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Fig. S1. Schematic diagram of a) the chemical vapor deposition (CVD) process set up, and b) 

three main steps of CVD process.
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Fig. S2. (a) Raman spectra of Graphene supported on Cu foam (GP/CuF) with compared 

flowrate of methane, and (b) comparison of 2D band with flow rate of methane at 5, 20, 50, and 

100 sccm.

Fig. S3. TEM images of graphene that coated on copper foam.
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Fig. S4. SEM images of the morphology on copper foam surface when vary the reaction time of 

a-c), d-f) and g-i) related to 1, 10, and 30 min, respectively.

Fig. S5. Raman spectra of GP/CuF (a) with reaction time of 1, 5, 10 and 30 min. (b) Reaction 

temperature variation at 800, 900 and 1000 C when compared to bare Cu foam.
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Fig. S6. (a) Raman spectra of all catalysts and deconvoluted Raman spectra of D band and G 

band of a) GP/CuF and b) N-GP/CuF. 
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Fig. S7. Experimental setup of electrocatalytic reduction of CO2. 

Fig. S8. Cyclic voltammetry (CV) curve s of CuF, GP/CuF, and N-GP/CuF at different scan rate 

(10-100 mV S-1) in the presence of 0.1mM [Ru(NH3)]3
+/2+ in 1M KCl supporting electrolyte.
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Fig. S9. Current density changes in (a) CuF, (b) GP/CuF and (c) N-GP/CuF at various applied 

potentials.

Fig. S10. Schematic of proposed CO2 reduction mechanism
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Fig. S11. NMR spectra of liquid fraction after electrocatalytic reduction of CO2 on N-GP/CuF at 
-1.3 V (vs. RHE).

Fig. S12. Calibration curve of formate using phenol as internal standard.
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Fig. S13. Proposed hydrogenation mechanism for CO2 electrochemical reduction on graphene 

and N-doped graphene, producing HCOOH in top-line and CO + H2O in lower-line.

Fig. S14. Schematic of interaction between CO2 molecules and both N-Gr (top) and Gr (bottom) 

catalyst after simulation process
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Table S1. A representative data of gaseous products from online-gas chromatography for CO2 

reduction reaction using N-GP/CuF catalyst at -1.3V (vs. RHE).

Table S2. Faradaic efficiencies of electrocatalytic reduction of CO2 on N-GP/CuF.
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Table S3. Literature review on N-doped GP Cu foam.

Catalyst Electrolyte Current density 

(J)
Main product Onset Refs

Cu NPs 
coated on 

rGO support

0.1 M 
KHCO3

7.5 mA cm-2 @
-1.4V (vs. RHE)

CO ~50% @

-1.0V (vs.RHE)

~ -1.5 V 

(vs. RHE)
[1]

N-doped 
graphene

0.5 M 
KHCO3

7.5mA cm-2 @
-0.84V (vs. RHE)

HCOOH: ~73% @-

0.84V (vs. RHE)

~0.3 V 

(vs. RHE)
[2]

NG foam 0.1 M 
KHCO3

~1.8mA cm-2 @
-1.0V (vs. RHE)

CO ~85% @

-0.58V (vs.RHE)

-0.3V  

(vs. RHE)
[3]

Cu NPs on 
graphene

0.1 M 
KHCO3

~0.2mA cm-2 @
-1.0V (vs. RHE)

CO: ~40% @

-1.0V (vs. RHE)

-0.42 V 

(vs. RHE)
[4]

B doped 

graphene
0.1 M 

KHCO3

~1.4mA cm-2 @
-0.7V (vs. RHE)

HCOOH 66%
@-0.76V 
(vs. RHE)

-0.4 V 

(vs.RHE)
[5]

Cu2O/ZnO 0.1 M 
KHCO3

N/A CO with FF of 
65.7% at − 1.4 VRHE

N/A
[6]

Sn@SnS2-NF 0.5 M 
KHCO3

N/A Formate, 93% FF at 
−1.4 V

N/A
[7]

In2O clusters 

on Ag NPs
0.1 M 

KHCO3

3.53 mA cm-2 at -
0.9 V (vs RHE) Formate 95.5% FF@ 

at -0.9 V (vs RHE)

N/A
[8]

InAs 

Quantum 

Dots

1.0 M 
KHCO3

N/A
formate 100%FF@ 
at 100 mA cm–2 (vs 

RHE)

N/A
[9]

Cu Foam 0.5 M 
CsHCO3

N/A

HCOOH  70% FF
@25bar 

@18.2 mA/cm2 

(-1V vs. RHE)

N/A
[10]
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Catalyst Electrolyte Current density 

(J)
Main product Onset Refs

CDU Foam 0.5 M 
KHCO3

N/A

HCOOH  30%FF
@25bar 

@18.2 mA/cm2 

(-1V vs. RHE)

N/A
[10]

Cu Foam 0.5 M 
CsHCO3

N/A

HCOOH  51 %FF
@25bar 

@9.1 mA/cm2 

(-1V vs. RHE)

N/A
[10]

Cu Foam 0.5 M 
KHCO3

N/A

HCOOH  55%
@25 bar 

@9.1 mA/cm2 

(-1V vs. RHE)

N/A
[10]

N doped GP 

Cu Foam

0.1 M 

KHCO3

~10mA cm-2 @
-1.0V (vs. RHE)

Formate 65.5%
@-1.0V (vs. RHE)

-0.47 V 
(vs. RHE) This 

work

Note. FF is Faradaic efficiency.
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