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Appendix A Supplementary Materials

A.1 Notations
All notaions used in this paper are listed in Table A1.

A.2 ScafVAE architecture
ScafVAE consists of three parts: the encoder, the decoder, and the sur-
rogate model. Different from conventional atom-based or fragment-based
methods[1, 2, 3, 4], ScafVAE offers an efficient framework for novel molecule
generation based on the concept of "bond scaffold" (explained below) with a
VAE-style design (Fig.1a). The encoder converts each molecule into a latent
vector with an isotropic Gaussian distribution, and the decoder reconstructs
the molecule from the latent vector. Instead of generating molecules with a
specific fragment set, the decoder first generates a set of fragments containing
only bond types (named as "bond scaffold", i.e., fragments without specifying
atom types). Then, the decoder assembles these bond scaffolds and decorates
their atom types to produce the valid molecules (Fig.1e). Surrogate models
are employed for molecule optimization for downstream tasks, which are aug-
mented by contrastive learning and fingerprint reconstruction. Specifically, we
used the perplexity-inspired fragmentation to obtain the bond scaffolds.

A.2.1 Perplexity-inspired fragmentation

Inspired by the widely used perplexity metric in AI language models[5], we
used perplexity to break molecular bonds to obtain the fragments. In this
paper, the bond perplexity is defined as the exponential of the entropy of each
bond under a pre-trained masked graph model (i.e. perplexity estimator). The
masked graph model is a neural network that learns to predict the actual bond
type of a masked bond based on the observable atoms and bonds (Fig.1c).
For a given molecular graph, we predict the perplexity of one bond at a time,
meaning that we only mask a single bond while keeping the rest of the graph
visible. Given a predicted distribution of a masked bond, its bond perplexity
(PPL) can be written as:

PPL = e−
∑Nb

i tilog(pi) (A1)

where Nb is the number of bond types, ti is the true label and the pi is the
predicted probability for ith bond type. All bonds with a perplexity greater
than cppl were broken (cppl is a hyperparameter, and cppl = 1.5 in this study).
To simplify the molecule reconstruction, we only break non-ring single bonds,
i.e., no rings formed between fragments. Moreover, the non-ring single bond
with the highest perplexity within each fragment is broken until its number of
atoms is less or equal to 6. The detailed architecture and training procedure
of the perplexity estimator were described in Sec.A.2.7.

Supplementary Information (SI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2025
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2 ScafVAE

A.2.2 Encoder

Given a molecule graph, the encoder converts the molecule into a 64-D vector
(Fig.1c). The all-atom molecule graph is first fed into two GNN blocks. Subse-
quently, the all-atom graph is converted to a coarse-grained graph by applying
a local average pool according to its fragmentation (i.e., all nodes belonging
to the same fragment are pooled into a single node). Then, the coarse-grained
graph is fed into two RGNN blocks iteratively. After each iteration, a node
is removed until no node exists. Finally, the output of RGNN blocks is used
to predict the mean (µ) and variance (σ2) of the variational distribution
over the latent space. The latent vector (z) is sampled as z = µ + σ ⊙ ϵ,
where ϵ ∼ N (0, 1). In particular, node removal follows the breadth-first search
(BFS) ordering, which gives a sub-optimal solution that ensures the node being
removed connects to at least one of the remaining nodes, and such a strat-
egy was wildly adopted in previous studies[1, 6, 4]. The hidden size of the
node/edge feature is 128/64 for all-atom graphs and 1024/64 for coarse-grained
graphs, respectively. The hidden size of the memory vector in RGNN is 2048.

