Synergy of Nanocrystalline Carbon Nitride with Cu Single Atom Catalyst Leads to Selective Photocatalytic Reduction of CO₂ to Methanol

Tara M. LeMercier,^a Madasamy Thangamuthu,^{*a} Emerson C. Kohlrausch,^a Yifan Chen,^a Craig T. Stoppiello,^b Michael W. Fay,^b Graham A. Rance,^b Gazi N. Aliev,^c Wolfgang Theis,^c Johannes Biskupek,^d Ute Kaiser,^d Anabel E. Lanterna,^a Jesum Alves Fernandes,^a and Andrei N. Khlobystov^{*a}

^aSchool of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

^bNanoscale and Microscale Research Centre (nmRC), University of Nottingham, Nottingham, NG7 2QL, United Kingdom

^cSchool of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

^dElectron Microscopy Group of Materials Science, Ulm University, 89081 Ulm, Germany

E-mail: andrei.khlobystov@nottignham.ac.uk, madasamy.thangamuthu1@nottingham.ac.uk

Supporting information

Figure S1. Raman analysis with a 785 nm laser indicates melon structure for both materials and $b-C_3N_4$ baseline fluorescence is higher due to a higher rate of charge recombination.

Figure S2. TGA in air shows oxidation onset temperature increases for $nc-C_3N_4$ (from 540 °C to 700 °C).

Figure S3. Powder XRD comparison of all materials: $Cu/nc-C_3N_4$ (dark blue) and $Cu/b-C_3N_4$ (light green) show no diffractions related to Cu and only have those pertinent to C_3N_4 materials. $nc-C_3N_4$ (dark green) and $b-C_3N_4$ (purple) show diffractions (100) related to the in-plane tri-striazine and (002) related to the interlayer stacking.

Figure S4. TGA of nc- C_3N_4 emulating reaction conditions (500 °C, 2hr) in air (black) and Ar (Red). It is observed (insert) that thermal treatment in air shows higher residual weight. Suggesting that some oxidation has occurred.

Sample	State	Binding Energy (eV)	Peak Area	% Peak Area
$b-C_3N_4$	C- N = C	398.6	7926.71	45.2
	$N-(C)_3$	399.7	4743.46	27.0
	С-N-Н	401.0	4877.56	27.8
$nc-C_3N_4$	C- N = C	398.6	14900.75	65.3
	<i>N</i> -(<i>C</i>) ₃	399.8	5169.3	22.7
	С-N-Н	401.4	2753.38	12.0

Table S1: N 1s XPS results for C₃N₄ materials, including % peak area.

Sample	Oxidation State	Binding Energy (eV)	Peak Area	% Peak
				Area
b-C ₃ N ₄	Cu ^I	932.66	2894.94	44.1
	Cu^{II}	934.18	2406.05	36.7
	Cu ^{II} Sat2	939.00	774.71	11.8
	Cu ^I Sat1	943.84	484.38	7.4
nc-C ₃ N ₄	Cu^I	932.48	3088.2	63.7
	Cu^{II}	934.67	1220.03	25.2
	Cu ^{II} Sat2	941.6	412.27	2.6
	Cu ^I Sat1	944.29	127.75	8.5

Table S2: Cu $p_{3/2}$ XPS results for C_3N_4 materials, including % peak area.

Table S3: C 1s XPS results for C_3N_4 materials, including % peak area.

Sample	Oxidation State	Binding Energy (eV)	Peak Area	% Peak
				Area
$b-C_3N_4$	С-С	284.8	2171.28	17.8
	С-ОН	286.2	1240.01	10.2
	$C - (N)_{3}$	288.3	6557.01	53.7
	C-NH	290.2	2250.07	18.4
$nc-C_3N_4$	С-С	284.8	2171.28	22.7
	С-ОН	286.2	971.99	6.6
	C-(N) ₃	288.1	8621.38	58.3
	C-NH	289.3	1840.47	12.5

Figure S5. SEM image of $b-C_3N_4$ particles. Note the non-uniform morphology and broad size distribution (1-10 μ m).

Figure S6. AC-STEM images from which particle analysis reveals single atoms (white circles) have a prevalence of around 70 % with the remainder of clusters not exceeding 3 atoms.

Figure S7. UV-Vis absorption spectra are shown for all materials to have an edge commencing at 450 nm, with a peak at 375 nm (black dotted line). Cu-containing materials show higher absorption intensities.

Figure S8. Tauc Plot analysis shows materials have a bang gap between 2.6 and 2.67 eV (dot/dash intercept extrapolation).

Figure S9. Linear region of flat band potential of $b-C_3N_4$ (black dots). Intercept extrapolation (red line) shows a conduction band potential of -0.87 V vs Ag/AgCl.

Figure S10. Change in current density observed from photocurrent response measurements.

Figure S11. The stability of Cu/nc-C₃N₄ for prolonged methanol production was tested by measuring the methanol concentration for 8 h (composed of 4 consecutives 2 h runs). A 77% decrease in activity is observed during the second cycle (70 μ mol g_{cat}⁻¹ h⁻¹) and further by 50% during the third cycle (34 μ mol g_{cat}⁻¹ h⁻¹). Methanol is only found in trace amounts upon the fourth cycle. These results suggest that the present Cu/nc-C₃N₄ catalyst might have changed over time, or the methanol produced during the reaction may be consumed as a hole-scavenger by a long-term reaction. It strongly suggests that product separation is crucial as soon as it is produced during the reaction.

Figure S12. The AQY was obtained using $Cu/nc-C_3N_4$ (red line) for CH_4 and CH_3OH and the absorption profile of $Cu/nc-C_3N_4$ (black dotted line).

Figure S13. Tri-s-triazine vacancy of C_3N_4 with spacing corresponding to i) 0.26 nm; ii) 0.42 nm and iii) 0.23 nm. Cu(I) with radius 0.074 nm (red circle) is most likely to bind at sites i) assuming theoretical Cu-N bond length values of 0.196 nm.¹

Figure S14. Schematic representation of the Cu binding to $nc-C_3N_4$ sites achieved through the increased crystallinity, and dangling bonds in these regions.

Figure S15. Schematic of custom-built Pyrex continuous flow photoreactor equipped with two mass flow controllers. Reactor volume: 28.5 mL, total pipeline volume 5.3 mL.

Figure S16. Control reaction under Ar (blue) conditions show trace amounts of methanol observed by NMR spectroscopy when compared to the catalyst under CO_2 saturation (green).

Figure S17. ¹H NMR spectroscopy analysis of methanol formed during CO_2 photoreduction across Cu/nc-C₃N₄ and a control reaction under Ar across Cu/nc-C₃N₄ which evidences the carbon source for methanol formation is CO_2 .

References

1. A. Sasmal, et al., Chemical Communications, 2013, 49, 7806-7808.