather than fitting of an analytical function to experimental data were

adopted to estimate Flory-Huggins χ interaction parameters of OMG polymer solutions given

the extensive chemical space of OMG CRUs.2 We modified the open benchmark implementa-

tion of COSMO-SAC37 to be compatible with DFT output files from Orca.21 We converted the

Orca output files (.cpcm) to σ-profiles describing the surface-charge distribution of a molecule

with a conductor-like solvent (ϵ∼∞), and theσ-profile was used for COSMO-SAC calculations.

This modified implementation was tested with experimental χ values of polymers solutions38

(volume fraction φpolymer ≥ 0.2 to avoid a critical regime (φc ≈ 0) of polymer solutions with

water, ethanol, and chloroform as a solvent. The χ values from the COSMO-SAC calculations

showed a strong linear correlation with experimental χ values (R2 ≈ 0.75) as detailed in Figure

S2. We calculated Flory-Huggins χ interaction parameters for polymer solutions with a fixed

polymer volume fraction φ = 0.2 with the number of backbone atoms in a polymer ≈ 1,000.

The COSMO-SAC implementation is available at https://github.com/TheJacksonLab/OMG

_PhysicalProperties

Figure S2 shows the predictions for experimental Flory-Huggins χ parameters for polymer

solutions using COSMO-SAC calculations.33 We extracted 52 experimental χ values for poly-

mer solutions with water, ethanol, and chloroform from the literature38 with a polymer volume

fraction φpolymer ≥ 0.2 to avoid a critical regime φc ≈ 0 where the Flory-Huggins equation is not

valid. To predict experimental χ values, we first obtained σ-profiles34 of methyl-terminated

monomers and solvent molecules under a conductor-like ideal solvent (ϵ∼∞). We then multi-

plied theσ-profile of a methyl-terminated monomer by a constant to approximate theσ-profile

of a polymer with the number of backbone atoms ≈ 1,000. From theσ-profiles of a polymer and

a solvent molecule, the COSMO-SAC calculations estimated activity coefficients of a polymer
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and a solvent molecule. Flory-Huggins χ parameters were obtained by comparing mixing free

energies from activity coefficients and Flory-Huggins equations.35 The implementation for the

COSMO-SAC calculation is available at https://github.com/TheJacksonLab/OMG_Physica

lProperties.

6. Details on Active Learning

We developed ML models to estimate monomer-level properties for 12M OMG CRUs via uncertainty-

guided active learning. The computational calculations of monomer-level properties for 12M

OMG CRUs posed an intractable computational cost. Approximately 4.8 CPU hours were needed

to perform DFT single-point calculations for one OMG CRU with an average of 23 heavy atoms

(standard deviation of 9) consisting of up to 5 distinct conformers. We constructed ML mod-

els predicting monomer-level properties for the OMG CRUs to avoid the intractable computa-

tional cost of calculating monomer-level properties for 12M OMG CRUs. Especially, we adopted

uncertainty-guided active learning to train ML prediction models with a reduced number of

quantum chemistry calculations by sampling OMG CRUs with high prediction uncertainties to

improve ML prediction models efficiently.39,40 We combined evidential learning41 with a di-

rected message-passing 2D graph neural network (D-MPNN)42 to estimate a ML model predic-

tive uncertainty (Var(µ)) by assuming a normal inverse-Gamma prior distribution for an un-

known mean (µ) and variance (σ2) of a target prediction. The D-MPNN evidential learning was

demonstrated as an active learning strategy in building a molecular property prediction model

for 12 simultaneous physical properties of QM9 molecules43 with a reduced computational cost

compared to an ensemble method.44

In the active learning with evidential regression, we trained four different D-MPNN eviden-

tial networks, each for 3D geometry descriptors (5 properties), electronic properties (7 proper-

ties), optical properties (4 properties), and Flory-Huggins χ interaction parameters (3 proper-

ties). We did not train a D-MPNN evidential network for chemistry descriptors and molecular

flexibility because these properties could be easily obtained from SMILES strings for OMG CRUs
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without 3D geometry. When training D-MPNN evidential networks, 200 RDKit global molecu-

lar features were concatenated to OMG monomer embedding vectors from message-passing

of D-MPNN evidential networks to overcome a local nature of a message-passing network.42 It

is important to note that D-MPNN evidential learning only needs the 2D molecular graph of a

methyl-terminated OMG CRU without 3D geometry for property prediction. Therefore, the D-

MPNN evidential network can predict monomer-level properties and corresponding prediction

uncertainties for 12M OMG CRUs without 3D atomic coordinates of 12M OMG CRUs.