A.2.3 Decoder

The decoder reconstructs the molecule from the latent vector z using a net-
work structure similar to the encoder (Fig.1e). Two RGNN blocks are first
applied to iteratively generate bond scaffolds. Each iteration generates a new
bond scaffold based on the existing ones. The generated bond scaffolds are
then processed by an assembler, which consists of two MLPs. One of them is
used to predict which two bond scaffolds can be connected (i.e., bond forma-
tion), while the other is used to predict which two atoms can form a bond
between two bond scaffolds. Finally, an atom decorator, which comprises two
GNN blocks, generates the atoms iteratively, with each iteration generating
one atom. The hidden size of all blocks in the decoder is the same as in the
encoder. The decoded molecules are post-processed by the Rectifier module in
Fragmenstein[7] to fix minor invalid parts.

A.2.4 GNN block

The GNN block used in this study is a variant of graph attention network[8],
which performs massage passing with the multi-head attention mechanism.
For a central node xi (hidden size of hx), the GNN block updates its feature
with neighbor node xj (all neighbor nodes are denoted as Neighbor(i)) and
their edge eij(hidden size of he). The GNN block can be described as follows:



415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

ScafVAE 3

Algorithm 1: Graph neural network (GNN) block

Input: Central node xi ∈ Rhx , neighbor node
xj ∈ Rhx , j ∈ Neighbor(i), and their edge eij ∈ Rhe .

Output: Updated central node xu
i and edge euij ∈ Rhs

e .

1 Def GNN(xi,xj , eij , Nh = 8):
// Attention-based message aggregation.

2 qh
i ← LinearNoBias(LayerNorm(xi)) qh

i ∈ Rha
x , h ∈ {1, ..., Nh}

3 kh
j ,v

h
j ← LinearNoBias(LayerNorm(xj))

kh
i ∈ Rha

x ,vh
i ∈ Rha

x , h ∈ {1, ..., Nh}
4 bh

ij ← LinearNoBias(LayerNorm(eij)) bh
ij ∈ Rha

x , h ∈ {1, ..., Nh}
5 ahij ← qh

i ⊙ kh
j + bh

ij ahij ∈ Rha
x

6 âhij ← softmaxj
1√
ha
x

ahij1 âhij ∈ R1

7 xa
i ← xi + Linear(concath(

∑
j â

h
ijv

h
j ) xa

i ∈ Rhx

8 eaij ← xi + Linear(concath(ahij) eaij ∈ Rhe

// Feedforward.
9 xu

i ← xa
i + Linear(leaky_relu(Linear(LayerNorm(xa

i ))) xu
i ∈ Rhx

10 euij ← eaij + Linear(leaky_relu(Linear(LayerNorm(eaij))) euij ∈ Rhe

11 return (xu
i , e

u
ij)

A.2.5 RGNN block

The RGNN block is designed to learn the encoding and decoding process of
a molecular graph in a sequential manner (i.e. node removal or generation).
The block consists of a GNN and a GRU module[9]. The hidden state of the
GRU is first transformed into a super node using a layer norm operation and a
linear layer. The super node is then added to the graph, with edges connecting
it to all other nodes. The features of these new edges are also derived from
the GRU’s hidden state, with a layer norm operation and a linear layer. Then,
the graph updates its feature by applying a GNN block. The global average
pooling of the graph is then used to update the GRU’s hidden state, while the
GRU uses the gate mechanism to remember input information selectively.

A.2.6 Surrogate model

The surrogate model is employed for molecule generation and optimization of
downstream tasks, which tasks the latent vector as input and predicts various
properties (Fig.1d). It consists of two parts: two shallow pre-trained MLPs and
a task-specific ML module. Two MLPs were augmented by pre-training with
contrastive learning and fingerprint reconstruction.

Pre-trained MLP. Two pre-trained MLPs decode the latent vector into
two meaningful representations (i.e., two vectors), one for contrastive learning
and another for molecular fingerprint reconstruction (Fig.1d), respectively.
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4 ScafVAE

Task-specific ML module. The ML module takes the two vectors as input
and predicts specific molecular properties. In this study, we applied a range
of ML algorithms, including Adaboost, SVM, KNN, RF, and MLP. All these
ML modules were implemented with the Scikit-Learn library.

