Mechanism-Guided Descriptor for Hydrogen Evolution Reaction in 2D Ordered Double Transition-Metal Carbide MXenes

Junmei Du, Yifan Yan, Xiumei Li, Jiao Chen, Chunsheng Guo, Yuanzheng Chen*, Hongyan Wang*

School of Physical Science and Technology, Key Laboratory of Advanced Technology of Materials, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

* Email: cyz@swjtu.edu.cn (Y.C.); hongyanw@swjtu.edu.cn(H.W.);

The supporting information file includes:

1. Formation energies for 19 MXene precursor MAX phase candidatesTable S1
2. Single point energy calculations for different configurations of MXenesTable S2
3. The value of bond dissociation enthalpies (BDE) in M-OTable S3
4. Lattice constants of MXenes Table S4
5. The calculated $\Delta G_{\rm H}$ of Cr ₂ TiC ₂ O ₂ in vacuum, with implicit solvent effect and explicit
solvent effect
6. Gibbs free energy in vacuum and solvent environmentTable S6
7. Convergence testing of k-Point mesh and energy cutoffFig. S1
8. Calculated band structureFig. S2
9. Scailling relationships of d band center with $\Delta G_{\rm H}$
10.The projected crystal orbital Hamilton population (pCOHP) of H-O bondFig. S4
11. The pDOS and pCOHP of hydrogen adsorption on $Mo_2TiC_2O_2$ Fig. S5
12. The diagram of pCOHP of H-O and O-M' on other MXeneFig. S6
13. Analysis of regulation between $\Delta G_{\rm H}$ and electronegativity of the inner transition
metal, as well as the number of inner transition layersFig. S7
14. Relationships between $\Delta G_{\rm H}$ and descriptor δ of M' ₂ M"N ₂ O ₂ system
15. The configuration of $Cr_2TiC_2O_2$ with explicit solvation Fig.
S9
16.Phonopy spectrum and Ab initio molecular dynamicFig. S10
Pauli electronegativity formulaEquation S1
17. Supplementary references

Table S1. The thermodynamic competitors for 19 MAX phase candidates are selected from the Materials Project database, along with their calculated formation energies. Specially, the formation energy of the experimental synthetic $Mo_2Ti_2AlC_3$ is calculated to be 16.565 eV/atom.^{1, 2} Thus, formation energies less than 20 eV/atom at 0 K is regarded stable. Notably, reference 3 reported that $W_2Hf_2AlC_3$ is unstable based on formation energy calculations.^{3, 4} In contrast, our findings suggest that $W_2Hf_2SiC_3$ may be stable compared to competitors.

MAX	Competitors	E _{formation} (eV/atom)
Cr ₂ TiAlC ₂	TiAl, CrC	-0.494
Cr ₂ VAlC ₂	AlCr ₂ , VC, C	1.283
W ₂ TiAlC ₂	AlW ₂ C, TiC,	-0.500
Mo ₂ VAlC ₂	AlC, MoC, VMo	-3.007
Mo ₂ TiAlC ₂	TiAl, MoC	-1.873
Mo ₂ ZrAlC ₂	ZrMo, MoC, AlC	-3.689
Mo ₂ HfAlC ₂	HfMo, MoC, AlC	-3.831
Mo ₂ NbAlC ₂	NbMo, MoC, AlC	-2.586
Mo ₂ TaAlC ₂	TaMo, MoC, AlC	-2.709
Nb ₂ Hf ₂ AlC ₃	HfNb, AlC ₃	-14.383
Cr ₂ Ti ₂ AlC ₃	Ti ₂ AlC, CrC	-0.436
$Cr_2V_2AlC_3$	AlV ₂ C, CrC	0.625
$Cr_2Ta_2AlC_3$	Ta ₂ AlC, CrC	-0.282
W ₂ Ti ₂ AlC ₃	TiW, AlC ₃	-14.528
Mo ₂ Ti ₂ AlC ₃	TiMo, AlC ₃	16.565
Mo ₂ Zr ₂ AlC ₃	ZrMo, AlC ₃	3.954
Mo ₂ Hf ₂ AlC ₃	MoHf, AlC ₃	5.291
Mo ₂ Nb ₂ AlC ₃	NbMo, AlC ₃	-12.493

$Mo_2Ta_2AlC_3$	TaMo, AlC ₃	-12.819
$W_2Hf_2SiC_3$	HfW ₂ , HfSi,C	-19.921

Table S2. The energies of four unique configurations of O-terminated MXenes aftergeometric optimization.

