Supporting Information

Layering technique for achieving pinhole-free organicinorganic halide perovskite thin films through vaporsolid reaction

Lixin Zhang^a, Jialing Zhong^a, Anqi Kong^a, Yuanyuan Chen^a, Junshuai Fan^a, Qiang Tan^a, Yong Peng^a, Guijie Liang^b and Zhiliang Ku^{*a}

^aState Key Lab of Advanced Technologies for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, Hubei Province, China

^bHubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang 441053, Hubei Province, China

^{*} Corresponding author: Zhiliang Ku, E-mail: <u>zhiliang.ku@whut.edu.cn</u> *Keywords:* Lead halide perovskite; Pinhole-free; Vapor–solid reaction; thin film; Layering

technique

Figure S1. Scanning electron microscope (SEM) images of the perovskite thin films with different reaction times in FASCN vapor. Scale bar, 1 µm.

Figure S2. XPS spectra of the S 2p signal in the perovskite thin film with control and triplelayer.

Figure S3. Scanning electron microscope (SEM) images during the preparation of doublelayer perovskite thin films. (a) 300 nm perovskite thin film treated with FASCN vapor, (b) 300nm FASCN-perovskite/ 300 nm vapor-solid perovskite, (c) 300 nm FASCNperovskite/300 nm FASCN-perovskite. Scale bar, 2 µm.

Figure S4. SEM images of the FASCN vapor-treated films (a) unannealed and (b) annealed.

Figure S5. Statistics of the photovoltaic parameters distribution for solar cells based on control and triple-layer perovskite, 20 independent cells are fabricated for each type.

Figure S6. J-V curves of devices based on different layers of thin films **Table S1**. Biexponential fitted TRPL parameters of the control and triple-layer samples.

Samples	A ₁	τ ₁ (ns)	A ₂	τ ₂ (ns)	τ _{avg} (ns)
Control	0.503	7.30	0.423	154.26	146.43
Triple-layer	0.510	7.85	0.424	318.48	309.54

Table S2. J-V parameters of the champion devices measured from forward scan (FS) and reverse scan (RS).

Champion device		V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
Control	RS	1.068	22.96	0.80	19.50
Control	FS	1.047	22.76	0.76	18.20
Triple-layer	RS	1.090	23.26	0.83	21.09
	FS	1.088	23.15	0.80	20.06

 Table S3 Photovoltaic parameters of devices based on different layers of films.

Device	V _{oc} (V)	J _{sc} (mA cm ⁻²)	FF	PCE (%)
Control	1.068	22.96	0.80	19.50
Single-layer	0.995	22.35	0.74	16.42
Triple-layer	1.090	23.26	0.83	21.09

Table S4 EIS Fitting parameters of solar cells based on control and triple-layer modified
devices. The series resistance (R_s) and charge composite resistance (R_{rec}) can be obtained
by data fitting of equivalent circuit diagram of PSCs by EC-Lab software.

Samples	$R_s(\Omega)$	<i>R_{rec}</i> (kΩ)
Control	9.962	2.988
Triple-layer	9.379	6.978