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MATERIALS AND METHODS 

Experimental Procedures

Materials and reagents. Rh640 perchlorate was purchased from Alpha Chemical. Rh19, 

RhB and Rh110 were purchased from Aladdin Biochemical Technology. Diethylenetriamine 

was purchased from Alfa Chemical. Dimethylformamide, methanol, dichloromethane and 

other organic reagents was purchased from Energy-chemical. 

Rhodamine probe data collection. The dataset was gathered from the literature, as listed in 

the Supporting Information (SI). There were in total 610 rhodamine molecules (After filtering) 

collected from published works. If multiple peaks were seen for the same compound in the 

same solvent, the peak with the longest wavelength/largest intensity was collected for the 

absorption data. 

Transforming probe structure into computer-recognizable fingerprints. The collected 

probe structures are converted into recognizable SMILES machine codes based on the 

ChemDraw. The SMILES machine codes are then input for molecular descriptors and 

fingerprints, which are derived from the open-source tool ChemDes 

(http://www.scbdd.com/chemdes) to get the final computer recognizable RDKit descriptor. 

Morgan fingerprints and MACCSKeys fingerprints are obtained from RDKit 

(http://www.rdkit.org). There are no quantum mechanical calculations, and these data 

processing methods are based on high-throughput calculations. After removing some 

unrecognizable and unsuccessful molecules, the final database contains a total of 614 

samples. 

Network construction

VGG network architecture: The VGG network architecture is a convolutional neural network, 

that employs numerous comparatively modest convolutional kernels in a multi-layered 

configuration to facilitate the extraction of image features. However, one of the VGG 

architecture's shortcomings is that it is susceptible to overfitting due to a lack of regularisation 

techniques employed to counteract this phenomenon. Furthermore, the VGG network 

architecture necessitates a lengthy training period due to the necessity of parameter 

initialization and optimization for each convolution layer.

http://www.scbdd.com/chemdes
http://www.rdkit.org/


ResNet network architecture: The ResNet network architecture is a deep residual network, 

which is primarily distinguished by the utilisation of jump connections to address the issue of 

gradient disappearance in deep networks. Nevertheless, the ResNet network architecture is 

also characterised by a significant computational burden, as it necessitates the initialisation 

and optimisation of the parameters of each residual block. Furthermore, the ResNet network 

architecture requires a considerable amount of time for training, due to the necessity of 

multiple forward and backward propagation for each residual block.

CNN-LSTM network architecture: CNN-LSTM network architecture is a deep learning 

model based on causal inference, which is characterized by the use of causal inference to 

solve the uncertainty in forecasting problems. However, the disadvantage of CNN-LSTM 

network architecture is that it takes a long time to train because it requires multiple reasoning 

and post-processing for each sample. In addition, the CNN-LSTM network architecture is less 

interpretable because it uses complex causal inference algorithms.

VATTL algorithm: The VATTL algorithm is a deep learning model based on a self-attention 

mechanism, which is mainly characterized by the use of a self-attention mechanism to extract 

important information from input sequences. However, the disadvantage of the VATTL 

algorithm is that it takes a long time to train because it requires multiple self-attention 

calculations and post-processing for each sample. In addition, the VATTL algorithm is less 

interpretable because it uses a complex self-attention mechanism.

MRE (Mean Relative Error): MRE is the average relative error between predicted and actual 

values (relative error refers to the ratio of error to true value). MRE can reflect the relative 

error size, but cannot reflect the absolute error size.
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MAE (Mean Absolute Error): MAE is the average absolute difference between all predicted 

values and the true value, directly reflecting the average difference between the predicted 

value and the true value.
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MSE (Mean Squared Error): MSE is the average of the squared differences between 

predicted and actual values, used to measure the prediction error of a model. The smaller the 

MSE, the better the prediction performance of the model.
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RMSE (Root Mean Square Error): RMSE measures the degree of deviation between 

predicted and true values. The smaller the value, the smaller the prediction error of the model 

and the stronger its predictive ability.
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The synthesis of Rh640-N-NH2, Rh110-N-NH2, Rh19-N-NH2 and RhB-N-NH2: Rhodamine 

640 perchlorate (59.10 mg, 0.100 mmol) was dissolved in 10 mL of DMF, and 1-Ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDC) (18.75 mg, 0.150 mmol) was added under stirring 

at room temperature under a nitrogen atmosphere for 30 minutes. Subsequently, N-(2-

aminoethyl) ethane-1,2-diamine hydrochloride (13.96 mg, 0.100 mmol) was added to the 

mixture, and the reaction mixture was stirred overnight. After solvent removal, purification was 

performed on silica gel using CH2Cl2/MeOH (v/v, 5:1) as eluent, followed by drying under 

vacuum to yield a red solid Rh640-N-NH2 (26.59 mg, 36.59%). [M+H]+ = 577.39 (calcd for 

C36H42N5O2: 576.33). Based on the same process mentioned above, Rh110-N-NH2, Rh19-N-

NH2, and RhB-N-NH2 can be obtained. Yellow solid Rh110-N-NH2 (31.05 mg, 38.73%). 

