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1 Acquisition Function for AL
Expected improvement is a bayesian acquisition function that
builds upon probability of improvement. We reproduce a brief ex-
cerpt of the derivation below, but we refer readers to Kamperis 1

for a more detailed discussion.

1.1 Probability of Improvement (PI)
Given a function f , our task is to estimate the probability that
f (x) > f (x⋆) where x⋆ is a previous optimum. If improvement is
defined as,

I(x) = max(0, f (x)− f (x⋆)),

where f (x) is treated as a random variable following the gaussian
distribution N (µ,σ2), then using the reparameterization trick,
we can rewrite I(x) as

I(x) = max(0,µ(x)+σ(x)z− f (x⋆)),z ∼ N (0,1)

Then the probability of improvement

PI(x) = Pr(I(x)> 0) = Φ(
µ(x)− f (x⋆)

σ(x)
),

where Φ(z) =CDF(z).

1.2 Expected Improvement (EI)
EI is the expected value of improvement I(x), which unlike PI,
gives us an estimate of the magnitude of improvement rather than
just the probability of improvement.

It is defined as

EI(x) =
∫

∞

−∞

I(x)ϕ(z)dz =
∫

∞

−∞

max(0, f (x)− f (x⋆))ϕ(z)dz,

where ϕ(z) = 1√
2π

exp(−z2/2). The integral can be split as

EI(x) =
∫ z0

−∞

I(x)ϕ(z)dz+
∫

∞

z0

I(x)ϕ(z)dz

The first term is zero since I(x) = 0.
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EI(x) =
∫

∞

z0

(µ +σz− f (x⋆))ϕ(z)dz

=
∫

∞

z0

(µ − f (x⋆))ϕ(z)dz+
∫

∞

z0

σz
1√
2π

e−z2/2 dz

= (µ − f (x⋆))+σϕ(z0)

= (µ − f (x⋆))Φ

(
µ − f (x⋆)

σ

)
+σϕ

(
µ − f (x⋆)

σ

)
,

where Φ and ϕ are the cumulative distribution function (CDF)
and probability density function (PDF) of a normal distribution,
respectively.

2 Synthetic Complexity and Bandgap

The ideal behavior of a generative model on our task is to mini-
mize synthetic complexity and bandgap simultaneously. We in-
vestigated the relationship between these two quantities, and
performed comparisons against another fragment-based gener-
ative model, junction tree variational autoencoder (JT-VAE)2

which also uses fragment vocabulary from the same patent-mined
dataset. In Figure 2(a), we see that random samples from MCTS
are already left-shifted in bandgaps in comparison to random
samples from a trained JT-VAE model. This suggests that the
chemical space explored by MCTS is already more targeted to-
wards the property of interest even before any optimization is
performed. Since both models obtain fragment vocabulary from
the same patent dataset, this indicates a positive influence of our
defined grammar (MDP described in main text) towards minimiz-
ing bandgaps.

We measure synthetic complexity of molecules with synthetic
complexity score (SCScore).3 In (b) and (c), we show that SC-
Score exhibits a positive trend wrt molecular mass, and a negative
trend wrt bandgap, respectively. We can also see from these plots
that JT-VAE generates a significant amount of candidates with low
molecular mass, that also have low SCScore, but are sub-optimal
in property space (have high bandgaps). Therefore, we are in-
terested in the pareto-front of SCScore and bandgap rather than
just minimizing either one. We see from (d) that the trend line
between SCScore and bandgap for JT-VAE has a steeper slope in
comparison to MCTS, indicating that a decrease in bandgap has
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Fig. 1 Computed absorption spectra for final candidate molecules. The spectra for molecules are ordered as shown in Figure 4 in the main text, with
Y6 derivatives in the upper row and patent-extracted fragment designs in the lower row. Solid lines represent single-point TD-DFT calculations at
the optimized geometry, while dotted lines represent statistically averaged TD-DFT spectra from molecular clusters sampled from MD simulations.
The translucent vertical lines indicate the band gaps from the single-point calculations. The spectra are normalized so that the maximum absorption
corresponds to 1.0.

a sharper increase in SCScore. This suggests that MCTS has the
capability of generating lower bandgap candidates while not com-
promising on SCScore, in comparison to JT-VAE.

