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Preparation of catalysts

The Pd/C, Ru/C, Rh/C and Pt/C catalysts with a metal loading of 5wt.% were prepared by
the incipient wetness impregnation of activated carbon with aqueous solutions of PdClz,
RuCls, RhCls and H2PtCls. After being kept at room temperature for 12 h, the catalysts were
dried at 393 K for 12 h and reduced at 623 K for 2 h in a 5% H2/Ar flow. After cooling to room
temperature, the catalysts were passivated by 1% O2/Ar flow for 6 h.

The hydroxyapatite (HAP) loaded metal catalysts (denoted as M/HAP, M = Ni, Ru, Pd, Pt)
used in the hydrodeoxygenation (HDO) process were prepared by deposition-precipitation
(DP) method. Taking Ni/HAP for example, 2.0 g HAP was vigorously stirred in 30 mL aqueous
solution of Ni(NOs)2 for 0.5 h at room temperature. Subsequently, the pH of resultant slurry
was slowly adjusted to about 8.0 with NH3-H20 solution. The mixture was stirred for another
2 h. Finally, the solid was separated by filtration and thoroughly washed with deionized water
(to remove the NOs"). The resultant solid material was dried at 393 K for 12 h and reduced in
a 20% Hz/Ar flow at 573 K for 3 h. After being cooled down to room temperature in hydrogen
flow, the Ni/HAP catalyst was passivated by 1% O2/Ar for 6 h. Analogously, the Ru/HAP,
Pd/HAP and Pt/HAP catalysts were prepared by the method, using RuCls, PdCl2 and H2PtCle
as the precursors. To facilitate the comparison, the theoretical metal contents in the
investigated HDO catalysts were fixed at 2wt.%.

Characterization of catalysts

The specific Brunauer-Emmett—Teller (BET) surface areas (Sser) of the catalysts were
measured by N2-physisorption that was carried out at 77 K with an ASAP 2010 apparatus.
Before each measurement, the acidic resin was evacuated at 373 K for 6 h.

The amounts of acid sites on the surfaces of acidic resins were measured with a
Micromeritics AutoChem Il 2920 Automated Catalyst Characterization System by NHa-
chemisorption. To do this, the catalyst was put into the quartz tube, pretreated with He flow
at 393 K for 30 min. After the baseline was stable, NH3 was injected in a pulse mode until the
saturation. The amounts of acid sites on the surfaces of acidic resins were calculated base

on the consumption of NHs.



General experimental details for NMR and GC-MS analysis

"H NMR and 3C NMR spectra of the products from the HAA reaction of MFA and 2-MF
were recorded at room temperature in CDCI3 on Bruker AVANCE 111 400 MHz instrument. The
chemical shifts for '"H NMR were recorded in ppm downfield using the peak of CDCls (7.26
ppm) as the internal standard. The chemical shifts for '3C NMR were recorded in ppm
downfield using the central peak of CDCIs (77.16 ppm) as the internal standard.

GC-MS analysis of the products was carried out by a Varian Corp 450GC/320MS which

was equipped with a HP-5 capillary column.
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Figure S1. Gas chromatogram of the product obtained from the conversion of cellulose in
the first-stage. Reaction conditions: 473 K, 1 MPa N2, 400 rpm, 6 h; 1.5 g cellulose, 3 g NaCl,

10 mL H20, 20 mL organic solvent were used in the test.
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Figure S2. Mass spectrogram of the chloromethylfurfural obtained from the conversion of

cellulose in the first-stage.
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Figure S3. Gas chromatogram of the product obtained from the conversion of cellulose by
the two-stage process. Reaction conditions: First stage: 473 K, 1 MPa N2, 400 rpm, 6 h; 0.3
g cellulose, 3 g NaCl, 10 mL H20, 20 mL organic solvent were used in each test. Second
stage: 303 K, 2 MPa Hz, 400 rpm, 2 h; the organic phase product from the first stage and
0.03 g Pd/C were used in each test.
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Figure S4. Mass spectrogram

conversion of cellulose.

of the 5-methylfurfural (MFA) obtained from the two-stage
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Figure S5. HPLC chromatograms of the products obtained from the conversion of cellulose
at different reaction temperatures. Reaction conditions: 1 MPa N2, 400 rpm, 6 h; 0.3 g

cellulose, 3 g NaCl, 10 mL H20, 20 mL organic solvent were used in each test.
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Figure S6. Reaction pathway for the synthesis of MFA from cellulose.
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Figure S7. Photo of the products obtained from the conversion of cellulose at different
reaction times. Reaction conditions: 473 K, 1 MPa Nz, 400 rpm; 0.3 g cellulose, 3 g NaCl, 10

mL H20, 20 mL organic solvent were used in each test.



Internal standard

Figure S8. Gas chromatogram of the product obtained from decarbonylation of MFA.