MXenes	hcp-fcc	fcc-hcp	fcc-fcc	hcp-hcp
Cr ₂ TiC ₂ O ₂	-62.29316887	-62.58999530	-62.57806371	-62.79932329
$Cr_2VC_2O_2$	-62.91888139	-62.65982005	-62.99283369	-63.03072347
W ₂ TiC ₂ O ₂	-70.42501407	-70.42506373	-69.80046285	-71.12732904
$Mo_2VC_2O_2$	-67.22922395	-66.49722447	-65.88306397	-67.22988186
Mo ₂ TiC ₂ O ₂	-66.73865261	-66.73878875	-66.15475182	-67.35062443
$Mo_2ZrC_2O_2$	-66.85718421	-66.87978266	-66.24968109	-67.40379599
$Mo_2HfC_2O_2$	-68.43626310	-68.34209335	-67.92651424	-69.0124171
$Mo_2NbC_2O_2$	-67.60385938	-67.72733877	-67.37521414	-68.06066883
$Mo_2TaC_2O_2$	-69.45909649	-69.47304364	-68.94471227	-69.72906875
$Nb_2Hf_2C_3O_2$	-90.63782585	-90.64447992	-90.94965044	-90.27246643
$Cr_2Ti_2C_3O_2$	-81.15490772	-81.15458795	-81.28082960	-81.21016333
$Cr_2V_2C_3O_2$	-79.72878967	-79.72889020	-80.48541463	-79.20834079
$Cr_2Ta_2C_3O_2$	-87.76774479	-87.76765430	-88.36857801	-87.09969920
$W_2Ti_2C_3O_2$	-89.40253520	-89.40227667	-88.79891700	-90.05977445
Mo ₂ Ti ₂ C ₃ O ₂	-85.64097750	-85.64086701	-85.10330856	-86.25980388
$Mo_2Zr_2C_3O_2$	-86.56488878	-86.56494706	-86.23249742	-86.95799804
$Mo_2Hf_2C_3O_2$	-89.75590340	-89.75797703	-89.38242849	-90.17013688
$Mo_2Nb_2C_3O_2$	-88.05220668	-88.05227979	-87.78076802	-88.49641118
Mo ₂ Ta ₂ C ₃ O ₂	-92.18208384	-92.18213071	-91.95617650	-92.62988472

Bond	BDE (eV)	Bond	BDE (eV)
Cr-O	4.45	Nb-O	7.80
Mo-O	6.32	Ti-O	6.91
W-O	6.90	V-O	5.68
Hf-O	8.30		

Table S3. The value of bond dissociation enthalpies (BDE) in M-O.⁵

 Table S4. The lattice constant of MXenes.

