Supporting information

An imidazo[1,2-*a*]pyridine functionalized xanthene fluorescent probe for naked-eye detection of Hg²⁺ and its application in cell imaging and test strips

Xu-Hong Han,^a Piao Zhao,^a Meng-Ke Tang,^b Qing Wang^{*b} and Shu-Sheng Zhang^{*b}

^aCollege of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China

^bShandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi 276005, PR China

*Corresponding author, e-mail: <u>qing1016.hi@163.com</u>; <u>shushzhang@126.com</u>

Probe	Fluorescence Intensity change	LOD (mol/L)	Solvent medium	pH range	Application	Ref.
Control Price	Enhancement	8.1×10-7	H_2O/CH_3CN $(v: v = 1:1)$	5-9	Cell imaging	1
	55-fold enhancement	2.6×10-6	H ₂ O/CH ₃ OH (v: v = 1:1)	7-8 (when pH <6, the opening of the rhodamine ring occurs independently of the action of Hg^{2+})	Cell imaging	2
	Enhancement	1.6×10 ⁻⁸	H ₂ O/C ₂ H ₅ OH (v: v = 1:9)	6-9 (when pH <6, the opening of the rhodamine ring occurs independently of the action of Hg ²⁺)	Water analysis	3
Land the	354-fold enhancement	2.3×10 ⁻⁸	PBS/DMSO (v: v = 1:1)	5-8	Cell imaging; water analysis	4
P 100 P 100 P 100 P	146-fold enhancement	2.0×10-6	H_2O/CH_3CN $(v: v = 2:8)$		Paper strip test	5
NC NY ROAD NY	Enhancement	1.2×10-7	PBS/C ₂ H ₅ OH (v: v = 3:7)	6-7.5 (when pH <6, the opening of the rhodamine ring occurs independently of the action of Hg ²⁺)	Cell imaging	6
	30-fold enhancement	3.3×10-7	H ₂ O/C ₂ H ₅ OH (v: v = 1:1)	5-7 (when pH <5, the opening of the rhodamine ring occurs independently of the action of Hg ²⁺)		7
	decreasement	2.5×10-7	H ₂ O	2-12	Water analysis	8
	65-fold enhancement	5.7×10 ⁻⁸	H_2O/C_2H_5OH (v: v = 4:1)	5-11	Cell imaging;	This work

Table S1 Comparison of reported xanthene-based Hg²⁺ fluorescent probe with **Rh-Ip-Hy.**

Fig. S1 The fluorescent responses of Rh-Ip-Hy (5 $\mu M)$ with Hg^+ (50 $\mu M)$ in different solvent systems.

Fig. S2 The limit of detection (LOD) of probe Rh-Ip-Hy towards Hg²⁺ by fluorescence measured at 575 nm.

Fig. S3 HRMS spectra of Rh-Ip-Hy a) before and b) after the addition of Hg^{2+} (3.0 equiv.).

Fig. S4 ¹H NMR spectra of compound Rh-Ip in CDCl₃.

Fig. S5 ¹³C NMR spectra of compound Rh-Ip in CDCl₃.

Fig. S6 HRMS spectra of compound Rh-Ip.

Fig. S7 ¹H NMR spectra of probe Rh-Ip-Hy in CDCl₃.

Fig. S8 ¹³C NMR spectra of probe Rh-Ip-Hy in CDCl₃.

Fig. S9 HRMS spectra of probe Rh-Ip-Hy.

References

 Q. Zhang, H. Ding, X. Xu, H. Wang, G. Liu and S. Pu, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2022, 276, 121242.

- 2. B. Li, F. Tian and Y. Hua, RSC Adv., 2022, 12, 21129-21134
- 3. A. Hazra, P. Ghosh and P. Roy, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2022, 271, 120905.
- W. Lai, Y. Lin, T. Ye, Y. Yu, H. Zhou, L. Li, G. Mao and J. Wang, *J. Fluoresc.*, 2023, 33, 1413-1419.
- P. K. Sada, A. Bar, A. K. Jassal, A. K. Singh, L. Singh and A. Rai, *Anal. Chim. Acta.*, 2023, 1263, 341299.
- 6. S. Erdemir, M. Oguz and M. Sait, J. Hazard. Mater., 2023, 452, 131278.
- 7. A. S. Hussein, F. Lafzi, S. Bayindir, H. Kilic and M. Toprak, ChemPlusChem, 2024, e202300649.
- 8. Y. B. Barot, V. Anand and R. Mishra, *The Journal of Physical Chemistry B*, 2023, **127** (49): 10529-10541.