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Table S1. Sequences of crRNA, SARS-CoV-2 N gene target and LFA reporter. 

Name Sequence (5’ -> 3’) Source Note Ref. 
crRNA 

SARS-
CoV-2 
crRNA 

GACUACCCCAAAAACGA 
AGGGGACUAAAACaaucug 

aggguccaccaaacguaaugcg 

IDT - 7 

Reporter 
LFA 

Reporter 
/FAM/rUrU rUrUrU rUrUrU rUrUrU rUrUrU 

/Bio/ 
IDT - 7 

Target 
SARS-
CoV-2 
Target 

gucugauaauggaccccaaaaucagcgaaa 
ugcaccccgcauuacguuugguggacccu 
cagauucaacuggcaguaaccagaauggag 

aacgcaguggggcgcg 

IDT SARS-
CoV-2 (Ref 

Seq: 
NC_045512
.2) N gene 
fragment: 
28,276– 
28,380 
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Table S2. Summary of Python packages and corresponding version used in this work. 

Package Version 
albumentation 1.4.6 

efficientnet 0.7.1 
imageio 2.34.1 

matplotlib 3.8.4 
numpy 1.26.4 

opencv-python 4.9.0.80 
pandas 2.2.2 
pillow 10.3.0 

scikit-image 0.23.2 
scikit-learn 1.4.2 

scipy 1.13.0 
SimpleITK 2.3.1 

torchsummary 1.5.1 
torchtoolbox 0.1.8.2 
torchvision 0.18.0 

torch 2.3.0 
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Table S3. Accuracy of the U-Net- and MnUV3-based models tested using the training and 
evaluation datasets. The models were trained using the following hyperparameters: Learning 
rate, 1e-4; Optimizer, Adam; Batch size, 16; Number of epochs trained, 300. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Architecture Image Degradation Results Using Training Dataset Results Using Evaluation Dataset 

 Training Evaluation 
Mean Training 

Accuracy 
Max Training 

Accuracy 

Mean 
Validation 
Accuracy 

Max 
Validation 
Accuracy  

Epoch # 

U-Net N N 0.972 േ 0.001 0.974 േ 0.0004 0.958 േ 0.002 0.961 േ 0.001 287 

U-Net Y Y 0.904 േ 0.002 0.909 േ 0.001 0.887 േ 0.002 0.891 േ 0.001 300 

U-Net Y N 0.905 േ 0.002 0.910 േ 0.001 0.929 േ 0.002 0.932 േ 0.001 298 

MnUV3 N N 0.972 േ 0.002 0.974 േ 0.001 0.961 േ 0.001 0.963 േ 0.001 290 

MnUV3 Y Y 0.889 േ 0.002 0.894 േ 0.002 0.878 േ 0.003 0.886 േ 0.003 293 

MnUV3 Y N 0.888 േ 0.002 0.891 േ 0.001 0.927 േ 0.001 0.930 േ 0.001 297 
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Table S4. Performance of the classification module tested using the training and evaluation 
datasets. The model was trained using the following hyperparameters: Learning rate, 1e-3 
(Epoch < 20), else 1e-4; Optimizer, Adam; Batch size, 128; Number of epochs trained, 300. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Architecture Results Using Training Dataset Results Using Evaluation Dataset 

 Mean Training 
Accuracy 

Max Training 
Accuracy 

Mean Validation 
Accuracy 

Max Validation 
Accuracy  

Epoch # 

ClassNet 0.968 േ 0.005 0.976 േ 0.003 0.966 േ 0.003 0.974 േ 0.003 294 
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Table S5. Optimal classification threshold values using the U-Net- and MnUV3-based models 
at epochs 9, 149 and 299. Each value represents the average from 10 trials. 

 
U-Net MnUV3 

Epoch 9 0.936 0.938 

Epoch 149 0.918 0.922 

Epoch 299 0.922 0.914 
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Table S6. Comparison of ML methods for interpretation of smartphone-captured images of 
LFA test results. 

