## SUPPLEMENTARY INFORMATION

## Enhanced H<sub>2</sub> production through biomass pyrolysis, applying an alkaline ceramic as a bifunctional material; lithium cuprate (Li<sub>2</sub>CuO<sub>2</sub>)

Fernando Plascencia-Hernández<sup>a,§</sup>, Ana Yañez-Aulestia<sup>a,b,§</sup>, Carlos Hernández-Fontes<sup>a</sup> and

Heriberto Pfeiffer<sup>a,\*</sup>

<sup>*a*</sup>Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, CP. 04510, Ciudad de México, Mexico

<sup>b</sup>Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Leyes de Reforma 1ra Sección, Iztapalapa. CP. 09310, Ciudad de México, Mexico

*§These two authors equally worked on the present manuscript* 

\**Corresponding author; pfeiffer@materiales.unam.mx* 



Fig. S1. Glucose thermogravimetric data using different heating rates.



Fig. S2. Total gas volume per gram of glucose of the produced  $H_2$ ,  $CO_2$ ,  $O_2$  and  $CH_4$  from the pyrolysis process using different molar ratio of  $Li_2CuO_2$ :glucose, all represented as function of the molar fraction of glucose in each sample.



Fig. S3. Total gas volume of  $H_2$ ,  $CO_2$  and  $CH_4$  produced from the pyrolysis of 1C:5G sample through the dynamic-isothermal test at different target temperatures from 200 to 700 °C, normalized per gram of glucose.



Fig. S4. Total gas volume of  $H_2$ ,  $CO_2$  and  $CH_4$  produced from the dynamical pyrolysis of cupper-containing samples, namely  $Li_2CuO_2$  and CuO at 1 to 5 molar proportion to glucose. Glucose's total gas volumes were added for comparison purposes.



Fig. S5. Characterization by XRD (left) and FTIR-ATR spectroscopy (right) of the solid products from the dynamic-isothermal test to 550 °C of different mixtures of glucose with a copper source ( $Li_2CuO_2$  or CuO) at 5 to 1 molar ratio



Fig. S6. Total produced  $CO_2$  per gram of glucose for each cycle of the successively addition process.



Fig. S7. Total volume gas of  $H_2$ ,  $CO_2$  and  $CH_4$  per gram of glucose for each cycle of the regeneration cyclic process depending on the first (solid-colored bars) or both (shadow dashed bars) pyrolysis steps.