A.2.7 Perplexity estimator

The perplexity estimator is a masked graph model, consisting of two GNN
blocks with hidden sizes of 128 and 64 for features of nodes and edges, respec-
tively. We trained the perplexity estimator using the ChEMBL dataset. For
each training batch, we randomly masked one bond in each molecular graph.
The loss was calculated as a classification task using cross-entropy loss. The
model was initially trained for 1650 iterations, with a maximum number of
nodes set at 64 (learning rate of 5× 10−3, batch size of 384). Subsequently, it
underwent additional training of 490 iterations, with a maximum number of
nodes increased to 128 (learning rate of 5× 10−4, batch size of 256).
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A.3 Supplementary Results

A.3.1 Single-objective molecule generation

We conducted two experiments to generate single-objective molecules aimed
at achieving a high QED score or a low SA score. As shown in Fig.A22a and
Fig.A22b, the generated molecules outperformed those in the training set,
achieving higher QED scores and lower SA scores. Notably, the model samples
molecules based on predicted properties, which align with the desired actual
properties observed. This suggests that sampling using predicted properties is
effective.

A.3.2 Tri-objective molecule generation

We conducted four experiments to generate tri-objective molecules aimed at
achieving a stronger Vina score, a high QED score, and a low SA score, tar-
geting EGFR (Fig.A23a-c), HER2 (Fig.A23d-f), P-gp (Fig.A23g-i) and BCRP
(Fig.A23j-l). We presented the actual values of these three properties rather
than the predicted properties since the actual values can be easily obtained.
These results demonstrate that molecules with multiple desired properties can
be sampled based on the predicted properties.

A.3.3 Downsizing vocabulary set with bond scaffold

We evaluated the ability of bond scaffold strategy to reduce the vocabulary size
of JT-VAE[1], as shown in Fig.A21. With its default fragmentation settings,
JT-VAE contains 7736 fragments for the ChEMBL dataset and 780 fragments
for the ZINC dataset. However, when we applied the bond scaffold strategy, the
size was reduced to 2980 and 89, respectively. These indicate that the majority
of the fragments share the same bond scaffold, and the bond scaffold strategy
can efficiently control the vocabulary size during molecular generation.
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A.4 Supplementary Tables

Table A1 Notations.

Notation Description

Nb Number of bond types
Ne

aa Number of GNN blocks in the encoder
Ne

cg Number of RGNN blocks in the encoder
Nd

aa Number of GNN blocks in the decoder
Nd

cg Number of RGNN blocks in the decoder
cppl Cutoff for perplexity-inspired fragmentation
Nh Number of attention heads
hx Hidden size of node features
he Hidden size of edge features
ha
x Hidden size of node features of each attention head

ha
e Hidden size of node features of each attention head

Linear Linear transformation with bias
LinearNoBias Linear transformation without bias
MLP Multi-layer perceptron
LayerNorm Layer normalization
⊙ Hadamard product
⊘ Hadamard division
concat Tensor concatenating
sigmoid Sigmoid function
leaky_relu Leaky ReLU activation function
softmax Softmax function
1 Column vector of 1s

Table A2 Reconstruction performance of randomly sampled 10000 molecules
on the ChEMBL test set.

Metrics Success rate (%)

Bond scaffold reconstruction 93.21%
Molecular reconstruction 68.28%
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Table A3 Results of GuacaMol distribution-learning benchmarks on the
ChEMBL dataset.

Type Model Validity Uniqueness Novelty KL divergence Fréchet ChemNet Distance

SMILES LSTM[10] 0.959 1.000 0.912 0.991 0.913
AAE[11] 0.822 1.000 0.998 0.886 0.529
ORGAN[12] 0.379 0.841 0.687 0.267 0.000
VAE[13] 0.870 0.999 0.974 0.982 0.863

Graph VGAE[14] 0.830 0.944 1.000 0.554 0.016
Graph MCTS[15] 1.000 1.000 0.994 0.522 0.015
VGAE-MCTS[16] 1.000 1.000 1.000 0.659 0.009
ScafVAE 0.987 1.000 1.000 0.959 0.338

*Performance data for LSTM, AAE, ORGAN, and VAE was obtained from Ref.[17]. Performance
data for VGAE, Graph MCTS, VGAE-MCTS was obtained from Ref.[17].

