Efficient electrochemical water oxidation catalyzed by N₄-coordinated nickel complexes under neutral condition

Zhijun Ruan,^a Jinfeng Dong,^a Jieying Wang,^a Zhichao Qi,^a Xiaoli Chen,^{*a} Xiangming Liang,^{*b} Junqi Lin^{*a}

^a Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China. E-mail: 872802461@qq.com; linjunqi@hgnu.edu.cn

^b School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.

E-mail: liangxm@nxmu.edu.cn

Identification code	[Ni(dmabpy)](ClO ₄) ₂		
Empirical formula	$C_{16}H_{21}Cl_2N_4NiO_8$		
Formula weight	526.98		
Temperature	280(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	P212121		
	$a = 11.789(4) \text{ Å} \qquad \alpha = 90^{\circ}$		
Unit cell dimensions	$b = 13.176(5) \text{ Å} \qquad \beta = 90^{\circ}$		
	$c = 13.461(7) \text{ Å} \qquad \gamma = 90^{\circ}$		
Volume	2090.9(15) Å ³		
Ζ	4		
Density (calculated)	1.674 Mg/m ³		
Absorption coefficient	1.236 mm ⁻¹		
F(000)	1084		
Crystal size	$0.23 \times 0.35 \times 0.27 \text{ mm}$		
Theta range for data collection	2.163 to 24.982°.		
	-14<=h<=14		
Index ranges	-14<=k<=14		
	-15<=1<=15		
Reflections collected	45583		
Independent reflections	3392 [R(int) = 0.1637]		
Completeness to theta = 24.982°	92.6 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7452 and 0.6193		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3392/0/284		
Goodness-of-fit on F ²	1.043		
Final R indices [I>2sigma(I)]	$R^1 = 0.0542, wR^2 = 0.1324$		
R indices (all data)	$R^1 = 0.0892, wR^2 = 0.1618$		
Absolute structure parameter	0.58(5)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.521 and -0.472 e.Å ⁻³		

Table S1 Crystal data and structure refinement for 1.

 $\frac{1}{R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, wR_2 = [\Sigma (|F_0|^2 - |F_c|^2)^2 / \Sigma (F_0)]^{1/2}}$

Identification code	[Ni(mabpy)](ClO ₄) ₂			
Empirical formula	$C_{14}H_{18}Cl_2N_4NiO_8$			
Formula weight	499.93			
Temperature	306(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2 ₁ /c			
	$a = 13.430(6) \text{ Å} \qquad a = 90^{\circ}$			
Unit cell dimensions	$b = 9.197(3) \text{ Å}$ $\beta = 110.543^{\circ}$			
	$c = 16.247(7) \text{ Å} \qquad \gamma = 90^{\circ}$			
Volume	1879.1(13) Å ³			
Z	4			
Density (calculated)	1.767 Mg/m ³			
Absorption coefficient	1.370 mm ⁻¹			
F(000)	1024			
Crystal size	$0.27 \times 0.29 \times 0.33 \text{ mm}$			
Theta range for data collection	2.588 to 25.079°.			
	-16<=h<=16			
Index ranges	-10<=k<=10			
	-19<=l<=19			
Reflections collected	39204			
Independent reflections	3310 [R(int) = 0.0936]			
Completeness to theta = 25.079°	99.5 %			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7452 and 0.6755			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	3310/0/263			
Goodness-of-fit on F ²	1.060			
Final R indices [I>2sigma(I)]	$R_1 = 0.0420, wR_2 = 0.0984$			
R indices (all data)	$R_1 = 0.0603, wR_2 = 0.1069$			
Extinction coefficient	n/a			
Largest diff. peak and hole	0.546 and -0.593 e.Å ⁻³			

Table S2 Crystal data and structure refinement for 2.

 $\frac{1}{R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, wR_2 = [\Sigma (|F_0|^2 - |F_c|^2)^2 / \Sigma (F_{02})]^{1/2}}$

Complex	1	2
Bond length (Å)		
Ni1–N1	1.837(16)	1.819(3)
Ni1–N2	1.836(14)	1.820(3)
Ni1–N3	2.075(15)	1.913(4)
Ni1-N4	2.035(16)	1.940(3)
Bond angles (deg)		
N1-Ni1-N2	94.6(3)	83.41(14)
N2-Ni1-N3	71.4(6)	84.67(17)
N3-Ni1-N4	120.4(3)	107.27(16)
N4-Ni1-N1	73.0(7)	84.97(13)

Table S3 Selected bond lengths (Å) and angles (deg) for complex 1–2.

Fig. S1 Infrared spectrum of complex [Ni(dmabpy)](ClO₄)₂ (1) and [Ni(mabpy)](ClO₄)₂ (2).

Fig. S2 Time-dependent UV-vis absorption spectra of 1 mM complex **1** (b) and **2** (d) in 0.1 M phosphate buffer solution (PBS) at pH 7.0.

Fig. S3 The ¹H NMR spectrum of Complex **1** (400 MHz, D₂O). δ 8.24 (d, 2H, CH_{py}), 7.98 (t, 2H, CH_{py}), 7.51 (m, 2H, CH_{py}), 2.76 (s, 4H, CH₂), 1.93 (s, 6H, CH₃), 1.08 (s, 6H, CH₃).

Fig. S4 Consecutive cyclic voltammograms of 1 mM complex **1** and **2** at 100 mV/s using GC electrode at 0.1 M pH 7.0 PBS. The CV from a rinse test after 20 scans and the background CV in the absence of complex is shown.

