

SUPPLEMENTARY MATERIAL

• Brass corrosion Test

Fig. s1. Comparison of Tafel diagrams of Zn, Mn and Brass

Metal	I _{CORR} [mA∙cm⁻²]	E _{CORR} [V]	
Brass	6.45 x 10 ⁻⁴	0.401	
Manganese	340 x 10 ⁻³	1.328	
Zinc	1.54 x 10 ⁻³	1.300	

Table s1: ICORR and ECORR of Brass, Manganese and Zinc

Fig. s2. Schematic representation of Metal-Air battery cell used for discharge tests: A) 1 cm2 anode, B) acrylic cell body, and C) Aircathode.

Fig. s3. Galvanostatic transient for the Zn galvanoplastic deposition and Mn galvanostatic electrowinning after 2 hours of electrolysis.

• Equilibrium diagrams of Mn in NaCl 2M

Fig. s4. Pourbaix diagrams for 0.01 (a), 0.1 (c), and 1 M (e) of Mn in 2M NaCl and molar fraction equilibrium diagram for 0.01 (a), 0.1 (c), and 1 M (e) of Mn in 2M NaCl.

Fig. s5. Raw data discharge curve of manganese-air battery showing the contribution of current collector after main Mn-air battery discharge ends.

	Theoretic Ecell [V]	Z (Number of electrons)	Theoretic Specific Capacity [A·h·kg ⁻¹]	Theoretic Energy Density [Wh·kg ⁻¹]
$3Mn + 4H_2O \rightarrow Mn_3O_4 + 8H^+ + 8e^-$	2.097	2 ² / 3	1299.66	3073.74
$Mn \rightarrow Mn^{2+} + 2e^{-}$	2.365	2	974.75	2044.01
	Total energy balance:		2274.41	5117.75

Table s2.- energetic data for the two synergic anodic reactions proposed.

Fig. s6. Graphical representation of discharge mechanism and theoretical specific capacity (TSC) and energy density (TED) determination.

Ref.	Туре	Electrolyte	Discharge rate [mA·cm ⁻²]	OCV [V]	Specific Capacity [A·h·kg ⁻¹]
-	Primary Mn-Air	NaCl Based	0.5	1.55	1930
-	Primary Zn-Air	NaCl Based	0.5	1.01	748
16	Primary Zn-Air	Seawater based	25	-	724
49	Secondary Zn-Air	KOH based	10	1.405	801.2
50	Secondary Zn-Air	KOH based	5	1.52	817
51	Secondary Zn-Air	KOH based	10	1.45	788
17	Primary Al-Air	NaCl Based	10	0.85	1210
58	Flexible Al-Air	KOH based	2	2.20	2761
59	Primary Al-Air	NaOH Based	50	1.55	2777
60	Primary Al-Air	KOH based	5	1.60	220
61	Primary Al-Air	Gelled KOH based	4.4	1.31	426

Table s3:Comparison of different MABs with MnAB and ZAB