Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Efficient CO₂ fixation under atmospheric pressure using metal and halide-free heterogeneous catalyst

Saikat Mandal[#], Khushboo S. Paliwal[#], Antarip Mitra[#], and Venkataramanan Mahalingam*

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata,

Mohanpur, West Bengal, 741246, India

E-mail: mvenkataramanan@yahoo.com

#These authors contributed equally

Materials

Epichlorohydrin and other epoxides (TCI and Sigma Aldrich), 2,4,6-triamino pyrimidine (Merck), terephthaldehyde (Sigma Aldrich) and organic solvents DMF, methanol and acetone (Merck), NMR solvents, CDCl₃ (Sigma Aldrich) are used as obtained.

Instrumentation

PXRD measurements are carried out in a Rigaku MiniFlex600 diffractometer attached with a D/tex ultradetector and Cu Kα source operating at 15 mA and 40 kV. FT-IR measurements are performed in a Perkin Elmer Spectrum instrument. Field emission SEM images and EDS are acquired on a SUPRA 55-VP instrument with patented GEMINI column technology. Prior to measurements, the samples are coated with a thin layer of gold-palladium to avoid charging effects. The TEM images and EDS are collected on a JEM 2100F field emission transmission electron microscope operating at 200 kV. ¹H spectra are recorded on a Bruker AVANCE Ultrashield Plus 500 MHz spectrometer.

Epoxide	Temperature of reaction	Time	Conversion	
	Room temperature	24 h	No conversion	
(B.P. 34 °C)				
	Room temperature	24 h	No conversion	
B.P. 65 °C				
	60 °C	24 h	>10%	

Table S1. Reaction of Propylene oxide and Butylene oxide with CO₂

Conditions: epoxide (15 mmol); POP (100 mg); P_{CO2} (1 atm, balloon).

Cyclic Carbonate	Weight of	Weight Obtained	Isolated yield	
	Product (mg)	(mg)	(%)	
	2039	1632	80 %	
o= € Br	2699	2537	94 %	
	2613	1959	75 %	
	2613	2195	84 %	
	2370	1967	83 %	
	2910	2183	75 %	
	2161	1729	80 %	

Table S2. Isolated yield of four synthesized cyclic carbonates

Conditions: epoxide (15 mmol); POP (100 mg); P_{CO2} (1 atm, balloon); time (24 h).

Entry	Catalyst	Pressure (MPa)	Temp	Time	Nature	Reference
1	Covalent triazine frameworks	1 MPa	130	4	Heterogeneous	S1
2	Bio-based organic polyamides	1 MPa	110	25	Heterogeneous	S2
3	Polyurethane	9 MPa	150	16	Heterogeneous	S3
4	Covalent triazine frameworks 2	0.69 MPa	130	4	Heterogeneous	S4
5	TBD@Merrifield	0.5 MPa	70	18	Heterogeneous	S5
6	Triazine-based nanoporous polymer	0.4 MPa	100	20	Heterogeneous	S6
7	PyridylSalicylimines	0.1 MPa	100	24	Heterogeneous	S7
8	4-aminopyridines	0.1 MPa	100	24	Heterogeneous	S8
9	Zn-adenine MOF	0.1 MPa	100	24	Heterogeneous	S9
10	Al-PDC (co-ordination polymer)	0.1 MPa	100	20	Heterogeneous	S10
11	α-AlOOH	0.1 MPa	100	24	Heterogeneous	S11
12	Porous organic polymer (POP)	0.1 MPa	105	24	Heterogeneou s	This work

Table S3- Comparison of the catalytic activity of different materials which are active for CO_2 fixation with epoxides under metal-free and halide-free conditions

Figure S1- Thermogravimetric analysis (TGA) plots of 2,4,6-triaminopyrimidine, terephthaldehyde, and POP.

Figure S2- Powder X-ray diffraction (PXRD) patterns of the fresh and recycled POP.

Figure S3- ¹H NMR (CDCl₃, 500 MHz) spectrum of the 4-(chloromethyl)-1,3-dioxolan-2-one.

Figure S4. ¹H NMR (CDCl₃, 500 MHz) spectrum for the cycloaddition reaction of epichlorohydrin with CO_2 using POP. Mesitylene was used as an internal standard. Carbon balance for this reaction is found to be 98.1%.

Figure S5- ¹H NMR (CDCl₃, 500 MHz) spectrum of the 4-(bromomethyl)-1,3-dioxolan-2-one.

Figure S6: Reaction mixture consisting of Glycidol, glycerol carbonate and side products like glycerine and polyethers. The side products are detected by GC-MS.

Figure S7: GC-MS spectra of the reaction mixture showing the presence of side products like glycerine.