Fig. S5 Cyclic voltammograms of various concentration of **1** in 0.1 M PBSs at pH 7.0 with scan rate of 100 mV s⁻¹ (a) and the dependence of catalytic current density of catalytic wave on the concentration of **1** in 0.1 M PBSs at pH 7.0 (b).

Fig. S6 Cyclic voltammograms of various concentration of **2** in 0.1 M PBSs at pH 7.0 with scan rate of 100 mV s⁻¹ (a) and the dependence of catalytic current density of catalytic wave on the concentration of **2** in 0.1 M PBSs at pH 7.0 (b).

Fig. S7 DPV test of 1 mM complex **1** in 0.1 M PBS at various pH values (a) and the relationship between the potential of each redox couple of complex **1** and the pH value of electrolyte (b).

Fig. S8 DPV test of 1 mM complex **2** in 0.1 M PBS at various pH values (a) and the relationship between the potential of each redox couple of complex **2** and the pH value of electrolyte (b).

Fig. S9 Faradaic efficiency of O_2 evolution for complex 1 and 2 under 8 h of electrolysis at 1.50 V vs. NHE in 0.1 M PBS at pH 7.0.

Fig. S10 SEM images of the surface of ITO electrode before (top) and after 8 h CPE experiments (1.50 V vs. NHE) of 1 mM of **1** (b) and **2** (c) in 0.1 M neutral PBS.

Fig. S11 EDX analysis of the surface of ITO electrode after 8 h CPE experiments of 1 mM of **1** (a) and **2** (b) in 0.1 M neutral PBS.

Fig. S12 UV-vis absorption spectra of 1 mM of complex 1 and 2 before and after controlled potential electrolysis in neutral buffer solution.

Fig. S13 CV test of post-CPE test ITO electrode for complex 1 and 2 in 1.0 M KOH solution.

Fig. S14 CV test of post-CPE test ITO electrode for complex **2** in 1.0 M KOH solution, clean ITO electrode in 1.0 M KOH solution with addition of 0.1 mM Fe^{3+} and post-CPE test ITO electrode for complex **2** in 1.0 M KOH solution with addition of 0.1 mM Fe^{3+} .

Catalyst	pН	η/mV a	Ref.
$[Ni(meso-L^1)]^{2+}$	7.0	170	S1
[Ni(TMC)(CH ₃ CN)] ²⁺	7.0	483	S2
$[Ni(mcp)(H_2O)_2]^{2+}$	7.0	480	S3
$[Ni(L)(H_2O)_2]^{2+}$	6.5	533	S4
[Ni ^{II} -L1] ²⁺	7.0	580	S5
Ni-Porphyrin	7.0	380	S6
[Ni(tpen)] ²⁺	8.0	440	S7
Ni-PY5	10.8	800	S8
$[Ni(bptn)(H_2O)]^{2+}$	9.0	351	S9
[Ni(mbptn)(CH ₃ CN)] ²⁺	9.0	401	S9
$[Ni(tmbptn)(H_2O)]^{2+}$	9.0	581	S9
[Ni(TAML)] ²⁻	7.0	680	S10
[NiL] ²⁺	9.0	550	S11
[Ni(dmabpy)](ClO ₄) ₂	7.0	473	This work
[Ni(mabpy)](ClO ₄) ₂	7.0	573	This work

Table S4 Onset overpotential of 1, 2 and some reported Ni based mononuclear molecular WOC

^a η = Onset overpotential

References

- S1 M. Zhang, M.-T. Zhang, C. Hou, Z.-F. Ke and T.-B. Lu, *Angew. Chem., Int. Ed.*, 2014, 53, 13042–13048.
- S2 L.-H. Zhang, F. Yu, Y. Shi, F. Li and H. Li, *Chem. Commun.*, 2019, 55, 6122–6125.
- S3 J.-W. Wang, X.-Q. Zhang, H.-H. Huang and T.-B. Lu, *ChemCatChem*, 2016, 8, 3287–3293.
- S4 G.-Y. Luo, H.-H. Huang, J.-W. Wang and T.-B. L, *ChemSusChem*, 2016, 9, 485–491.
- S5 D. Wang and C. O. Bruner, *Inorg. Chem.*, 2017, 56, 13638–13641.
- S6 Y. Han, Y. Wu, W. Lai and R. Cao, *Inorg. Chem.*, 2015, 54, 5604–5613.
- S7 Q.-J. Li, Y.-J. Ren, Q. Xie, M. Wu, H.-X. Feng, L.-M. Zheng, H.-X. Zhang, J.-Q. Long and T.-S. Wang, *Appl. Organomet. Chem.*, 2020, **34**, e5813.
- S8 L. Wang, L. Duan, R. B. Ambre, Q. Daniel, H. Chen, J. Sun, B. Das, A. Thapper, J.

Uhlig, P. Dinér and L. Sun, J. Catal., 2016, 335, 72-78.

- S9 X. Chen, X. Liao, C. Dai, L. Zhu, L. Hong, X. Yang, Z. Ruan, X. Liang and J. Lin, *Dalton Trans.*, 2022, **51**, 18678–18684.
- S10 H. Lee, X. Wu and L. Sun, *ChemSusChem*, 2020, **13**, 3277–3282.
- S11 H. M. Shahadat, H. A. Younus, N. Ahmad, M. A. Rahaman, Z. A. K. Khattak, S. Zhuiykov and F. Verpoort, *Catal. Sci. Technol.*, 2019, 9, 5651–5659.