[M+H]+= 417.27 (calcd for C24H26N5O2: 416.21). Yellow solid Rh19-N-NH2 (29.40 mg, 

32.03%). [M+H]+= 473.33 (calcd for C28H34N5O2: 472.27). Pink solid RhB-N-NH2 (15.64 mg, 

26.84%). [M+H]+= 529.39 (calcd for C32H42N5O2: 528.33 ). 



The synthesis of Rh640-fluorescein, Rh110-fluorescein, Rh19-fluorescein and RhB-

fluorescein. 

In anhydrous DMF, a mixture of fluorescein (33.11 mg, 0.100 mmol), EDC (18.75 mg, 0.150 

mmol), and 4-(Dimethylamino) pyridine (DMAP) (18.33 mg, 0.150 mmol) was stirred under a 

nitrogen atmosphere at room temperature for 30 minutes. The prepared Rh640-N-NH2 (57.63 

mg, 0.100 mmol) was added, and the reaction was stirred overnight. After solvent removal, 

purification was carried out on silica gel using CH2Cl2/MeOH (v/v, 15:1) as eluent, resulting in 

the isolation of an orange solid Rh640-fluorescein (10.06 mg, 11.09%). [M+H]+= 891.45 

(calculated for C56H52N5O6: 890.39). Based on the same process mentioned above, Rh110-

fluorescein, Rh19-fluorescein, and RhB-fluorescein can be obtained. Yellow solid Rh110-

fluorescein (16.50 mg, 22.08%). [M+H]+= 731.33 (calcd for C44H36N5O6: 730.27). Yellow solid 

Rh19-fluorescein (10.63 mg, 13.68%) [M+H]+= 787.39 (calcd for C48H44N5O6: 786.33). Orange 

solid RhB-fluorescein (11.84 mg, 14.74%), [M+H]+= 843.45 (calcd for C52H52N5O6: 842.39).

Figures

Figure S1. The predicted maximum excitation values plotted against observed data in 20-fold 

cross-validation, respectively. Three feature acquisition methods including RDKit descriptors, 

Morgan fingerprints, MACCSKeys fingerprints were applied, followed by employed MICNet and 

four compare methods, namely CNN-LSTM, RESNet VGG and VATTL.



Figure S2. The predicted maximum emission values plotted against observed data in 20-fold 

cross-validation, respectively. Three feature acquisition methods including RDKit descriptors, 

Morgan fingerprints, MACCSKeys fingerprints were applied, followed by employed MICNet and 

four compare methods, namely CNN-LSTM, RESNet, VGG and VATTL.

Figure S3. The predicted maximum excitation values plotted against observed data in 20-fold 

cross-validation. Three feature acquisition methods including RDKit descriptors, Morgan 

fingerprints, MACCSKeys fingerprints were applied, followed by employed MICNet. 



Figure S4. The predicted maximum emission values plotted against observed data in 20-fold 

cross-validation. Three feature acquisition methods including RDKit descriptors, Morgan 

fingerprints, MACCSKeys fingerprints were applied, followed by employed MICNet. 

Figure S5. The point-line distribution map of the excitation values of test probe. Three feature 

acquisition methods including RDKit descriptors, Morgan fingerprints, MACCSKeys fingerprints 

were applied, followed by employed MICNet. (MAE range: 0, 3% and 5%)



Figure S6. The point-line distribution map of the emission values of test probe. Three feature 

acquisition methods including RDKit descriptors, Morgan fingerprints, MACCSKeys fingerprints 

were applied, followed by employed MICNet. (MAE range: 0, 3% and 5%)

Figure S7. The point-line distribution map of the excition and emission values of test probe 

without solution data or pH data. Three feature acquisition methods including RDKit descriptors, 

Morgan fingerprints, MACCSKeys fingerprints were applied, followed by employed MICNet. 

(MRE range: 0 and 3%)



Figure S8. The HNMR spectrum of Rh640-Fluorescein.

Figure S9. The HNMR spectrum of Rh110-Fluorescein.



Figure S10. The HNMR spectrum of RhB-Fluorescein.

Figure S11. The HNMR spectrum of Rh19-Fluorescein.



Figure S12. The CNMR spectrum of Rh640-Fluorescein.

Figure S13. The CNMR spectrum of Rh110-Fluorescein.



Figure S14. The CNMR spectrum of RhB-Fluorescein.

Figure S15. The CNMR spectrum of Rh19-Fluorescein.



Figure S16. The P value in predicting the excitation (A) and the emission (B) of the test probe 

before and after database updates. (*P<0.05, **P<0.005, and ***P<0.0005,n=3).
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