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Supporting information

Figure S1. Raman analysis with a 785 nm laser indicates melon structure for both materials 
and b-C3N4 baseline fluorescence is higher due to a higher rate of charge recombination. 
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Figure S2. TGA in air shows oxidation onset temperature increases for nc-C3N4 (from 540 °C 
to 700 °C).

Figure S3. Powder XRD comparison of all materials: Cu/nc-C3N4 (dark blue) and Cu/b-C3N4 
(light green) show no diffractions related to Cu and only have those pertinent to C3N4 materials. 
nc-C3N4 (dark green) and b-C3N4 (purple) show diffractions (100) related to the in-plane tri-s-
triazine and (002) related to the interlayer stacking. 
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Figure S4. TGA of nc-C3N4 emulating reaction conditions (500 °C, 2hr) in air (black) and Ar 
(Red). It is observed (insert) that thermal treatment in air shows higher residual weight. 
Suggesting that some oxidation has occurred.

Table S1: N 1s XPS results for C3N4 materials, including % peak area.

Sample State Binding Energy (eV) Peak Area % Peak Area

C-N=C 398.6 7926.71 45.2

N-(C)3 399.7 4743.46 27.0

b-C3N4

C-N-H 401.0 4877.56 27.8

C-N=C 398.6 14900.75 65.3nc-C3N4

N-(C)3 399.8 5169.3 22.7

C-N-H 401.4 2753.38 12.0
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Table S2: Cu p3/2 XPS results for C3N4 materials, including % peak area.

Sample Oxidation State Binding Energy (eV) Peak Area % Peak 

Area

CuI 932.66 2894.94 44.1

CuII 934.18 2406.05 36.7

b-C3N4

CuII Sat2 939.00 774.71 11.8

CuI Sat1 943.84 484.38 7.4

CuI 932.48 3088.2 63.7nc-C3N4

CuII 934.67 1220.03 25.2

CuII Sat2 941.6 412.27 2.6

CuI Sat1 944.29 127.75 8.5

Table S3: C 1s XPS results for C3N4 materials, including % peak area.

Sample Oxidation State Binding Energy (eV) Peak  Area % Peak 

Area

b-C3N4 C-C 284.8 2171.28 17.8

C-OH 286.2 1240.01 10.2

C-(N)3 288.3 6557.01 53.7

C-NH 290.2 2250.07 18.4

nc-C3N4 C-C 284.8 2171.28 22.7

C-OH 286.2 971.99 6.6

C-(N)3 288.1 8621.38 58.3

C-NH 289.3 1840.47 12.5
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Figure S5. SEM image of b-C3N4 particles. Note the non-uniform morphology and broad size 
distribution (1-10 μm).
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Figure S6. AC-STEM images from which particle analysis reveals single atoms (white 
circles) have a prevalence of around 70 % with the remainder of clusters not exceeding 3 
atoms. 
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Figure S7. UV-Vis absorption spectra are shown for all materials to have an edge commencing 
at 450 nm, with a peak at 375 nm (black dotted line). Cu-containing materials show higher 
absorption intensities.

Figure S8. Tauc Plot analysis shows materials have a bang gap between 2.6 and 2.67 eV 
(dot/dash intercept extrapolation).
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Figure S9. Linear region of flat band potential of b-C3N4 (black dots). Intercept extrapolation 
(red line) shows a conduction band potential of -0.87 V vs Ag/AgCl.

Figure S10. Change in current density observed from photocurrent response measurements. 
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 Figure S11. The stability of Cu/nc-C3N4 for prolonged methanol production was tested by 
measuring the methanol concentration for 8 h (composed of 4 consecutives 2 h runs). A 77% 
decrease in activity is observed during the second cycle (70 μmol gcat

-1 h-1) and further by 50% 
during the third cycle (34 μmol gcat

-1 h-1). Methanol is only found in trace amounts upon the 
fourth cycle. These results suggest that the present Cu/nc-C3N4 catalyst might have changed 
over time, or the methanol produced during the reaction may be consumed as a hole-scavenger 
by a long-term reaction. It strongly suggests that product separation is crucial as soon as it is 
produced during the reaction.
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Figure S12. The AQY was obtained using Cu/nc-C3N4 (red line) for CH4 and CH3OH and the 
absorption profile of Cu/nc-C3N4 (black dotted line).

Figure S13. Tri-s-triazine vacancy of C3N4 with spacing corresponding to i) 0.26 nm; ii) 0.42 
nm and iii) 0.23 nm. Cu(I) with radius 0.074 nm (red circle) is most likely to bind at sites i) 
assuming theoretical Cu-N bond length values of 0.196 nm.1
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Figure S14. Schematic representation of the Cu binding to nc-C3N4 sites achieved through 
the increased crystallinity, and dangling bonds in these regions.

Figure S15. Schematic of custom-built Pyrex continuous flow photoreactor equipped with two 
mass flow controllers. Reactor volume: 28.5 mL, total pipeline volume 5.3 mL.
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Figure S16. Control reaction under Ar (blue) conditions show trace amounts of methanol 
observed by NMR spectroscopy when compared to the catalyst under CO2 saturation (green).
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Figure S17. 1H NMR spectroscopy analysis of methanol formed during CO2 photoreduction 
across Cu/nc-C3N4 and a control reaction under Ar across Cu/nc-C3N4 which evidences the 
carbon source for methanol formation is CO2.
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