MXene	a	b	c	alpha	beta	gamma
Mo ₂ Zr ₂ C ₃ O ₂	6.16	6.16	24.85	90.00	90.04	120.00
$Mo_2Hf_2C_3O_2$	6.12	6.12	30.98	90.00	90.00	120.00
Mo ₂ HfC ₂ O ₂	6.00	5.99	28.20	90.00	90.00	120.00
$Mo_2Nb_2C_3O_2$	6.01	6.01	24.92	90.00	90.02	120.00
Mo ₂ NbC ₂ O ₂	5.90	5.91	27.02	90.00	90.00	120.00
Mo ₂ Ta ₂ C ₃ O ₂	5.99	5.99	29.92	90.00	90.00	120.00
Mo ₂ TaC ₂ O ₂	5.90	5.90	28.20	90.00	90.00	120.00
$Mo_2Ti_2C_3O_2$	5.90	5.90	24.92	90.00	90.02	120.00
Mo ₂ TiC ₂ O ₂	5.85	5.85	27.88	90.00	90.00	120.00
Mo ₂ VC ₂ O ₂	5.78	5.78	29.10	90.00	90.00	120.00
$Mo_2ZrC_2O_2$	6.01	6.01	27.29	90.00	90.06	120.00
$Cr_2Ta_2C_3O_2$	6.12	6.12	29.62	90.00	90.00	120.00
$Cr_2Ti_2C_3O_2$	5.96	5.96	28.45	90.00	90.00	120.00
Cr ₂ TiC ₂ O ₂	5.61	5.61	26.99	90.00	90.00	120.00
$Cr_2V_2C_3O_2$	5.94	5.94	28.45	90.00	90.00	120.00
$Cr_2VC_2O_2$	5.52	5.52	28.95	90.05	90.00	120.00
$Nb_2Hf_2C_3O_2$	6.38	6.38	30.98	90.00	90.00	120.00
W ₂ Ti ₂ C ₃ O ₂	5.91	5.91	29.92	90.00	90.00	120.00

Table S5. The calculated for slab energy of $Cr_2TiC_2O_2$, energy of adsorbed H on $Cr_2TiC_2O_2$, and the corresponding ΔG_H in Vacuum, with implicit solvent effect and explicit solvent effect.

Cr ₂ TiC ₂ O ₂	Slab Energy (eV)	Slab-H Energy (eV)	Slab-H ΔG (eV)	$\Delta G_{\mathrm{H}^{*}}$ (eV)
Vacuum	-249.51	-253.63	0.22	-0.49
Implicit	-249.51	-254.16	0.30	-0.94
Explicit	-303.41	-307.97	0.30	-0.86

Table S6. The Gibbs free energy results are calculated in vacuum and solvent environment.

MXene	$\Delta G_{\rm H}$ (eV) (vacuum)	$\Delta G_{ m H}$ (ev) (implicit solvation)
Mo ₂ TiC ₂ O ₂	0.175	-0.388
$Mo_2VC_2O_2$	-0.028	-0.592
$Mo_2NbC_2O_2$	-0.054	-0.610
$Mo_2HfC_2O_2$	0.660	-0.678
$Mo_2Ta_2C_3O_2$	0.144	-0.527
$Mo_2Zr_2C_3O_2$	0.189	-0.376
$Mo_2Ti_2C_3O_2$	0.125	-0.500
$Mo_2Nb_2C_3O_2$	-0.004	-0.117
$Mo_2Hf_2C_3O_2$	0.358	-0.155
$Ti_2MnC_2O_2$	-0.10	-0.590
$Ti_2TaC_2O_2$	-0.189	-0.492
$Ti_2Nb_2C_3O_2$	-0.079	-0.478
W ₂ TiC ₂ O ₂	0.525	-0.482
$W_2ZrC_2O_2$	0.766	0.237
$W_2Zr_2C_3O_2$	0.503	-0.070

$W_2Hf_2C_3O_2$	0.584	-0.033
$Nb_2Ta_2C_3O_2$	0.152	-0.333

Fig. S1 The convergence tests of k-point mesh and energy cutoff for the computational accuracy on single or supercell MXenes. (a) The energy convergence tests of k-point mesh from $9\times9\times1$ to $13\times13\times1$ are performed to test the calculation accuracy on single cell, take Mo₂Nb₂C₃O₂ as example. (b)-(c) Energy convergence and computational cost (CPU time) tests are systematically conducted by varying the k-point mesh from $3\times3\times1$ to $8\times8\times1$ in a $2\times2\times1$ supercell, respectively. Two representative systems are selected: Cr₂Ta₂C₃O₂ (top panel) and Mo₂ZrC₂O₂ (bottom panel), as shown in the respective panels. (d)-(e) Energy convergence and computational cost (CPU time) tests are systematically conducted by varying energy cutoff from 440 to 540 in a $2\times2\times1$ supercell, respectively. Four representative systems are selected: Cr₂TiC₂O₂ (upper-left

panel), $Mo_2TiC_2O_2$ (upper-right panel), $Ti_2Ta_2C_3O_2$ (bottom-left panel) and $W_2Ti_2C_3O_2$ (bottom- right panel) as shown in the respective panels.