D-MPNN evidential networks underwent iterative training with OMG CRUs having high ML

prediction uncertainties during the active learning campaign. Approximately 12k OMG CRUs

were randomly sampled as an initial dataset based on polymerization mechanisms from the

12M OMG CRUs as detailed in (Figure S3). Quantum chemistry calculations were applied to

the sampled OMG CRUs to obtain 19 different monomer-level properties to train four D-MPNN

evidential networks. The trained D-MPNN evidential networks estimated prediction uncertain-

ties for 19 monomer-level properties for the unseen OMG CRUs. To sample OMG CRUs for the

next round of active learning, we searched for non-dominated OMG CRUs located on the Pareto

front of the 19-dimensional prediction uncertainty space using a non-dominated sorting algo-

rithm.45 The Pareto front represents the set of non-dominated OMG CRUs where an increase

in ML prediction uncertainty for given monomer-level property is only possible by reducing

some of the other ML prediction uncertainties. We applied the Pareto front search algorithm45

for a subset of OMG CRUs with high mean prediction uncertainties to reduce a computational

cost for the Pareto front search as detailed in Figure S4. The active learning campaign contin-

ued with the sampled OMG CRUs from the Pareto front of the uncertainty space until the ML

models stopped showing a significant improvement in prediction performance. Especially, we

sampled 10k OMG CRUs for the first round of active learning and 5k OMG CRUs afterward. We

decreased the sampling size from 10k to 5k from Round 2 to reduce the computational cost for

monomer-level property calculations because the active learning tended to sample OMG CRUs

with an increased number of heavy atoms possessing high prediction uncertainties (Figure S5).
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We also tried different sampling strategies on QM9 molecules43 to choose the best sampling

strategy for OMG CRUs. The Pareto uncertainty sampling we adopted showed the best perfor-

mance for QM9 molecules compared to random and mean uncertainty sampling as detailed in

Figure S6. After the active learning campaign, the trained D-MPNN evidential networks were

used to predict 19 monomer-level properties for the 12M OMG CRUs.

6-1) Compositions of initial train and test OMG CRUs

Figure S3: Compositions of initial train and test OMG CRUs. The polymerization mechanism
indices correspond to Figure 2 in the previous work.2
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6-2) Pareto front search with high mean prediction uncertainties

Figure S4: Sampling OMG CRUs located on the Pareto front of 19 dimensional prediction un-
certainties during the active learning campaign. (a) Number of the OMG CRUs located on the
Pareto front searched for a subspace of the OMG CRUs selected based on their mean prediction
uncertainties for 19 monomer-level properties. (b) Gradient of the number of OMG CRUs (%−1)
on the Pareto front as the subspace size becomes larger. (c) Compositions of the randomly sam-
pled OMG CRUs located on the Pareto front searched for 12.5% of the available space for active
learning.

We sampled OMG CRUs based on prediction uncertainties from trained ML models during the

active learning campaign. Especially, we searched for non-dominated OMG CRUs located on

the Pareto front of the 19 dimensional prediction uncertainty space using a non-dominated

sorting algorithm.45 The Pareto front search algorithm45 for approximately 12M OMG CRUs
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with 19 monomer-level properties, however, required a prohibitive computational cost ofO(N logK−1 N )

at worst where where N is the number of molecules available (i.e., 12M), and K is the number

of objectives (i.e., 19). To reduce a computational cost for the Pareto front search, we sorted

the OMG CRUs based on their mean prediction uncertainties for 19 monomer-level properties

from trained ML models and applied the Pareto front search algorithm45 to selected OMG CRUs

with high mean prediction uncertainties.