Table A4 Results of GuacaMol distribution-learning benchmarks on the ZINC
dataset.

Type Model Validity Uniqueness Novelty KL divergence Fréchet ChemNet Distance

SMILES LSTM[2] 0.968 0.999 1.000 - -
CVAE[13] 0.007 0.675 1.000 - -
GVAE[18] 0.072 0.009 1.000 - -

Graph JT-VAE[1] - 0.988 0.988 0.882 0.263
CGVAE[2] 1.000 0.998 1.000 - -
GCPN[19] - 0.982 0.982 0.456 0.003
GA[20] - 0.008 0.008 0.705 0.001
MARS[21] - 0.737 0.737 0.798 0.271
HierVAE[22] - 0.131 0.131 0.602 0.001
PS-VAE[4] - 0.997 0.997 0.850 0.318
GraphAF[23] - 0.288 0.287 0.508 0.023
GraphDF[24] - 0.998 0.998 0.459 0.001
MoFlow[25] 1.000 0.999 1.000 - -
GF-VAE[26] 1.000 1.000 1.000 - -
ScafVAE 0.997 1.000 1.000 0.857 0.622

*Performance data for LSTM and CGVAE was obtained from Ref.[2]. Performance data for CVAE,
GVAE and GF-VAE was obtained from Ref.[26]. Performance data for JT-VAE, GCPN, GA,
MARS, HierVAE, PS-VAE, GraphAF and GraphDF was obtained from Ref.[4]. Performance data
for MoFlow was obtained from Ref.[25].

Table A5 Results of the shredding procedure for the ZINC dataset.

ScafVAE BRICS[27]

Cleaved compounds 218651 (100.00%) 216563 (99.04%)
Uncleaved compounds 0 (0.00%) 2088 (0.96%)

Unique fragments 95688 (100.00%) 34063 (100.00%)
1-connection fragments 16494 (17.24%) 19329 (56.74%)
2-connection fragments 39783 (41.58%) 10436 (30.64%)
3-connection fragments 30272 (31.64%) 1988 (5.84%)
4-connection fragments 7642 (7.99%) 213 (0.63%)
5-connection fragments 1242 (1.30%) 8 (0.02%)
6-connection fragments 236 (0.25%) 1 (< 0.01%)
7-connection fragments 11 (0.01%) -
8-connection fragments 6 (0.01%) -
9-connection fragments 1 (< 0.01%) -
10-connection fragments 1 (< 0.01%) -

Unique fragments (w/o attachment points) 6010 23116
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Table A6 ADMET dataset sizes.

Dataset Size

HIA_Hou 404
Caco2_Wang 625
Lipophilicity_AstraZeneca 3340
Solubility_AqSolDB 7472
HydrationFreeEnergy_FreeSolv 490
BBB_Martins 1430
PPBR_AZ 1260
VDss_Lombardo 738
Half_Life_Obach 425
Clearance_Hepatocyte_AZ 918
CYP2C19_Veith 10033
CYP2D6_Veith 10390
CYP3A4_Veith 9750
CYP1A2_Veith 9947
CYP2C9_Veith 9952
hERG 490
AMES 4418
DILI 343
Skin reaction 332
LD50_Zhu 6163

Table A7 Protein-ligand binding dataset sizes.

Protein target Number of binders

EGFR 24403
HER2 6150
P-gp 2417
BCRP 1602
PARP 1551
PI3K 12024
HDAC 3357
BRD4 10842
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Table A8 Hyperparameter search space of task-specific ML module considered
for ADMET tasks.

