Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supplementary information (SI)

YFO photocathode fabricated by spray pyrolysis for unassisted solar water splitting for generation of hydrogen fuel

Bandar Y Alfaifi¹ Hameed Ullah²*, Xin Jiang²*, Asif Ali Tahir¹

¹Solar Energy Research Group, Environment and Sustainability Institute, Department of Engineering, University of Exeter, Penryn Campus, Cornwall, United Kingdom

²Chair of Surface and Materials Technology, Institute of Materials Engineering, University of Siegen, Siegen, Germany

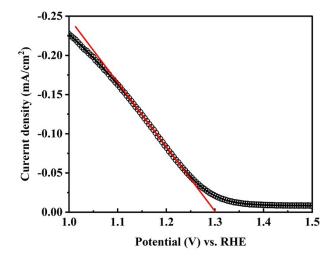

*Corresponding author: hameed.ullah@uni-siegen.de; xin.jiang@uni-siegen.de

Table S1. Crystal structure parameters of the samples YFO-500, YFO-550, YFO-600 and YFO-650.

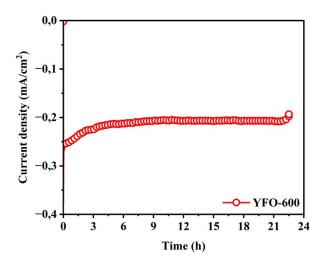

Sample	Crystallite size (nm)	Lattice strain (10 ⁻³)	Interplanar spacing (d ₁₂₁) (nm)
YFO-500			
YFO-550	35.94	1.76	2.6952
YFO-600	49.41	1.28	2.7003
YFO-650	49.18	1.31	2.6964

Figure S1. Custom-made reactor vessel for hydrogen evolution test with a fused silica quartz viewport. The *o*-YFO working electrode and Pt mesh counter electrode are connected by a single outer wire

Figure S2. Current density plot as a function of potential vs. RHE for determination of the onset potential of YFO-600

Figure S3. Chronoamperometric curve of YFeO₃ film with illumination for 24 hours at -0.3 V vs. Ag/AgCl.

Equation for Faradaic efficiency determination

$$Faradaic\ efficiency = \frac{H_2(exp.)}{H_2(theo.)} = \frac{H_2\ (exp.)}{H_2(photo)} = \frac{H_2\ (exp.)}{\left(\frac{J_{photo}\times A\times t}{e}\middle/4\right)\middle/N_A} \times 100\%$$
 (S1)

Where H_2 (exp.) and H_2 (theo.) are the amounts of hydrogen, respectively, measured experimental by GC and determined theoretically from *i-t* curve. $J_{photo.}$ (A/cm²) is the photocurrent density, t (seconds) is the measurement time, A (cm²) is the area of the photoelectrode illuminated, e (1.602 × 10⁻¹⁹ C) is the charge of an photogenerated electron and N_A (6.02 × 10²³ mol⁻¹) is the Avogadro constant.