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Density functional theory (DFT) calculations

All models are calculated using Vienna ab-initio simulation package (VASP) with 
density-functional theory (DFT), and the Perdew-Burke-Ernzerhof (PBE) function 
within the generalized gradient approximation was applied by the exchange-correlation 

energy in the paper. The layer of graphene 6×6 sheet as the model of graphene and the 

vacuum space above these sheets were taken to be 18 Å. The convergence criteria for 
energy and force during the optimization process are 0.01 eV/Å and 10-5 eV, 
respectively. The cutoff energy and K-point were set to 500 eV and 5×5×1, 
respectively. The spin polarization is considered throughout the calculations. Applying 
semi empirical dispersion correction density functional theory (DFT-D3) to correct the 
van der Waals interaction forces between molecules and catalysts. The adsorption 
energy (Eads) of ORR intermediates is calculated as follows: 

Eads = Etotal - Eo - Esub

where the Etotal is total adsorption energy of the catalyst and species, Esub is the 
catalyst energy without adsorption, and Eo is the energy of the species.The pathways 
on N-C systems were calculated in detail according to electrochemical framework 
developed by Nørskov. The freeenergy change of every elementary reaction is 
calculated as follows:

ΔG = ΔE +ΔZPE-TΔS+ΔGfield +ΔGU +ΔGpH

Where ΔE is the reaction energy change, T is the temperature (289.15 K), ΔS is 
the vibrational entropy change, and ΔZPE is the zero point energy, respectively. The 
parameters of ΔZPE and ΔS can be calculated according to the vibration frequency of 
oxygen-contained intermediates. The influence of electric potential on the Gibbs free 
energy is expressed by ΔGU=-neU, where n is the number of electrons transferred and 
U is the electrode potential. In this study, ΔGpH and ΔGfield are not involved because 
they have less contribution to the trends of free energy change.
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Figure S1. SEM image of nano-SiO2.

Figure S2. SEM images of N-C bulk (without SiO2 template-assisted growth).
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Figure S3. Cyclic voltammetry of N-C and P N-C in N2 or O2 saturated 0.1 M 

KOH solution.

Figure S4. (a-c) CV curves with different scan rates and the corresponding normalized Cdl results 
of P N-C and N-C, respectively. (d) Calculated ECAS results.
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Figure S5 The electron transfer number of P N-C catalyst calculated by RRDE result.
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Figure S6. EIS curves of P N-C and N-C.
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Figure S6. Contact angle results of N-C and P N-C, respectively.
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Figure S7. Pt/C ORR polarisation curves before and after 5000 potential cycles.
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Figure S8. The optimized calculation models of pore-edged N-C and bulk N-C, respectively.
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Table S1. Specific surface area and pore parameters of as-prepared materials.

Catalysts
Specific surface 

area (m2 g-1)

Micropore 

area (m2 g-1)

Pore volume 

(cm3 g-1)

Average pore 

diameter (nm)

N-C 14.9 27.7564 0.0143 3.2716

P N-C 847.8 290.1971 2.157088 10.1773 

Table S2. The content of C, N, O of the prepared catalysts obtained from XPS

Catalysts (at%) C N O 

N-C 90.3 4.43 5.27
P N-C 85.55 2.24 12.21

Table S3. EIS-fitting results of the prepared catalysts

Rs Rct CPE1-T CPE1-P 

N-C 1.337 42.53 2.41E-5 0.978
P N-C 2.849 258.7 6.892E-6 0.982

Table S4. A comparison table of the ORR performance between this work and 
recently reported Pt-free catalysts in alkaline and acidic medium (vs. RHE)

Materials
E1/2 (V) in 0.1

M KOH
References

P N-C 0.842 This work

CoCx/(Co0.55Fe1.945)2P@C 0.840 [1]

Co6Mo6C2-Co@NC 0.803 [2]

Mn0.9Fe2.1C/NC 0.780 [3]

Fe2Ni2N/Co@ NCNT 0.760 [4]

Ni3FeN/Co,N-CNF 0.810 [5]
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CoNx/NGA 0.830 [6]

Ni2.25Co0.75N/NrGO-3 0.790 [7]

Fe–CNSs–N 0.84 [8]

Fe3C–FeN/NC 0.8 [9]

FeN4CB 0.81 [10]

Co-MOF-T 0.84 [11]

Cop@CoNC 0.84 [12]

FeN4–SC–NiN4 0.84 [13]

NiFe3@NGHS 0.84 [14]

FeNi/N–LCN 0.84 [15]

FeNi3/NC 0.79 [16]

CoFe/S–NC 0.84 [17]

FeCo/NSC 0.82 [18]

CoN4–HPC 0.78 [19]

CoNi/N–CNN 0.82 [20]

Fe/Ni@NiCo–CNT 0.8 [21]

(Fe, Co, Ni)9S8/NSCFs 0.82 [22]

FeCoNi–N–rGO 0.84 [23]

CoFeNi@CNT 0.82 [24]
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