3 Finite Temperature and Aggregation Effects with
Coupled MD/TD-DFT Calculations

3.1 Computational Methods

We combined MD simulations with TD-DFT calculations to ap-
proximate the effects of finite temperature and molecular aggre-
gation on absorption spectra. Following Kupgan et al. 4 , we sim-
ulated an amorphous morphology for the molecules. Starting
with the optimized geometries presented in the main text, we
used PACKMOL5 to pack 200 structures in a cubic box at a low
density (∼ 0.1 g/cm3). The OPLS-AA force field6 was used via
the LigParGen server7. The system was equilibrated for 30 ns
at 650 K, cooled to room temperature (300 K) at 10 K/ns, and
subjected to a 30 ns production run at 300 K. All MD simula-
tions were performed under the NPT ensemble at 1 atm, using
GROMACS 20238. From the last 20 ns of the production run,
we randomly selected a molecule and included all neighboring
molecules within a 5 Å radius. CHELPG charges9 were com-
puted for each neighboring molecule, and TD-DFT calculations
were performed for the selected molecule with the neighboring
point charges. For electronic structure calculations, we used the
same settings as in the main text. The absorption spectra were
averaged over 10 clusters to obtain a statistical estimate.

Two of the patent-derived molecules (the first and fifth
molecules in Figure 4 of the main text) contain an isocyanide
moiety, which could not be parametrized correctly using the Lig-
ParGen server. Therefore, for these two molecules, we substituted
the isocyanide (–NC) functional group with cyanide (–CN) for this
analysis. This substitution does not impact the band gap calcula-
tions significantly, with differences in bandgaps for the optimized
geometries of only 2 and 6 meV, respectively, indicating negligible
effects on the result analysis.

3.2 Absorption Spectra of Final Candidates

The absorption spectra for the designed molecules are presented
in Figure 1, with the Y6 derivatives in the upper row and patent
derivatives in the lower row. The vertical lines indicate the TD-
DFT band gap for the optimized geometries, as reported in Figure
4 of the main text. The MD/TD-DFT pipeline results for the pri-
mary absorption peak locations are consistent with those from
static (optimized) TD-DFT calculations, though the MD/TD-DFT
spectra exhibit broadening, likely due to thermally accessible con-
formers and neighboring molecules. Note that the reddest ab-
sorption peak from TD-DFT corresponding to the band gap might
not accurately reflect the absorption spectra when its oscillator
strength is very low. This limitation, inherent to the design objec-
tive focused solely on the band gap, indicates the need to consider
transition probability in future designs. Nonetheless, the band
gap serves as a robust design objective, and this result demon-
strates that our MCTS design pipeline effectively produces low-
bandgap molecules.

4 Preprocessing of Patent-Mined Molecules
Before fragment decomposition was performed, we performed
some minimal preprocessing steps to ensure that the molecules
extracted from patents are representative of the chemical space
we want to explore. We first performed an RDKit filter, to en-
sure that only SMILES strings representing valid molecules are
retained, followed by an element filter, which retained only frag-
ments containing the following elements: C, O, N, H, Cl, Br, S, F,
I, and Si. We finally removed molecules that do not contain any
aromatic atoms.

5 Correlation Between DFT and Experimental
Bandgaps

We performed TD-DFT calculations on a subset of experimental
molecules from the list shown in Figure 3 for which we had ac-
cess to experimentally measured bandgaps. The correlation plot
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Fig. 2 Synthetic complexity score (SCScore) and comparison against JT-VAE. (a) Bandgap distributions of randomly sampled candidates from MCTS
and JT-VAE. (b), (c), and (d) show trends of SCScore vs Molecular Mass, Molecular Mass vs Bandgap, and SCScore vs Bandgap, respectively. All
trend lines were obtained through least-squares fit.

O

F F
F

N N

S

S

N
SN

SO

F F
F

N

N S N N
O

F

F

N N

S

S

NN
SO

F

F

N

N S N N

N
O

O F

F

N N

S

N
SN

S

O

F

F

N

N

O N
N

S
O F

F

N N

Se

N
SN

S

O

F

F

N

N

Se N

O
S

Cl

NN

S

S

N
SN

SO
S

Cl

N

N S N N

NN N

S
O

N

N
N

S

O

N

N

N

NN N

S
O

N N

S
N

SO

N

N S N

NN N

S
O

S

N N

S
N

SO
S

N

N S N

O

N N

S

S

N
SN

SO

N

N S N N
O

F

F

N N

S

S

N
SN

SO

F

F

N

N S N N O
F

F

N N

S

S

NN
SO

F

F

N

N S N N O
F

F

N N

S

S

N
SeN

SO

F

F

N

N S N N

O
F

N N

S

S

N
SN

SO

F

N

N S N N

O
S

N N

S

S

N
SN

SO
S

N

N S N N

Fig. 3 Some popular experimentally used acceptor molecules. These were chosen from Lu et al. 10 .

between experimental and DFT values are shown in Figure 4. We
see R2 value of 0.57, and a Spearman rank correlation coefficient
(SRCC) of 0.74. While the magnitudes are not well calibrated, the
trends of experiments are well-captured by TD-DFT, making mini-
mization a suitable objective for MCTS as opposed to optimization
for targeted bandgap values. As a future extension of this work,
it could be possible to fit a calibration function between TD-DFT
and experimental bandgaps and use the calibrated rewards for
training. While it could be somewhat reasonable to extrapolate
such calibrations for the Y6 MDP, it might be more challenging to
obtain representative experimental examples for the patents MDP
on which a calibration fit can be performed.