Figure S4a shows the number of the OMG CRUs located on the Pareto front of the selected

OMG CRUs. For example, the subspace size of 12.5% means that the Pareto front was searched

for the top 12.5% of the approximately 12M OMG CRUs with high mean prediction uncertainties

for the next round of active learning. Figure S4a also shows that the number of OMG CRUs on

the Pareto front increased when the subspace size became larger. The number of OMG CRUs on

the Pareto front in Figure S4a is expected to approach that on that of the unfiltered OMG CRUs

as the subspace size becomes 100%. We arbitrarily decided to apply the Pareto front search

algorithm for the subspace size of 12.5%, which took approximately 17 hours with a single CPU,

to detour the computational cost needed for the Pareto front search for the whole space.

Figure S4b displays the gradient of the number of OMG CRUs on the Pareto front with re-

spect to the subspace size. In Figure S4b, the gradient was calculated from Figure S4a and

mapped on the middle point of the two adjacent subspace sizes. Figure S4b indicates the in-

crease amount in the number of the OMG CRUs at the Pareto front per subspace gradually de-

cayed as the subspace size increased. We estimated the percentage of the Pareto OMG CRUs

with the subspace size of 12.5% to that of the whole space (100%) assuming the gradient value

in Figure S4b linearly decays with the subspace size afterwards. The subspace size of 12.5%

was estimated to include 49.80% (for Round 1), 41.62% (for Round 2), and 49.66% (for Round

3) of the Pareto OMG CRUs for the whole space (100%) for each round. This large percent-

age of the Pareto OMG CRUs included in the 12.5% subspace implies that the subspace se-

lection based on mean prediction uncertainties might be a computationally efficient strategy

to search the Pareto front for a huge chemical space. It is important to note that the num-
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ber of OMG CRUs on the Pareto front of the 12.5% subspace is still larger than the sampling

size (e.g., 10,000 or 5,000). Therefore, we randomly sampled OMG CRUs (10,000 or 5,000) from

the OMG CRUs on the Pareto front of the 12.5% subspace for the next round of active learn-

ing. Figure S4c shows the compositions of the randomly sampled OMG CRUs. The imple-

mentation of the Pareto front search with high mean prediction uncertainties is available at

https://github.com/TheJacksonLab/OMG_PhysicalProperties.

6-3) Distributions of the number of heavy atoms for the sampled OMG poly-

mers during active learning

Figure S5: Distributions of the number of heavy atoms in the sampled OMG CRUs during the
active learning campaign.

Figure S5 shows the histogram of the number of heavy atoms in OMG CRUs sampled during

active learning. The initial train OMG CRUs (12,683 CRUs) were randomly sampled based on

polymerization mechanisms. The OMG CRUs for Round 1 (10,000 CRUs), Round 2 (5,000 CRUs),
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and Round 3 (5,000 CRUs) were randomly sampled from the Pareto front of the 12.5% subspace

of the OMG CRUs for each round. Figure S5 shows that the number of heavy atoms in the sam-

pled OMG CRUs for Round 1, Round 2, and Round 3 is larger than that of the initial train. This

implies that OMG CRUs with the more number of heavy atoms have higher prediction uncer-

tainties for molecular-size relevant properties such as radius of gyration and polarizability. We

decreased the sampling size from 10,000 to 5,000 for Round 2 and Round 3 to reduce a compu-

tational cost for the following quantum chemistry calculations.

6-4) Active learning sampling strategy tested on QM9

Figure S6: Active learning strategies tested on QM9 with (a) 1,000 molecules or (b) 100
molecules added for each round of active learning. The average values of root mean square
errors for each molecular property in QM9 are plotted with respect to the ratio of the train data.
The root mean square errors for each property were scaled with their mean and standard de-
viation. The error bars are from five different random seeds for train-test split. The solid line
represents the average value from five random seeds, and the shade denotes one standard de-
viation away from the average value.