 $W_2Ti_2C_3O_2$

Fig. S2 Calculated band structures of 19 transition ordered double MXenes.

Fig. S3 Relationships between $\Delta G_{\rm H}$ and descriptors of d-band center of the first-layer transition metal among different MXenes system.

Fig. S4 The projected crystal orbital Hamilton population (pCOHP) of H-O bond when H adsorption on $Mo_2Ti_2C_3O_2$ as example.

Fig. S5 The projected density of states (pDOS) and pCOHP with H adsorption on $Mo_2Ti_2C_3O_2$ as example.

Fig. S6 The diagram of pCOHP plots of H-O, $H(1s)-O(p_z)$, O(p)-M'(d) and $O(p_y)-M'(d)$ $d_{x^2-y^2}$ for MXenes, including Cr₂TiC₂O₂, W₂TiC₂O₂, Ti₂NbC₂O₂, Mo₂VC₂O₂, Nb₂Hf₂C₃O₂, and V₂Ta₂C₃O₂, respectively.

Fig. S7 Regulation between $\Delta G_{\rm H}$ and electronegativity of the inner transition metal, and $\Delta G_{\rm H}$ with the number of inner transition layers. a) The electronegativity values of elements in the third to sixth period and groups IVB-VIB, corresponding to the transition metals in M₂MC₂O₂ and M₂M₂C₃O₂, are illustrated. b-c) The overall trend of calculated $\Delta G_{\rm H}$ decreases with increasing electronegativity of the inner transition metal based on Mo-based M₂MC₂O₂ and M₂M₂C₃O₂, respectively. Only a few materials, such as Mo₂TaC₂O₂ and Mo₂Ta₂C₃O₂, deviate from this trend. Additionally, the overall trend of calculated $\Delta G_{\rm H}$ decreases with the increased number of inner transition layers, exception for Mo₂Ta₂C₃O₂.

Fig. S8 Relationships between $\Delta G_{\rm H}$ and descriptor δ of M'₂M"N₂O₂ system.

Fig. S9 The configuration of $Cr_2TiC_2O_2$ with explicit solvation by using four H₂O molecules.

Fig. S10 a-c) Phonopy spectrum of $Mo_2Hf_2C_3O_2$, $W_2Hf_2C_3O_2$ and $W_2Zr_2C_3O_2$, respectively. d-f) Ab initio molecular dynamic of $Mo_2Hf_2C_3O_2$, $W_2Hf_2C_3O_2$ and $W_2Zr_2C_3O_2$, respectively.

Equation S1. Pauli electronegativity formula as follows,^{6,7}

$$|x_A - x_B| = eV^{-1/2} \sqrt{E_d(AB) - \frac{E_d(AA) + E_d(BB)}{2}}$$

References:

 J. Yang, H. Zou, J. Chen, Y. Wen, Y. Fan, Y. Liu, L. Xiong and X. Li, Reactive synthesis of porous Mo₂Ti₂AlC₃ ceramic and its basic application properties, *Ceram.*

Int, 2022, 48, 9205-9217.

- S. Fu, Y. Liu, H. Zhang, S. Grasso and C. Hu, Synthesis and characterization of high purity Mo₂Ti₂AlC₃ ceramic, *J. Alloys Compd.*, 2020, 815, 152485.
- M. Dahlqvist and J. Rosen, Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases, *Nanoscale*, 2020, 12, 785-794.
- A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, *APL Materials*, 2013, 1, 011002.
- 5. A. L. Allred, Electronegativity values from thermochemical data, *J. Manuf. Process.*, 1961, **17**, 215-221.
- 6. S. Trasatti, Electronegativity, work function, and heat of adsorption of hydrogen on metals, *J. Chem. Soc., Faraday Trans. 1*, 1972, **68**, 229-236.
- J. A. Dean, LANGE'S HANDBOOK OF CHEMISTRY, J. inorg. nucl. chem, 2010, 5, 687-688.