Figure S8- 1H-NMR of reaction mixture consisting of 4-(phenoxy methyl)-1,3-dioxolan-2-one (CDCl₃, 500 MHz) and phenyl glycidyl ether (90% conversion, 130 °C)

Figure S9- ¹H NMR (CDCl₃, 500 MHz) spectrum of the 4-(tert-butoxymethyl)-1,3-dioxolan-2-one.

Figure S10- ¹H NMR (CDCl₃, 500 MHz) spectrum of the 4-(n-butoxymethyl)-1,3-dioxolan-2-one.

Figure S11- ¹H NMR (CDCl₃, 500 MHz) spectrum of the 4-((allyloxy)methyl)-1,3-dioxolan-2-one.

Figure S12- ¹H NMR (CDCl₃, 500 MHz) spectrum of the 4-(phenoxymethyl)-1,3-dioxolan-2-one.

Figure S13. ¹H NMR (CDCl₃, 500 MHz) spectrum for the cycloaddition reaction of 2-(phenoxymethyl)oxirane with CO_2 using POP. Mesitylene was used as an internal standard. Carbon balance for this reaction is found to be 100%.

Figure S14. ¹H NMR (CDCl₃, 500 MHz) spectrum for the cycloaddition reaction of 2-phenyloxirane with CO₂ using POP and DMF (0.3 mmol).

Figure S15. ¹H NMR (CDCl₃, 500 MHz) spectrum of the 4-butyl-1,3-dioxolan-2-one.

Figure S16. ¹H-NMR spectrum of the reaction mixture after sixth cycle of catalysis. The mixture contains epichlorohydrin and 4- (chloromethyl)-1,3-dioxolan-2-one (64% conversion, CDCl₃)

Figure S17. EDS spectrum of (a) fresh catalyst; (b) catalyst recovered after five catalytic cycles.

Figure S18. N₂ gas adsorption–desorption isotherm plot of POP obtained after 5th cycle of recyclability experiment.

Figure S19. Comparison of FT-IR spectra. (a) as-prepared POP and recycled POP; (b) asprepared POP and after heating it at 150 °C.

Figure S20. XPS of recycled catalyst (a) Survey scan showing the presence of chlorine which was absent in pre-catalyst; (b) Deconvoluted 2p Cl spectrum in the recycled catalyst (Chlorine content: 1.2%)

Figure S21: Digital image of the reaction setup showing the shrinking of the balloon through the course of reaction: (a) Start of the reaction; (b) after 12 hours; (c) After completion of the reaction (24 hours)

References

- S1 Y. M. Li, L. Yang, L. Sun, L. Ma, W. Q. Deng and Z. Li, J. Mater. Chem. A, 2019, 7, 26071– 26076.
- S2 Z. Yue, T. Hu, H. Su, W. Zhao, Y. Li, H. Zhao, Y. Liu, H. Zhang, L. Jiang, X. Tang, S. Shan and Y. Zhi, *Fuel*, 2022, **326**, 125007.
- S3 S. Motokucho, Y. Takenouchi, R. Satoh, H. Morikawa and H. Nakatani, ACS Sustain. Chem. Eng., 2020, 8, 4337–4340.
- S4 J. Roeser, K. Kailasam and A. Thomas, *ChemSusChem*, 2012, **5**, 1793–1799.
- S5 N. Zanda, A. Sobolewska, E. Alza, A. W. Kleij and M. A. Pericàs, ACS Sustain. Chem. Eng., 2021, 9, 4391–4397.
- S6 R. Sharma, A. Bansal, C. N. Ramachandran and P. Mohanty, *Chem. Commun.*, 2019, 55, 11607– 11610.
- S. Subramanian, J. Park, J. Byun, Y. Jung and C. T. Yavuz, ACS Appl. Mater. Interfaces, 2018, 10, 9478–9484.
- S8 W. Natongchai, J. A. Luque-Urrutia, C. Phungpanya, M. Sola, V. DElia, A. Poater and H. Zipse, Org. Chem. Front., 2021, 8, 613 – 627
- S9 H. He, Q. Q. Zhu, J. N. Zhao, H. Sun, J. Chen, C. P. Li and M. Du, *Chem.-Eur. J.*, 2019, 25, 11474 —11480
- S10 A. Mitra, T. Biswas, S. Ghosh, G. Tudu, K. S. Paliwal, S. Ghosh and V. Mahalingam, Sustain. Energy Fuels, 2022, 6, 420–429.
- S11 A. Mitra, K. S. Paliwal, S. Ghosh, S. Bag, A. Roy, A. Chandrasekar, V. Mahalingam, *Inorg. Chem. Front.* 2023, 10, 6329–6338.