The mismatch in magnitudes between TD-DFT and experi-
ments can be caused by several factors including (but not limited
to) 1) finite temperature effects, 2) molecular aggregation effects
from experimental values being measured on thin films, 3) inher-
ent error in TD-DFT functional.

6 Fragment Attribution

One of the key advantages of having a fragment-based approach
such as MCTS is the potential to draw some correlations between
the presence/absence of fragments and property scores. Figure 5
shows the fragments that were present in molecules during MCTS
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Fig. 4 Correlation between TD-DFT and experimental bandgaps. R2

score and Spearman rank correlation coefficient are shown on the top
left.

training, the average chemprop-predicted bandgap arising from
those fragments, and the frequency of their observation during
training. We can see in the Y6 MDP that typically the polyene pi-
bridges have a lower average bandgap in comparison to aromatic
ring-based bridges such as thiophene, benzothiadiazole, and pyr-
role. This can potentially arise from the increased planarity
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and therefore a maintenance of stronger orbital overlap and pi-
conjugation in the former in comparison to the slightly more non-
planar ring conformations and steric effects in the latter. This al-
lows for stronger intra-molecular charge transfer effects between
the electron-donating cores and the electron-withdrawing end-
groups. Among heteroatom modification choices (pos0, pos1,
pos2, pos3), it is evident that expanding the ring size with carbon
and nitrogen atoms is not as favorable as simply modifying the
hetero-atom in the five-membered ring, which can be expected
given that five-membered rings pack larger charge densities and
therefore promote more favorable intra-molecular interactions,
and also reduce steric effects and increase planarity. Similar in-
creasing effects on bandgap have been observed due to out-of-
plane twisting in Bijleveld et al. 11 when 6-member rings were
used alongside 5-member rings in polymers.

In the patent MDP, it is very apparent that fused-ring cores
that maintain stronger electron density and conjugation are
much more favorable in comparison to non-conjugated/partially-
conjugated cores.12,13 Since the chemical space is much larger in
the patent MDP, we can see that our limited computational bud-
get for training prevented us from exploring pi-bridges and end-
groups to frequencies that could make attribution statistically sig-
nificant. While this is outside the scope of this paper, more large
scale training that leads to a thorough exploration of the chemical
space can be useful for further insights and analysis.

The above analysis with 1-grams of fragments captures prop-
erty impacts of individual fragments, but not the inter-fragment
correlations. To model these dependencies, we also analyzed the
lowest bandgap 2-grams (pairs) and 3-grams (triplets). We show
results for the core/end-group pair and core/pi-bridge/end-group
triplet in Figure 6. It can be seen that the lowest bandgaps are
achieved with pairs of electron donating fused-ring cores and
electron withdrawing end-groups, confirming that push-pull ef-
fect is beneficial towards low bandgaps. Similarly, among triplets,
the best cases are where conjugation is maintained between
cores, pi-bridges, and end-groups. The highest bandgaps are
achieved when the conjugation pathway is broken in some way.

7 Structural Modifications
For the fifth molecule shown in Figure 4 of the main text, we iden-
tified that errors in atomic connectivity were introduced during
the xTB optimization step. We fixed the geometry by bypassing
the xTB optimization step altogether. We instead directly per-
formed BP86 DFT optimization on the five lowest energy con-
formers obtained from RDKit ETKDG algorithm, and performed
the TD-DFT calculation on the lowest energy BP86 conformer.

As mentioned in Section 3 of the main text, we performed
TD-DFT calculations on methyl-substituted versions of reactive
molecules to confirm that the bandgap does not change signifi-
cantly after substitution. Bandgaps of second, fourth, and fifth
molecules changed very minimally from 0.998, 1.09, and 1.470,
to 0.978, 1.049, and 1.470 eV respectively.

8 Reactive Positions in Practice
While we explain the algorithm in Section 2.1.1 of the main text
using IDs belonging to [0,N), in the implementation, we use He-

lium isotopes with IDs ranging from [100,100+N) where N is the
number of fragments in the vocabulary, to preserve reactive po-
sition identities in the RDKit Mol object. The range was chosen
arbitrarily but to be large enough so that there are no clashes in
atomic mass with other elements in the dataset.

9 Fragments in Y6 MDP
We illustrate the fragments along with their reactive positions in
Figure 7.
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and red represent the best and worst 3 fragments respectively in average bandgaps.
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