ML algorithm Task type Hyperparameter Search space

Adaboost Classification n_estimators {50, 100, 200}
learning_rate {0.01, 0.1, 1}
algorithm {SAMME, SAMME.R}

Regression n_estimators {50, 100, 200}
learning_rate {0.01, 0.1, 1}
loss {linear, square}

SVM Classification penalty {l1, l2}
loss {squared_hinge, hinge}
C {0.1, 1, 10, 100}
max_iter {1000, 10000}

Regression epsilon {0, 0.5, 1, 5, 10}
loss {epsilon_insensitive, squared_epsilon_insensitive}
C {0.1, 1, 10, 100}
max_iter {1000, 10000}

KNN Classification n_neighbors {1, 5, 9}
weights {uniform, distance}
leaf_size {10, 30, 50}

Regression n_neighbors {1, 5, 9}
weights {uniform, distance}
eaf_size {10, 30, 50}

MLP Classification hidden_layer_sizes {(100, 100), (300, 300)}
activation {tanh, relu}
solver {adam}
max_iter {100, 300}

Regression hidden_layer_sizes {(100, 100), (300, 300)}
activation {tanh, relu}
solver {adam}
max_iter {100, 300}

RF Classification n_estimators {50, 100, 200}
max_depth {5, 40}
max_features {auto, sqrt}
criterion {gini, entropy}

Regression n_estimators {50, 100, 200}
max_depth {5, 40}
max_features {auto, sqrt}
criterion {squared_error, friedman_mse, poisson, absolute_error}

Table A9 Weights used for selecting molecules from the Pareto front of the
generated multi-objective compounds with the pseudo-weight vector approach.

Objective Weight

HDAC docking score 0.05
BRD4 docking score 0.05
QED score 0.08
SA score 0.05
hERG inhibition 0.07
CYP2C19 inhibition 0.07
CYP2D6 inhibition 0.07
CYP3A4 inhibition 0.07
CYP1A2 inhibition 0.07
CYP2C9 inhibition 0.07
AMES mutagenicity 0.07
Drug-induced liver injury 0.07
Skin reaction 0.07
LD50 0.07
solubility 0.07
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Table A10 Time cost of ScafVAE.

ScafVAE Time cost (training) Time cost (inference)

EncoderChEMBL + DecoderChEMBL ≈ 3d23h 1.58× 10−1s
DecoderChEMBL - 4.18× 10−2s
EncoderZINC + DecoderZINC ≈ 2d14h 1.32× 10−1s
DecoderZINC - 3.48× 10−2s
Surrogate model (Adaboost) 32.73min 3.18× 10−2s
Surrogate model (SVM) 11.34min 9.17× 10−5s
Surrogate model (KNN) 0.32min 2.89× 10−3s
Surrogate model (RF) 12.62min 2.53× 10−4s
Surrogate model (MLP) 6.69min 9.71× 10−3s

*The labels ChEMBL and ZINC indicate that the model was trained on the corresponding dataset.
*The model for the ChEMBL dataset was trained with 8 NVIDIA RTX A40 GPU devices (memory
usage ≈ 40GB per GPU), and the model for the ZINC dataset was trained with 4 NVIDIA RTX
A4000 GPU devices (memory usage ≈ 13GB per GPU).
*The inference time for the encoder and decoder was tested on an NVIDIA RTX A6000 GPU
device with 50000 randomly selected molecules with a batch size of 1. The average time cost was
then reported.
*The training time for surrogate models was evaluated using 16 Intel(R) Xeon(R) Silver 4210R
CPU cores on the CYP2D6_Veith task, which has the largest number of molecules (N = 10390)
among all the ADMET tasks. Five conventional ML algorithms were tested with the latent space
trained with the ChEMBL dataset. The inference time cost was reported as the average time taken
for a batch size of 1 on a single CPU core.
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A.5 Supplementary Figures

Fig. A1 Distribution of bond perplexity in the training set.

