SUPPLEMENTARY MATERIAL

An electrochemical biosensor utilizing a cobalt-based DNA-binding metallointercalator to amplify pathogenic nucleic acid detection

Joshua Rainbow^{a,b,*,†}, Emily Judd-Cooper^c, Simon Pope^c, Niek Buurma^c, Pedro Estrela^{a,b,*}

^{a.} Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK.

^{b.} Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK

^{c.} Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.

* Corresponding authors: Email: Joshua.rainbow@wyss.harvard.edu (Joshua Rainbow), P.Estrela@bath.ac.uk (Pedro Estrela).

⁺ Current address: Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.

Supplementary Material

Figures

Fig. S1 Dissolution of [Co(GA)₂(aqphen)]Cl in MilliQ and 50 mM PB + 100 mM K₂SO₄. Dilution involved a) re-suspension of [Co(GA)₂(aqphen)]Cl in MilliQ at a concentration of 1 mM, followed by b) dilution in MilliQ to 600 μM and finally c) dilution to 200 μM working concentration in 50 mM PB + 100 mM K₂SO₄.

Journal Name

Fig. S2 Dissolution of $[Co(GA)_2(aqphen)]Cl$ in DMSO and 50 mM PB + 100 mM K₂SO₄. Two different dilution methods were tested: first, a) $[Co(GA)_2(aqphen)]Cl$ was dissolved in 100% DMSO to 1 mM and sonicated at 70 °C for 2 hours, b) diluted to 600 μ M in 100% DMSO and c) diluted to a final working concentration of 200 μ M in 50 mM PB + 100 mM K₂SO₄. d) shows aggregation and settling of $[Co(GA)_2(aqphen)]Cl$ after 2 minutes. The second dilution method involved a) $[Co(GA)_2(aqphen)]Cl$ dissolved in 100% DMSO and sonicated at 70 °C for 2 hours followed by e) dilution to 200 μ M directly in 50 mM PB + 100 mM K₂SO₄.

The dose-response curve for label-free detection of ssDNA was fitted with a non-linear regression curve for specific binding following the equation:

$$Y = d + \frac{a - d}{1 + \left(\frac{x}{c}\right)^b}$$

Where *d* is the maximum value obtained, *x* is the concentration of the target, *c* is the point of inflection and *b* is the hillslope. Using this model, the dose-response curve was fit, and an R^2 value of 0.9611 was given suggesting a strong correlation (Fig. S3). The IC50 value was observed to be 43.76 nM and the hillslope to be 0.6447 which is usual for a negatively cooperative binding relationship (Table S1).

Fig. S3 Charge transfer resistance $\Delta R_{ct}/R_{ct.0}$ dose-response curve versus DNA target oligonucleotide concentration for detection of Escherichia coli O157:H7 ssDNA in 50 mM PB + 100 mM K₂SO₄ containing 2 mM [Fe(CN)₆]^{3-/4-} (n \geq 3).

- Anodic Peak Current (μA) - Cathodic Peak Current (μA)

Fig. S4 Cyclic voltammetry data showing the relationship between peak current and (i) scan rate or (ii) the square root of scan rate for the redox process of [Fe(CN)₆]^{3/4-} (n ≥ 3).

Fig. S5 Cyclic voltammetry data showing the relationship between peak current and (i) scan rate or (ii) the square root of scan rate for the redox process of $[Co(GA)_2(aqphen)]Cl (n \ge 3)$.

Journal Name

95% Confidence Intervals (Tukey)

Fig. S6 Multiple comparisons confidence interval (95%) plot of the ordinary one-way ANOVA from the dose-response of co-incubated target ssDNA with [Co(GA)₂(apphen)]Cl.

Sensors & Diagnostics

Tables

Table S1 Non-linear fitting of the unlabeled dose-response for E. coli DNA detection using faradaic EIS in 2 mM [Fe(CN)₆]^{3:/4-}.

Sigmoidal, 4PL, X is log(concentration)				
Best-fit values				
Тор	25.19			
Bottom	-0.7801			
LogIC50	1.641			
HillSlope	0.6447			
IC50	43.76			
Span	25.97			
95% CI (profile likelihood)				
Тор	21.08 to 48.08			
Bottom	-3.896 to 0.8634			
LogIC50	1.330 to 2.966			
HillSlope	0.2964 to 1.074			
IC50	21.39 to 924.9			
Goodness of Fit				
Degrees of Freedom	20			
R squared	0.9611			
Sum of Squares	72.26			
Sy.x	1.901			
Number of points				
# of X values	24			
# Y values analyzed	24			

Table S2 Non-linear fitting of the labeled dose-response for E. coli DNA detection using DPV in 100 mM PB with 200 mM [Co(GA)₂(apphen)]Cl intercalation.