Reaction conditions: 443 K, 4 h, 400 rpm; 1 mmol MFA, 0.05 g Pd/C and 5 mL ethyl acetate

were used in the test.
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Figure S9. Mass spectrogram of the 2-methylfuran (2-MF) obtained from the decarbonylation

of MFA.
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Figure $10. Gas chromatogram of the product obtained from HAA of MFA and 2-MF.
Reaction conditions: 333 K, 400 rpm, 4 h; 5 mmol MFA, 10 mmol 2-MF and 0.09 g Nafion

resin were used for each test.
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Figure S11. Mass spectrogram of the TMFM obtained from the HAA reaction of MFA and 2-
MF.
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Figure S$12. '"H-NMR and "*C-NMR spectra of the TMFM obtained from the HAA reaction of
MFA and 2-MF.
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Figure S$13. Mass spectrogram of the BMFPO generated during the HAA reaction of MFA

and 2-MF.
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Figure S14. '"H-NMR and "*C-NMR spectra of the BMFPO generated during the HAA
reaction of MFA and 2-MF.
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Figure S15. Conversion of 2-MF and the yields of TMFM and BMFPO over Nafion (a),
Amberlyst-15 (b) and Amberlyst-36 (c) resins as the function of recycle time. Reaction

conditions: 333 K, 400 rpm, 2 h; 5 mmol MFA, 10 mmol 2-MF, 0.09 g catalyst were used for

each test.
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Figure S16. Gas chromatogram of blank control experiment for HDO. Reaction conditions:

493 K, 4 MPa Hz, 500 rpm, 24 h; 30 mL cyclohexane, 0.1 g Ni/HAP and 0.1 g H-ZSM-5 were

=

used for the test.
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Figure S17. Gas chromatogram of the product obtained from HDO of TMFM. Reaction
conditions: 453 K, 4 MPa Hz, 500 rpm, 24 h; 0.1 g TMFM, 30 mL cyclohexane, 0.1 g Ni/lHAP
and 0.1 g H-ZSM-5 were used for the test.
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Figure S18. Mass spectrogram of the C1e alkane obtained from HDO of TMFM.

sonoa



0,000

Base Pesk 57/ 10,000

8s

ool bl

500 750 1000
1: 155 Undecane $§ niUndscane $§ Hendscare $§ nC11H24 $§UN 233043

10,000

4750 500,

Base Peak 57/ 10.000

13

60 %0 1000

Figure S19. Mass spectrogram

of the C11 alkane obtained from HDO of TMFM.




Table S1. Comparison of the different routes for the synthesis of jet fuel range alkanes with cellulose.

Previous works: Main products Overall yield Reference
\
Step 1: Step 2: Step 3: tep 4:
Hydrolysis/dehydration Reduction O; Decarboxilation Oligomerization
Route 1: Cellulose —-" o VTEON,_ )l\/\n’OH Y t°)> \=\ + co, —2 Ce-Cao Branched alkenes Cg-Co Alkanes  36% 1
H,S0,, 423K, 4 h o H”"OH RuRe/C, 423 K, 0.5 MPa H, Si0,/Al,05, 648 K Amberlyst-70, 443 K

o

Step 1: o Step 2: 7 Step 4:
Hydrolysis/dehydration Dehydration 0, o Dmenzauan 0 ©Oligomerization
Route 2: Cellulose —Lorosiden OH ¥ t)_ to)_ o CrCio Alkanes  47% 23
H,S0,, 423K 0 K10, 438 K, 6.5 KPa K,CO3, 343K Ir-Re0,/Si0,, 493 K, 5.4 MPa, 7 h

Step 1:
Hydrolysis/dehydration
Route 4: Cellulose

Step 1: o Step 2:
Hydrolysis/dehydration Dehydrati C C band formation H dmdeux jenation
Route 3: Cellulose ——" Hnyon ehydration D_ t)_ i > GiGis Branched alkenes  C-Cis Alkanes  43% 4
HCI, 473 K, 10 min 0 H-ZSM-5/Si0,, 403 K, 0.01 MPa KzCO3, 353 K, 3.5 min Pd/C 573K, 5 MPa Hy
o

Step 2: Step 3: 7 Step 4:
Deh ti Di ti Hy dmdecarha lation
" ehydration D_ otof imerization g y xylat /\H\/ + (1 C4-Cq Alkanes 35% 235
H;S0,, 423 K K10, 438 K, 6.5 KPa K,COj, 343K Pd/y-Al,03, 573 K, 1 MPa H,
0o

(Minor product)

Step 1:
i Steam stripping o P
L

428 K438 K Cmss  ondensation - O o Hydrudecarbcxy\anon __ Hydrodecarbonyaion (o .

Route 5: Sz o [ Neon s RUIALO;, 608-623 K, 0.013 h'! Hy Cy-Cs5 Paraffins " 6

ydrolysis/dehydration
Cellulose Ao

456 K463 K )

° Step 2:

Step 1:
Hydrogenolysis Aldol
Route 6: Cellulose — o0 A~ \O—d Cyz Alkanes 8% 7
HCI + PdIC, Hy, 373K 0 CuzNi/MgO-p + Ni/H-Beta, Hy, 473 K

at room alkylation (HAA) 7
o 0 alkyl (HAA) e Hydrodeoxygenation Cyqand C.
Route 7: Cellulose [ )~ Cy1and Cyg Branched alkenes " 1.
Toluene/NaCl aqueous solution PdIC, Hy Nafion, 333 K 0. 0/ Ni/HAP + H-ZSM-5, 493 K

0,
This work: o S I/) Main products Overall yield
Step 1 2o oo
Cascade e Step 3
o Hydroxyalkylation/ = Step 4:

Alkanes 54%
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