Figure S6 shows the active learning results of QM9 with different sampling strategies including

random, mean uncertainty, and Pareto front for a 12.5% subspace. The prediction uncertainties

from a single D-MPNN network42 for 12 molecular properties in QM9 were utilized to sample

molecules during active learning. As a baseline, the random strategy sampled the molecules
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randomly for the next round of active learning ignoring prediction uncertainties from a D-

MPNN network. The mean uncertainty strategy sorted the molecules based on their scaled

prediction mean uncertainties and chose either the top 1,000 (Figure S6a) or 100 molecules

(Figure S6b) with high mean prediction uncertainties for the next round of active learning. The

Pareto sampling for the 12.5% subspace strategy picked the top 12.5% of the molecules with

high mean prediction uncertainties and sampled molecules on the Pareto front for the sub-

space. The subsequent Pareto front was also considered if the number of molecules on the first

Pareto front was not larger than the sampling size (i.e., 1,000 or 100). Figure S6a and Figure S6b

imply that the Pareto sampling for the subspace might be a effective active learning strategy to

increase a model prediction accuracy for a multi-task learning.
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7. Active Learning Performance

Figure S7: The averaged R2 score over monomer-level properties are plotted during the active
learning campaign. The active learning campaign was stopped at Round 3 when the averaged
R2 score was not expected to increase significantly.

Figure S7 shows averaged R2 scores over 19 monomer-level properties for the test OMG CRUs

during the active learning campaign. For example, Round 1 in Figure S7 denotes that the D-

MPNN evidential networks were trained on the initial train OMG CRUs plus 10k OMG CRUs

sampled from the Pareto front search for Round 1. The D-MPNN evidential networks exhibited

increasing averaged R2 scores and achieved the averaged R2 ≈ 0.807 at Round 3
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8. Active Learning Stopping Criterion with Uncertain OMG Polymers

Figure S8: Averaged root mean square errors for 19 monomer-level properties of the sam-
pled OMG CRUs during the active learning campaign. The root mean square errors for each
monomer-level property were normalized with their mean and standard deviation.

Figure S8 shows the average of root mean square errors for 19 monomer-level properties of

the sampled OMG CRUs during the active learning campaign. The training data can be used

to decide when to stop active learning.46 The sampled OMG CRUs for each round represent

molecules where the trained ML models are anticipated to exhibit high prediction errors. There-

fore, the prediction errors for the sampled OMG CRUs can indicate the prediction accuracy of

the trained ML models.46 Figure S8 displays that the average error at Round 1 is the largest,

which is consistent with that the trained models showed a huge increase in the test R2 score at

Round 1 in Figure S7. The relatively small average error at Round 2 and Round 3 in Figure S8 is

also consistent with that the improvement in test prediction accuracy of trained ML models of

Round 2 or Round 3 may not be significant as that of Round 1 as described in Figure S7. Overall,

Figure S8 implies that the improvement in the prediction accuracy of trained ML models may
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not be significant after Round 3 assuming that the prediction error for the sampled OMG CRUs

does not increase significantly afterwards.
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9. Predictions for 19 Monomer-Level Properties

21
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Figure S9: Monomer-level property prediction for the test OMG polymers after the ac-
tive learning campaign. The colorbar indicates prediction uncertainties. The prediction
R2 score and the percentage of test OMG CRUs within a predictive Gaussian distribution
N (ŷi , prediction,σ2

i , calibrated uncertainty) are computed.
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10. Uncertainty Calibration

After the active learning campaign, we scaled prediction uncertainties from trained D-MPNN

evidential networks42 for monomer-level properties using a quantile-based calibration.47 Deep

evidential regression41 has a regularization term to assign a high prediction uncertainty to a

prediction with a large error. We used a regularization coefficient (λ) of 0.2 for D-MPNN ev-

idential networks of all 19 OMG monomer properties during active learning because the reg-

ularization coefficient of 0.2 was suggested for molecular property predictions.44 We did not

perform additional regularization coefficient optimization because further regularization coef-

ficient regularization might be biased toward a small portion of the OMG chemical space (the

initial training set occupies a only small portion ≈0.1% of the total OMG CRUs).

The uncertainties from D-MPNN evidential networks generally increase with absolute pre-

diction errors with decent rank correlations as shown in Figure S10. However, quantile-based

calibration plots47 in Figure S10 show that the trained D-MPNN evidential networks after the

active learning campaign estimated larger uncertainty (underconfident) than calibrated uncer-

tainty estimates on the training set (≈32k monomers) with the assumption that target OMG

monomer-level properties from quantum chemistry calculations (yi ) follow a Gaussian distri-

bution of N (ŷi ,σ2) where ŷi is a prediction value, and σ is a prediction uncertainty from deep

evidential regression.44 The predicted uncertainties were also larger than absolute prediction

errors in order of magnitudes as displayed in Figure S10.