Type of 
Assay 

Method/ 
Algorithm(s) 

Smartphone(s) 
Tested 

Standardized 
Images1 
(Y/N) 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Ref. 

IA 

Feature extraction 
with self-
supervised 
learning 

(FeatureNet); 
Model adaptation 
with supervised 

contrastive 
learning 

Training: iPhone 
X 

Evaluation: 
iPhone X, 

iPhone 7, and 
Samsung 
Galaxy J3 

N >99 98.2 ± 0.8 99.1± 0.2 1 

IA 

Convolutional and 
multiscale network 

for LFA 
identification; 

GAN for abnormal 
features 

identification 

Various iPhones 
and Android-
based phones 

Y 98.6 100 99.28 2 

IA 

SVM/KNN/Weigh
ted-

KNN/Decision-
tree based 

classification 

OnePlus One Y 95.56 - - 3 

IA 

Three CNNs 
(ResNet50, 

MobileNetv2, 
MobileNetv3) and 

SVM-based 
classification 

Samsung SM-
P585 tablet 

Y 80-97 97.8 100 4 

IA 
Supervised ANN-

based 
classification 

Apple iPhone 4, 
4S and 5 

Y 96 - - 5 

IA 
SVM-based 
classification 

Samsung 
Galaxy S7 Edge 

Y 98 - - 6 

CRISPR-
Cas 

Two CNNs for 
segmentation; 

ClassNet 
(Convolution+Ma
xpolling layers) 

network for 
classification. 

iPhone 13 and 
Samsung A52 

5G 
N 96.5 96.0 98.3 

This 
work 

 
Notes and abbreviations: 
1 Smartphone-captured images were mathematically transformed so that all of the images in the dataset 
had a consistent intensity or other work-specific features. 
 
IA - Immunoassay 
GAN - Generative adversarial network 
SVM - Support vector machine 
KNN - K-nearest neighbors 
CNN - Convolutional neural network 
ANN - Artificial neural network 
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Figure S1. Photograph of the LFA device. Scale bar, 10 mm. 
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Figure S2. Composition of the dataset. The outer ring illustrates the distribution of images in 
the training, evaluation and validation datasets and the inner ring illustrates the distribution of 
positives and negatives within these datasets. 
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Figure S3. (A) Density plots of average image intensity distribution for high-resolution photos 
and cropped images. (B) Density plots of average binary label area corresponding to high-
resolution photos and cropped images. The distributions are normalized to 1 (area under each 
curve). 
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Figure S4. Segmentation performance of ML models. Accuracy and loss vs. epoch curves for 
the (A) U-Net-based model and (B) MnUV3-based model. Subplots show magnified views of 
the curves at upper (accuracy: 0.65-1.0) and lower (loss: 0.0-0.004) y-axis bounds. Each curve 
represents the mean of 10 trials. 
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Figure S5. Segmentation performance of the trained ML models. (A) Dice score scatter plot vs 
label area (transformed and original) for the U-Net- and MnUV3-based models using different 
datasets with and without image degradation. The horizontal dashed lines represent the 
boundary of the 95th percentile. (B) Dice score distribution violin plot categorized by images of 
LFA devices tested on negative and positive samples. 
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Figure S6. Comparison of binary label areas generated from cropped LFA device images 
predicted by the U-Net- and MnUV3-based models to those determined by human annotation. 
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Figure S7. Bland-Altman plots (model-predicted binary label area – human-annotated binary 
label area vs. mean binary label area) showing the agreement between the model-predicted 
binary label areas and human-annotated binary label areas generated from cropped LFA device 
images. 
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Figure S8. Performance of the classification module. Accuracy and loss vs. epoch curves for 
model training and evaluation. Insets show magnified views of the curves at upper (accuracy: 
0.93-0.98) and lower (loss: 0-0.13) y-axis bounds. Each curve represents the mean of 10 trials. 
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