Supporting Information

Selective Conversion of Carbon Dioxide to Formate Using Few-Layer Nitrogen-Doped Graphene on Copper Foam with Enhanced Suppression of Hydrogen Evolution Reaction

Thanthita Sasipatworakarn, Daranphop Pikulrat, Kan Homlamai, Salatan Duangdangchote and Montree Sawangphruk*

Centre of Excellence for Energy Storage Technology (CEST), Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand

*Corresponding author. Tel: 66(0)33-01-4251. Fax: 66(0)33-01-4445. E-mail address: montree.s@vistec.ac.th (M. Sawangphruk).

Contents

- 1. Fig. S1. Chemical vapor deposition (CVD) of graphene on copper foam.
- 2. Fig. S2. Raman spectra of graphene coated copper foam various flow rates of methane.
- 3. Fig. S3. TEM images of graphene coated copper foam.
- 4. **Fig. S4**. Surface morphology of various copper foams.
- 5. Fig. S5. Raman spectra of graphene coated copper foam various times and temperatures.
- 6. **Fig. S6**. Raman spectra of all catalysts and deconvoluted Raman spectra.
- Fig. S7. Cyclic voltammogram of synthesized graphene coated copper foam in the presence of 0.1mM [Ru(NH₃)]₃^{+/2+} in 1M KCl supporting electrolyte.
- 8. Fig. S8. Electrocatalytic reaction system.

- 9. Fig. S9. Current density changes in (a) CuF, (b) GP/CuF and (c) N-GP/CuF at various applied potentials.
- 10. Fig. S10. Schematic of proposed CO₂ reduction mechanism.
- 11. Fig. S11. NMR spectra aqueous production at -1.3V (vs. RHE).
- 12. Fig. S12. Calibration curve of formate.
- 13. Fig. S13. A diagram illustrating the electron transfer during the simulated reaction.
- Fig. S14. A diagram illustrating the interaction between CO2 molecules and the Gr and N-Gr catalysts following the simulation process.
- Table S1. A representative data of gaseous products from online-gas chromatography for CO₂ reduction reaction using N-GP/CuF catalyst at 1.3V (vs. RHE).
- 16. Table S2. Faradaic efficiencies of products on N-GP/CuF catalyst from CO2RR.
- 17. Table S3. Literature review on N-doped GP Cu foam

Fig. S1. Schematic diagram of a) the chemical vapor deposition (CVD) process set up, and b) three main steps of CVD process.

Fig. S2. (a) Raman spectra of Graphene supported on Cu foam (GP/CuF) with compared flowrate of methane, and (b) comparison of 2D band with flow rate of methane at 5, 20, 50, and 100 sccm.

Fig. S3. TEM images of graphene that coated on copper foam.

Fig. S4. SEM images of the morphology on copper foam surface when vary the reaction time of a-c), d-f) and g-i) related to 1, 10, and 30 min, respectively.

Fig. S5. Raman spectra of GP/CuF (a) with reaction time of 1, 5, 10 and 30 min. (b) Reaction temperature variation at 800, 900 and 1000 °C when compared to bare Cu foam.

Fig. S6. (a) Raman spectra of all catalysts and deconvoluted Raman spectra of D band and G band of a) GP/CuF and b) N-GP/CuF.

Fig. S7. Experimental setup of electrocatalytic reduction of CO₂.

Fig. S8. Cyclic voltammetry (CV) curve s of CuF, GP/CuF, and N-GP/CuF at different scan rate (10-100 mV S⁻¹) in the presence of 0.1mM [Ru(NH₃)]₃^{+/2+} in 1M KCl supporting electrolyte.

Fig. S9. Current density changes in (a) CuF, (b) GP/CuF and (c) N-GP/CuF at various applied potentials.

Fig. S10. Schematic of proposed CO₂ reduction mechanism

Fig. S11. NMR spectra of liquid fraction after electrocatalytic reduction of CO_2 on N-GP/CuF at -1.3 V (vs. RHE).

Fig. S12. Calibration curve of formate using phenol as internal standard.