We calibrated uncertainty estimates from D-MPNN evidential networks to achieve better

interpretability. Especially, we scaled prediction uncertainties with non-linear scaling48 with

a non-decreasing isotonic regression to match the scale between prediction uncertainty and

absolute prediction error. It is important to note that a non-decreasing isotonic regression ( f )

preserves the rank order of the uncertainty estimates; that is f (σA) ≥ f (σB ) if σA > σB where

σA and σB are prediction uncertainties for a OMG CRU A and a OMG CRU B, respectively. Each

of 19 OMG monomer-level properties was calibrated with a non-decreasing isotonic regression

followed by linear scaling to minimize the miscalibration area49 on the training dataset (≈32k
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OMG monomers) from the active learning campaign. We also tried a linear scaling50,51 of pre-

diction uncertainties without an isotonic regression, but a non-linear scaling with an isotonic

regression outperformed the linear scaling in terms of several criteria49 including miscalibra-

tion area, sharpness, and negative log-likelihood. The detailed uncertainty calibration proce-

dure is available at https://github.com/TheJacksonLab/OMG_PhysicalProperties.
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Figure S10: Prediction uncertainties from D-MPNN networks after the active learning cam-
paign. Absolute prediction errors and prediction uncertainties were plotted for 19 monomer-
level properties with their rank correlations. The quantile-based calibration curves were dis-
played before and after the uncertainty calibration.
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11. PCA Analysis

Figure S11: (a) Explained variance for the PCA analysis and (b) Top eight monomer-level prop-
erties contributing to the PC1 vector.
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12. Molecular Size Effect

Figure S12: Example extrapolations of 10 OMG CRUs to higher degrees of polymerization for (a)
molecular weight (MW), (b) octanol-water partition coefficient (LogP), (c) polar surface area
(TPSA), (d) radius of gyration (Rg), (e) isotropic quadrupole moment (q), and (f) isotropic po-
larizability (α).

32



Figure S12 presents example extrapolations of 10 OMG CRUs to higher degrees of polymeriza-

tion. For MW, LogP, and TPSA, we calculated properties using RDKit. For Rg, q , and α, the

trained ML models from the active learning campaign were utilized to predict properties across

varying degrees of polymerization. We extrapolated OMG CRUs with fewer than 25 heavy atoms

to ensure that extended OMG CRUs remained within the training regime in terms of the number

of heavy atoms.

We also provide normalized properties to approximately compensate for the molecular size

effect. For the cheminformatics-derived properties (i.e., MW, LogP, and TPSA), we report the in-

crease per degree of polymerization normalized by the number of heavy atoms in CRUs as these

properties exhibit a linear increase with the degree of polymerization. For the DFT-derived

properties (i.e., Rg, q , and α), we normalize the value for a monomer (n=1) by the number of

heavy atoms in methyl-terminated monomers to approximately compensate for the molecular

size effect.
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Figure S13: Extrapolations of 68,375 OMG CRUs to higher degrees of polymerization for (a) in-
ertial shape factor (SI), (b) singlet excitation energy with the largest oscillator strength (E

′
singlet),

(c) HOMO energy (EHOMO), (d) LUMO energy (ELUMO), (e) energy of the lowest singlet excited
state (ES1 ), and (f) energy of the lowest triplet excited state (ET1 ).
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Figure S13 presents extrapolations of 68,375 OMG CRUs to higher degrees of polymeriza-

tion. The trained ML models from the active learning campaign were utilized to predict prop-

erties across varying degrees of polymerization. We extrapolated OMG CRUs with fewer than

25 heavy atoms to ensure that extended OMG CRUs remained within the training regime in

terms of the number of heavy atoms. We did not normalize electronic and optical properties

that are not significantly sensitive to varying degrees of polymerization. In addition, inertial

shape factors were also not normalized as they exhibit a sharp decrease with increasing degrees

of polymerization.
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13. Compositions for the Randomly Sampled 135k OMG Polymers Based

on Polymerization Mechanisms

Figure S14: Compositions for the randomly sampled 135k OMG polymers based on polymer-
ization mechanisms. The polymerization mechanism indices correspond to Figure 2 in the pre-
vious work.2
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14. Correlations with Polymer Properties