Sigmoidal, 4PL, X is log(concentration)	
Best-fit values	
Тор	0.4480
Bottom	-99.93
LogIC50	-11.40
HillSlope	0.3242
IC50	3.955e-012
Span	100.4
95% CI (profile likelihood)	
Тор	0.4405 to 0.4578
Bottom	???
LogIC50	??? to -1.535
HillSlope	0.2295 to 0.4444
IC50	??? to 0.02918
Goodness of Fit	
Degrees of Freedom	14
R squared	0.9648
Sum of Squares	0.0006158
Sy.x	0.006632
Number of points	
# of X values	18
# Y values analyzed	18

ARTICLE

1 vs. 1000

10 vs. 100

10 vs. 1000

100 vs. 1000

0.4253

0.4360

0.4360

0.4460

0.4460

0.4460

0.4460

0.4460

Table S3 Multiple comparisons ordinary one-way ANOVA carried out for the labeled dose-response for E. coli DNA detection using DPV in 100 mM PB with 200 mM [Co(GA)₂(aqphen)]Cl intercalation.

Number of families	1							
Number of comparisons per family	15							
Alpha	0.05							
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Below threshold?	Summary	Adjusted P Value			
0 vs. 0.1	-0.05067	-0.06896 to -0.03237	Yes	****	<0.0001	A-B		
0 vs. 1	-0.06767	-0.08596 to -0.04937	Yes	****	<0.0001	A-C		
0 vs. 10	-0.07833	-0.09663 to -0.06004	Yes	****	<0.0001	A-D		
0 vs. 100	-0.08833	-0.1066 to -0.07004	Yes	****	<0.0001	A-E		
0 vs. 1000	-0.08833	-0.1066 to -0.07004	Yes	****	<0.0001	A-F		
0.1 vs. 1	-0.01700	-0.03530 to 0.001295	No	ns	0.0742	B-C		
0.1 vs. 10	-0.02767	-0.04596 to -0.009372	Yes	**	0.0028	B-D		
0.1 vs. 100	-0.03767	-0.05596 to -0.01937	Yes	***	0.0002	B-E		
0.1 vs. 1000	-0.03767	-0.05596 to -0.01937	Yes	***	0.0002	B-F		
1 vs. 10	-0.01067	-0.02896 to 0.007628	No	ns	0.4162	C-D		
1 vs. 100	-0.02067	-0.03896 to -0.002372	Yes	*	0.0240	C-E		
1 vs. 1000	-0.02067	-0.03896 to -0.002372	Yes	*	0.0240	C-F		
10 vs. 100	-0.01000	-0.02830 to 0.008295	No	ns	0.4804	D-E		
10 vs. 1000	-0.01000	-0.02830 to 0.008295	No	ns	0.4804	D-F		
100 vs. 1000	0.000	-0.01830 to 0.01830	No	ns	>0.9999	E-F		
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	q	DF
0 vs. 0.1	0.3577	0.4083	-0.05067	0.005447	3	3	13.16	12
0 vs. 1	0.3577	0.4253	-0.06767	0.005447	3	3	17.57	12
0 vs. 10	0.3577	0.4360	-0.07833	0.005447	3	3	20.34	12
0 vs. 100	0.3577	0.4460	-0.08833	0.005447	3	3	22.94	12
0 vs. 1000	0.3577	0.4460	-0.08833	0.005447	3	3	22.94	12
0.1 vs. 1	0.4083	0.4253	-0.01700	0.005447	3	3	4.414	12
0.1 vs. 10	0.4083	0.4360	-0.02767	0.005447	3	3	7.184	12
0.1 vs. 100	0.4083	0.4460	-0.03767	0.005447	3	3	9.780	12
0.1 vs. 1000	0.4083	0.4460	-0.03767	0.005447	3	3	9.780	12
1 vs. 10	0.4253	0.4360	-0.01067	0.005447	3	3	2.770	12
1 vs. 100	0.4253	0.4460	-0.02067	0.005447	3	3	5.366	12

-0.02067

-0.01000

-0.01000

0.000

0.005447

0.005447

0.005447

0.005447

3

3

3

3

3

3

3

3

5.366

2.596

2.596

0.000

12

12

12

12