Fig. S13. Proposed hydrogenation mechanism for CO_2 electrochemical reduction on graphene and N-doped graphene, producing HCOOH in top-line and $CO + H_2O$ in lower-line.

Fig. S14. Schematic of interaction between CO₂ molecules and both N-Gr (top) and Gr (bottom) catalyst after simulation process

			Amount of gaseous products (mol)				
Sampling No.	Time of sample injection (s)	Current (mA)	CH ₄	C_2H_4	C_2H_6	СО	H ₂
1	690	23.124	3.27 x 10 ⁻⁹	7.11 x 10 ⁻⁸	0.00	1.92 x 10 ⁻⁸	7.56 x 10 ⁻⁸
2	1335	23.431	4.90 x 10 ⁻⁹	1.10 x 10 ⁻⁷	0.00	2.08 x 10 ⁻⁸	8.50 x 10 ⁻⁸
3	1980	23.720	6.54 x 10 ⁻¹⁰	8.34 x 10 ⁻⁸	0.00	1.92 x 10 ⁻⁸	8.42 x 10 ⁻⁸
4	2625	24.214	8.17 x 10 ⁻⁹	1.37 x 10 ⁻⁷	0.00	2.04 x 10 ⁻⁸	1.09 x 10 ⁻⁷
5	3270	24.901	8.17 x 10 ⁻⁹	1.47 x 10 ⁻⁷	0.00	2.00 x 10 ⁻⁸	1.05 x 10 ⁻⁷
6	3915	25803	9.81 x 10 ⁻⁹	1.62 x 10 ⁻⁷	0.00	2.13 x 10 ⁻⁸	1.06 x 10 ⁻⁷
Average (3-6)			8.17 x 10 ⁻⁹	1.32 x 10 ⁻⁷	0.00	2.02 x 10 ⁻⁸	1.01 x 10 ⁻⁷

Table S1. A representative data of gaseous products from online-gas chromatography for CO_2 reduction reaction using N-GP/CuF catalyst at -1.3V (vs. RHE).

Table S2. Faradaic efficiencies of electrocatalytic reduction of CO_2 on N-GP/CuF.

Faradaic Efficiencies (%)							
Sampling No	CH ₄	C ₂ H ₄	C ₂ H ₆	СО	H ₂	Formate (accumulative)	Total
1	0.58	12.69	0.00	3.43	13.49		
2	1.09	19.46	0.00	3.68	15.00	-	
3	1.14	14.50	0.00	3.34	14.65	50.86	
4	1.39	23.40	0.00	3.48	18.60	-	
5	1.35	24.38	0.00	3.32	17.34		
6	1.57	25.88	0.00	3.40	16.99		
Average (3~6)	1.36	22.04	0.00	3.39	16.89	50.86	94.55

Catalyst	Electrolyte	Current density (J)	Main product	Onset	Refs
Cu NPs coated on rGO support	0.1 M KHCO ₃	7.5 mA cm ⁻² @ -1.4V (vs. RHE)	CO ~50% @ -1.0V (vs.RHE)	~ -1.5 V (vs. RHE)	[1]
N-doped graphene	0.5 M KHCO ₃	7.5mA cm ⁻² @ -0.84V (vs. RHE)	HCOOH: ~73% @- 0.84V (vs. RHE)	~0.3 V (vs. RHE)	[2]
NG foam	0.1 M KHCO ₃	~1.8mA cm ⁻² @ -1.0V (vs. RHE)	CO ~85% @ -0.58V (vs.RHE)	-0.3V (vs. RHE)	[3]
Cu NPs on graphene	0.1 M KHCO ₃	~0.2mA cm ⁻² @ -1.0V (vs. RHE)	CO: ~40% @ -1.0V (vs. RHE)	-0.42 V (vs. RHE)	[4]
B doped graphene	0.1 M KHCO ₃	~1.4mA cm ⁻² @ -0.7V (vs. RHE)	HCOOH 66% @-0.76V (vs. RHE)	-0.4 V (vs.RHE)	[5]
Cu ₂ O/ZnO	0.1 M KHCO ₃	N/A	CO with FF of 65.7% at $-1.4 V_{RHE}$	N/A	[6]
Sn@SnS ₂ -NF	0.5 M KHCO ₃	N/A	Formate, 93% FF at -1.4 V	N/A	[7]
In ₂ O clusters on Ag NPs	0.1 M KHCO ₃	3.53 mA cm ⁻² at - 0.9 V (vs RHE)	Formate 95.5% FF@ at -0.9 V (vs RHE)	N/A	[8]
InAs Quantum Dots	1.0 M KHCO ₃	N/A	formate 100%FF@ at 100 mA cm ⁻² (vs RHE)	N/A	[9]
Cu Foam	0.5 M CsHCO ₃	N/A	HCOOH 70% FF @25bar @18.2 mA/cm ² (-1V vs. RHE)	N/A	[10]