Figure S15: Correlations between ML-based monomer properties and polymer properties of (a)
ionization potential (IP), (b) electron affinity (EA), (c) band gap of a polymer chain, (d) band
gap of a polymer bulk, (e) dielectric constant (ϵr ), and (f) refractive index (n). The polymer
properties are from DFT calculations.52
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Figure S15 demonstrates the correlations between ML-based monomer property predictions

and polymer properties from DFT calculations.52 The trained ML models after the active learn-

ing campaign were utilized to predict monomer properties. For dielectric constant (ϵr ) and

refractive index (n), the normalized polarizability by the number of heavy atoms in methyl-

terminated monomers was used. The following equations from electromagnetism were used to

estimate polymer properties from monomer properties.53

P⃗ = ϵ0κ E⃗

ϵr = (1+κ)

≈αnor mali zed

n =
p
µϵ

p
µ0ϵ0

≈p
ϵr

≈p
αnor mali zed
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15. Pair Correlations Including Normalized Properties

Figure S16: Property pair correlations between 25 monomer-level properties including nor-
malized molecular weight (MW), octanol-water partition coefficient (LogP), polar surface area
(TPSA), radius of gyration (Rg), isotropic quadrupole moment (q), and isotropic polarizability
(α). These 6 properties were normalized to approximately compensate for the molecular size
effect as described in Figure S12. The histogram shows the distributions of absolute linear cor-
relation coefficients (|ρ|) between monomer-level property pairs. The three regimes are defined
based on |ρ|: a weak regime (|ρ| < 0.57), an intermediate regime (0.57 ≤ |ρ| < 0.80), and a strong
regime (|ρ| ≥ 0.80) as in the main text. After normalization, the monomer-level properties ex-
hibit weaker correlations without the molecular size effect (intermediate correlations: 16 pairs
/ strong correlations: 9 pairs).
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16. High and Low ofΦmon, E
′
singlet, and χwater

The four different regimes in Figure 5 were defined based on Φmon and E
′
singlet. Especially, we

used the mean (µΦ and µE ′ )and standard deviation (σΦ and σE ′ ) of Φmon and E
′
singlet to decide

the four regimes.

(1) LowΦmon and high E
′
singlet (529 OMG CRUs)

µΦ−1.2σΦ ≤Φmonomer <µΦ−0.8σΦ

µE ′ +0.8σE ′ ≤ E
′
singlet <µE ′ +1.2σE ′

(2) LowΦmon and low E
′
singlet (3,015 OMG CRUs)

µΦ−1.2σΦ ≤Φmonomer <µΦ−0.8σΦ

µE ′ −1.2σE ′ ≤ E
′
singlet <µE ′ −0.8σE ′

(3) HighΦmon and high E
′
singlet (443 OMG CRUs)

µΦ+0.8σΦ ≤Φmonomer <µΦ+1.2σΦ

µE ′ +0.8σE ′ ≤ E
′
singlet <µE ′ +1.2σE ′

(4) HighΦmon and low E
′
singlet (362 OMG CRUs)
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µΦ+0.8σΦ ≤Φmonomer <µΦ+1.2σΦ

µE ′ −1.2σE ′ ≤ E
′
singlet <µE ′ −0.8σE ′

A low χwater and a high χwater in Figure 5 were determined based on the mean and standard

deviation of χwater for the sampled 135k OMG CRUs in Figure S14. A low χwater is around the

mean - 1.5 times of the standard deviation, and a high χwater is around the mean + 1.5 times of

the standard deviation.

17. The Number of Molecule Sets Sharing Properties

Figure S17: The number of molecule sets sharing (a) two and (b) three properties amongΦmon,
E

′
singlet, and χwater. The different numbers (N ) for a molecule set are considered. For exam-

ple, N = 3 means that the number of molecule sets for Molecule 1, Molecule 2, Molecule 3 are
counted sharing properties. The distance threshold for sharing properties was set to 0.01 in the
standardized space with their mean and standard deviation.
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18. Low χwater and χchloroform

The OMG CRUs with low χwater (or χchloroform) in Figure 6 have χwater (or χchloroform) less than

the mean - one standard deviation of χwater (or χchloroform).
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