Supporting Information

Surface Modification of Mesostructured Cellular Foam to Enhance Hydrogen Storage in binary THF/H $_2$ Clathrate Hydrate

Nithin B. Kummamuru^{1,2}, Radu-George Ciocarlan³, Maarten Houlleberghs⁴, Johan Martens^{4,5}, Eric Breynaert^{4,5,*}, Sammy W. Verbruggen^{1,6}, Pegie Cool³, Patrice Perreault^{2,7,*}

¹ Sustainable Energy Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

² Laboratory for the Electrification of Chemical Processes and Hydrogen (ElectrifHy), University of Antwerp, Olieweg 97, 2020 Antwerp, Belgium

³ Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium

⁴ KU Leuven, Centre for Surface Chemistry and Catalysis-Characterization and Application Team (COK-KAT), Celestijnenlaan 200F – box 2461 Leuven 3001, Belgium

⁵NMR/X-Ray Platform for Convergence Research (NMRCoRe), Celestijnenlaan 200F – box 2461 Leuven 3001, Belgium

⁶NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium

⁷ University of Antwerp, BlueApp, Olieweg 97, 2020 Antwerpen, Belgium

Corresponding Author:

*eric.breynaert@kuleuven.be

*patrice.perreault@uantwerpen.be Tel: +32 489 57 39 21

Table S1. Regressed values of rate constants (k), Avrami exponent (n) from the JMAK[1]model.

System	T (K)	JMAK		
		$k (\min^{-1})$	n	AAD
f-1	268	0.065	0.20	0.68
	265	0.092	0.18	0.84
	262	0.092	0.29	0.74

Figure S1. Thermogravimetric analysis and estimation of the group's modifier/nm₂ (Mod.gr., $\#/nm^2$) resulted from the corroboration of carbon content after 423 K (150° C) and BET surface area.

Figure S2. X-ray diffraction pattern of MCF f-1 saturated with 5.56 mole% THF/H₂O solution (100 % pore volume) subjected to 7.0 MPa H₂ pressure at 265 K, determined under cryogenic conditions. Reflections characteristic of sII clathrate hydrates (Fd-3m; a = 17.3 Å) are denoted by their corresponding miller indices (hkl). Reference diffraction lines for sII hydrates and hexagonal ice are shown in orange and blue, respectively [2]. The presence of hexagonal ice (marked with an asterisk (*)) is exacerbated when using liquid nitrogen as refrigerant, as it promotes water condensation and subsequent ice formation from water vapor in the air. **Bottom**. Reference X-ray diffraction pattern of the porous host material, i.e., MCF f-1 (dried).

Figure S3. Phase equilibrium of binary H₂-THF hydrate in the presence of porous and bulk systems [3]. The blue triangles represent the experimental conditions used in this work.

Figure S4. Comparing the JMAK model[1] to experimental data for water-to-hydrate conversion (%) in THF-like functionalized MCF (f-1) porous material at three different temperatures with an initial pressure of 7 MPa.

Figure S5. Effect of changing α_P on the degree of fit for the material MCF (f-1) at 265 K.

Figure S6. The contribution of primary and secondary-stage hydrate growth on water-tohydrate conversion in material (f-1) at 268 K(a), 265 K(b), 262 K(c).

References

- [1] M. Fanfoni, M. Tomellini, The Johnson-Mehl-Avrami-Kohnogorov model: A brief review, Il Nuovo Cimento D 20 (1998) 1171-1182.
- [2] Y-H. Ahn, B. Lee, K. Shin, Structural Identification of Binary Tetrahydrofuran + O₂ and 3-Hydroxytetrahydrofuran + O₂ Clathrate Hydrates by Rietveld Analysis with Direct Space Method, Crystals, 8 (2018) 328.
- [3] H. Komatsu, H. Yoshioka, M. Ota, Y. Sato, M. Watanabe, R. L. Smith, Jr, C. J. Peters, Phase Equilibrium Measurements of Hydrogen–Tetrahydrofuran and Hydrogen–Cyclopentane Binary Clathrate Hydrate Systems, J. Chem. Eng. Data, 55 (2010) 2214–2218