Fig. A2 Performance of ScafVAE in predicting docking score of eight target
proteins on the test set. MAE and Spearman’s ρ values were shown for each protein.
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Fig. A4 Performance of ScafVAE in predicting QED and SA score on the test
set. MAE and Spearman’s ρ values of each protein were shown.

ROC-AUC = 0.93 ROC-AUC = 0.97

EGFR HER2 P-gp

ROC-AUC = 0.88 ROC-AUC = 0.89

BCRP

PARP

ROC-AUC = 0.90 ROC-AUC = 0.94

PI3K HDAC

ROC-AUC = 0.92

BRD4

ROC-AUC = 0.91

a b c d

e f g h

Fig. A3 Performance of ScafVAE in classifying inhibitors of eight target proteins
on the test set. ROC-AUC values were shown for each protein.
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a b

c d

Fig. A5 Visualization of representative Pareto front of docking score-based gen-
eration for the four resistance mechanisms. The selected molecule from the Pareto
front using the pseudo-weight vector approach was highlighted in red.
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a b

c d

Fig. A6 Visualization of predicted probability of binding to targets of ten gen-
erated molecules in binding probability-based generation for four resistance
mechanisms. The predicted probability of generated molecules was shown in blue, and the
distribution of those in the training set was shown in black.
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Fig. A7 Molecules generated against EGFR and HER2 with docking score-
based generation.

Fig. A8 Molecules generated against P-gp and BCRP with docking score-based
generation.

Fig. A9 Molecule generated against PARP1 and PI3K with docking score-based
generation.
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Fig. A10 Molecules generated against HDAC and BRD4 with docking score-
based generation.

Fig. A11 Molecules generated against EGFR and HER2 with binding
probability-based generation.

Fig. A12 Molecules generated against P-gp and BCRP with binding
probability-based generation.
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Fig. A13 Molecule generated against PARP1 and PI3K with binding
probability-based generation.

Fig. A14 Molecules generated against HDAC and BRD4 with binding
probability-based generation.

Fig. A15 Molecules generated against EGFR and HER2 with docking score-
based generation, with additional optimization of the QED score.
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Fig. A16 Molecules generated against HDAC and BRD4 with docking score-
based generation, with additional optimization of the QED score, hERG inhi-
bition, CYP2C19 inhibition, CYP2D6 inhibition, CYP3A4 inhibition, CYP1A2
inhibition, CYP2C9 inhibition, AMES mutagenicity, drug-induced liver injury,
skin reaction, LD50,and solubility.
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Fig. A17 Visualization of MD simulation frame shots of compound 3 with
HDAC and BRD4. (a) Frame shots of compound 3 in MD simulation with HDAC (green,
frame shot at 8.28ns) and BRD4 (cyan, frame shot at 3.46ns). The oxygen and nitrogen
atoms were colored red and blue, respectively. (b-c) Visualization of protein-ligand interac-
tion in frame shots of compound 3 with HDAC(b) and BRD4(c), respectively.
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Fig. A18 Visualization of latent space learned by ScafVAE (a) and JT-VAE (b)
via t-SNE on the ZINC dataset, respectively.

a b c

Fig. A19 Visualization of the local neighborhood of a molecule in the center.
Molecules highlighted in the dashed box share the same (b) or different (c) bond scaffolds.
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Fig. A20 Illustration of bond scaffold generation process compared with repre-
sentative atom and fragment-based methods.

a b

Fig. A21 Comparison of vocabulary size using JT-VAE with and without the
bond scaffold on the ZINC (a) and ChEMBL (b) dataset, respectively.
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a b

Fig. A22 Actual properties between the training set and generated single-
objective molecules for QED (a) and SA (b) score.
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Fig. A23 Comparison of actual properties between the training set and gener-
ated tri-objective (QED, SA, and Vina score) molecules targeting EGFR (a-c),
HER2 (d-f), P-gp (d-f) and BCRP (d-f).
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Fig. A24 Multistep retrosynthesis planning for compound 3 (a) and 4 (b),
respectively.
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