Table S3. Literature review on N-doped GP Cu foam.

Catalyst	Electrolyte	Current density	Main product	Onset	Refs
		(J)			
			HCOOH 30%FF	N/A	
CDU Foam	0.5 M	N/A	@25bar		[10]
	KHCO ₃		$@18.2 \text{ mA/cm}^2$		
			(-1V vs. RHE)		
			HCOOH 51 %FF	N/A	
Cu Foam	0.5 M CsHCO ₃	N/A	@25bar		[10]
Curoani			@9.1 mA/cm ²		
			(-1V vs. RHE)		
			НСООН 55%	N/A	
Cu Foam	0.5 M		@25 bar		[10]
Curoani	KHCO ₃	IN/A	$@9.1 \text{ mA/cm}^2$		
			(-1V vs. RHE)		
N doped GP	0.1 M			-0.47 V	
		$\sim 10 \text{mA cm}^{-2}$ @	Formate 65.5%	(vs. RHE)	This
Cu Foam	KHCO ₃	-1.0V (vs. RHE)	@-1.0V (vs. RHE)		work

Note. FF is Faradaic efficiency.

References

- 1. Cao, C. and Z. Wen, *Cu nanoparticles decorating rGO nanohybrids as electrocatalyst toward CO*₂ *reduction.* Journal of CO₂ Utilization, 2017. **22**: p. 231-237.
- 2. Wang, H., et al., *Nitrogen-doped graphenes as efficient electrocatalysts for the selective reduction of carbon dioxide to formate in aqueous solution.* Green Chemistry, 2016. **18**(11): p. 3250-3256.
- 3. Zhao, J., B. Shang, and J. Zhai, *N-Doped Graphene as an Efficient Metal-Free Electrocatalyst for Indirect Nitrate Reduction Reaction.* Nanomaterials (Basel), 2021. **11**(9).
- 4. Song, Y., et al., *High-Selectivity Electrochemical Conversion of CO* $_2$ to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode. ChemistrySelect, 2016. **1**(19): p. 6055-6061.
- Sreekanth, N., et al., Metal-free boron-doped graphene for selective electroreduction of carbon dioxide to formic acid/formate. Chemical communications (Cambridge, England), 2015. 51(89): p. 16061-16064.
- 6. Azenha, C., et al., *Tuning the selectivity of Cu*₂O/ZnO catalyst for CO_2 electrochemical reduction. Journal of CO2 Utilization, 2023. **68**: p. 102368.
- Cheng, W., et al., In situ dynamic re-structuring and interfacial evolution of SnS₂ for high-performance electrochemical CO₂ reduction to formate. Chemical Engineering Journal, 2024.
 480: p. 147922.
- 8. Bhalothia, D., et al., The sub-nanometer In_2O clusters on Ag nanoparticles with highly selective electrochemical CO_2 reduction to formate. Chemical Engineering Journal, 2024. **481**: p. 148295.
- 9. Bellato, F., et al., *Indium Arsenide Quantum Dot Derived Catalyst for Selective CO*₂ *Electrochemical Reduction to Formate.* ACS Energy Letters, 2024. **9**(3): p. 1097-1102.
- 10. Girichandran, N., S. Saedy, and R. Kortlever, *Electrochemical CO₂ reduction on a copper foam electrode at elevated pressures.* Chemical Engineering Journal, 2024. **487**: p. 150478.